sesar’

JOINT UNDERTAKING

D1.1 State of the art

Deliverable ID:
Project acronym:
Grant:

Call:

Topic:

Consortium coordinator:

Edition date:
Edition:
Status:
Classification:

Abstract

D1.1

ASTAIR

101114684
HORIZON-SESAR-2022-DES-ER-01
HORIZON-SESAR-2022-DES-ER-01-WA1-1
Ecole Nationale de L’Aviation Civile (ENAC)
11 March 2024

01.01

Official

PU

This deliverable discusses the state-of-the-art related to interaction between human actors and
automated systems for the management of ground operations in potentially highly automated
airports. Furthermore, in this deliverable, existing support algorithms and tools for fleet management
and path planning will be reviewed, which could be used to enable collaboration between human
actors and support automation. The literature review serves as a starting point for the activities in WP2
(Support algorithms) and WP3 (Automation Supervision & Control HMI design and development).

Authoring & approval

Author(s) of the document

Organisation name

Date

EUROPEAN PARTNERSHIP

Co-funded by
the European Union




D1.1 STATE OF THE ART

Edition 01.01 »
4L

JOINT UNDERTAKING

TUD 26/2/2024

ENAC 6/12/2023

ADP 21/2/2024

Reviewed by

Organisation name Date

ADP 23/2/2024

ENAC 26/2/2024

Approved for submission to the SESAR 3 JU by*

Organisation name Date

TUD 26/2/2024

ADP 26/2/2024

ENAC 26/2/2024

ECTL 26/2/2024

DBL 26/2/2024

Rejected by?

Organisation name Date

Document history

Edition Date Status Company Author Justification

00.01 1/10/2023 Initial version Sharpanskykh / TUD The table of content and
the overall setup

00.05 10/01/2023 Intermediate version Sharpanskykh / TUD Draft of the deliverable is
written and provided for
internal review

01.00 26/02/2024 Release Sharpanskykh /TUD  The final version with all
comments of the project
participants addressed

01.01 11/03 Release ENAC Minor corrections

! Representatives of all the beneficiaries involved in the project

2 Representatives of the beneficiaries involved in the project

Page | 2
© —2023- SESAR 3 JU

EUROPEAN PARTNERSHIP

Co-funded by
the European Union




D1.1 STATE OF THE ART
Edition 01.01 »
[

sesar

JOINT UNDERTAKING

Copyright statement © (2024) — (ASTAIR Consortium). All rights reserved. Licensed to SESAR 3
Joint Undertaking under conditions.

ASTAIR

AUTO-STEER TAXI AT AIRPORT

ASTAIR

This document is part of a project that has received funding from the SESAR 3 Joint Undertaking under grant agreement No
101114684 under European Union’s Horizon Europe research and innovation programme.

Page | 3

©-2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D1.1 STATE OF THE ART
Edition 01.01

sesar’

JOINT UNDERTAKING

Table of contents

ADSTIACT. ... et aaaaas 1
EXECULIVE SUMMQAIY ..cuueuirvneriirireiiiiiniiinsisusiisssasissesissssssssissssmssssssssissssssssssssssssssssssssssssssssnssns 7
Y 11 o [ o RN 9

1.1 Purpose of this dOCUMENT ........eeiiiiiiiiiiiiiiiiiiiiiire s rressssssssssssssssssssnssss 9

1.2 (T oo« = 9

1.3 Structure of the doCUMENt ... 10
2 Airport ground movement OPEratiONS ..........ccceeveuuueesrnrnvnnusissssnsrssssssssessssssssssssssssnnes 12

2.1 Conventional aircraft taXiing .......ccovvveeeciiiiiiiiiiiiniiiiiiressss e sssasssaas 12

2.2 ENgiNe-0Off taXiiNg ....ccciieiiiiiiiiniiiiiiiiiiiiiiiiiiiiiniinieisiiissssiseessssssssssssssessssssssssssssssssssssssns 15

2.3 Related SESAR ProJECES ....cccvvuuiiiiiiiiiiimmmniiiiiniiiieemsmsiiiiiniimeesmsssssssmimsesssssssssssssssssssssssss 17
3  State of the art on Human-Al INteraction................cceevvvevuenccssrrnnnenssssssinsssnssssssssssnnnnes 20

3.1 EASA — Artificial Intelligence Roadmap 2.0 ......cccceevuuiiiiiniiinennnniiiiinniinenieesss 20

3.2 Human-Automation TEaMING .....ccceiiiiiiiuuiiiiiiiiiiiiimniiiiiniiieermmimiiimesmsssimsessssssses 22

3.3 Understanding and controlling automated systems........ccccceeeeiiiiinniineniniiiiinninneeene. 23

34 Designing Human-Al systems with high levels of automation.........cccccevveeeciiiiiniiieenennnnn. 37
4  State of the art on support algorithms for fleet management and path planning ...... 40

4.1 Algorithms for fleet Management ........cccoiiiiieeciiiiiiiiiiiniseererrrsssssessssssnans 40

4.2 Algorithms for path and motion planning...........cccciiiiiiiiiiiiiiiiiiiinnnn, 46
5 Conclusion and research dir@Ctions...............eeeeeeeeeeeeecciiisisissiernnrenseeneeeeveeeesssssssssssses 71
L 1] (=1 =1 Lo N 73
7 LISt Of QCrONYMS ...ueeueeneeiiriirreniiiininnnnnsissssssssussssssssssssssssssssssssssssssssssssssssssssssssssssssns 85

Page | 4

Co-funded by

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP .
the European Union




D1.1 STATE OF THE ART
Edition 01.01

sesar’

JOINT UNDERTAKING

List of figures

Figure 1: Landing and take-0ff CYCIE. ...uviii i e e e e 12
Figure 2: Current operating method — DET @and SET .....coeeiiiiiiiiiiiiiieeeee ettt e e rne e 13
Figure 3: CONOPS diagram flow fOr DTVETS.......uuuiiiiiiieiee e ecciiirteee e e e e e e e e eseirareeee e e e e e e e e s ennanraaaeeeeeeas 16
Figure 4: EASA levels of automation defined in [1]. ..o 20

Figure 5: First part of the table from the EASA report [2] presenting the anticipated human factors
F={UTTo =T aTel <IN a0 o Yo [V =1 4 o o VAP U USUUPRN 21

Figure 6 : Second part of the table from the EASA report [2] presenting the anticipated human factors

F={UTTo =T aTol <INt oo [V =1 4 o o VAP U URUSPRN 22
Figure 7: Accuracy INAIiCAtor [19]. et e e e e e e e e st e e e e e e e e e e s enabaeraaaeeeaeeas 29
Figure 8: Example-based explanation [19]......cccciiiiiiiie e e e e e e e rre e e 29
Figure 9: Performance CONtrol [19] .. it e e e e e e e e e e e e e e e e s eabaaraaaeeeaeeas 29
Figure 10: Framework for Al failure modes [20]).....cccccuiieieiiiiee e e 30
Figure 11: Synthesis of XAl framework for ATM [47]... e 37
Figure 12: Mapping the human-Al interaction design onto a user-centered design process [59]. ..... 39
Figure 13 : Layout of ZRH With taXiWays [54].......uuiuiiiiieiiii et e e e e e e e svaa e aaeeeeeeas 48
List of tables

Table 1 : An overview of the state-of-the-art MAPF and MAMP solvers ([124]).....ccccoveeeeeciieeeeeennneen. 56
Table 2 : Optimal and complete MAPF SOIVEIS ......uuuiiiiiiie ettt e e e e e e e e e e areeeeaeas 59
Table 3 : Bounded sub-optimal and complete MAPF of SOIVEIS......ccvveeeieiicicciiieeeee e, 60
Table 4 : Unbounded sub-optimal MAPF solvers without completeness guarantee ...........ccccvveeeee... 61
Table 5 : Complete NON-0PtiMal SOIVEIS ...t e e e e e e e e e aaeeeaaeas 62
TabIE 6 1 SIPP VariantS....eee ittt ettt e e st e st e e s e e st e e s b et e sbe e e sabeeesbeeenn 63
Table 7 : Traditional motion planning algorithms..........cooiiiieiie e 64
Table 8 : ML AlZOITENIMS coeeeee e e e e e e e e et re e e e e e e e e e e e e e ansaraaaereaaeas 65

Page | 5

Co-funded by

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP .
the European Union




D1.1 STATE OF THE ART

Edition 01.01 »
4L
JOINT UNDERTAKING
Table 9 : Analytical comparison of traditional and ML algorithms for motion planning ...................... 65
Page | 6 Co-funded b
© —2023— SESAR 3 JU EUROPEAN PARTNERSHIP y

the European Union



D1.1 STATE OF THE ART
Edition 01.01

sesar’

JOINT UNDERTAKING

Executive summary

The goal of the ASTAIR project is to design a seamless partnership between Human and Artificial
Intelligence (Al) to manage and perform engine-off and conventional airport surface movement
operations at major European airports. ASTAIR original approach to automation is to consider an
integrated airport system instead of many separate sub-systems, analyse the level of autonomy an Al
system could take on tasks and to make the automation controllable by humans at different levels.

With the introduction of high-level automation for airport surface movement operations, the role of
operators and airport operation procedures will significantly change. The key to optimize the overall
performance of the collaboration between humans and Al is to adapt intelligent systems to the
operators’ modus operandi. This will ensure logical consistency across manual and automated control
and reduce the cognitive distance between levels of automation by mapping system functions to goals
and mental model of operators. In ASTAIR, we will propose interactive tools and adaptative Al
algorithms that take advantage of operators’ expertise for controlling and engaging with the
automation at diverse levels.

As a first step towards developing the ASTAIR solutions, this report identifies the state-of-the-art on
airport ground operations, Human-Al Interaction, and path and motion planning and fleet
management algorithms.

Related work on airport ground operations sets the operational context and identifies important
procedural elements of conventional and engine-off taxiing, which will be elaborated further in the
project’s concept of operation and use cases.

Related work focusing on Human-Al Interaction has been surveyed. The EASA Artificial Intelligence
Roadmap 2.0 Report is first described to define levels of automations and identified research gaps for
such levels of automation. We then describe related work covering Human-Automation Teaming
(HAT), studies of human behaviors when using automated systems, mixed-initiative interaction and Al-
Explainability (XAl) that are topics related to the design and evaluation of highly automated interactive
systems. From this state of the art, methods and design guidelines that should be applicable during
the project are identified, to understand users’ needs and to design new technologies including Al.

Fleet management is crucial for airports to prevent congestion. We have reviewed the literature on
fleet management for aircraft, tug fleet and ground support equipment. The fleet management for
aircraft mainly focuses on assignment of aircraft fleet to flight legs. Tug fleet management is related
to allocation of tugs or Taxibots to aircraft so that taxiing operations can be handled more fluently.
This involves not only the allocation of tugs or Taxibots but also the planning their conflict-free paths.

In ASTAIR, the path and motion planning algorithms are intended to be used for controlling the
movement of tugs or taxi-bots and aircraft on airport surface layouts. To this end, the literature survey
is presented in this document related to existing path and motion planning algorithms, including their
comparison with respect to requirements relevant for ASTAIR.
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Furthermore, we reviewed literature on methods combining path and motion planning with target or
task assignment, which usually have better computational properties in comparison with when these
problems are considered separately.

Based on this state-of-the-art, several research directions have been identified to be explored during
the ASTAIR project that integrate the different aspects discussed in this document.

Regarding the Human-Al Interaction in ASTAIR, we will be targeting high levels of automation (Levels
2B and 3A according to the EASA’s classification). Previous work on how to design efficient interactions
for such high levels of automation is scarce and often studied within very narrow and controlled
settings. To address this challenge, the following research directions will be considered in ASTAIR:

e Clearly defining the roles and tasks allocation between Al and Humans.

e |dentifying shared goals, constraints and representations to enable an efficient partnership
between humans and Al with adequate situation awareness and control.

e |nvestigating interactions that enable fluid transition from different levels of automation
according to user preferences or Al performances.

Based on the comparison of solvers for path and motion planning, it is concluded that compared to
optimal solvers, bounded sub-optimal solvers perform better in terms of computational time, while
slightly decreasing the solution quality. On the other hand, unbounded suboptimal solvers generate
solutions much faster than optimal and sub-optimal solvers, however the completeness of the
obtained solutions are not always guaranteed even though a feasible solution exists. Thus, the trade-
offs between solution quality, completeness and computational complexity should be considered
while selecting the best solver.
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1 Introduction

1.1 Purpose of this document

This document provides background information and state-of-the-art on solution approaches related
to the electrification and automation of airport surface movement operations, human-machine
interactions in automated systems, management of the vehicle fleet, path and motion planning for
automated vehicles, and explainable Al solutions to improve the understanding of the human-in-the-
loop.

Another goal is to determine the research directions based on comprehensive evaluation and
comparison of existing approaches and the requirements of the cases that will be dealt with in ASTAIR.

In particular, we want this document to feed the design of novel interactions for supervising and
controlling a highly automated airport that will be carried out in WP3. Furthermore, based on a
comprehensive review of existing path and motion planning and task assignment approaches, and a
set of ASTAIR-related requirements, we identified candidate solution techniques to be further
elaborated in WP2.

The ASTAIR solution is aimed to be capable of controlling the movements of airplanes and tugs
(Taxibots and conventional) on a platform between parking stands and runway entries, between
parking aprons, and managing the fleet of available tractors on service roads. To achieve this, Al
solutions including the AEON based multi-agent routing solution that compute 4D trajectories with
speed profiles for aircraft and tugs, fleet management solution that assigns Taxibots to aircraft taking
the contract-based constraints and availability of Taxibots into consideration, and relevant interactive
tools for operators. Regarding these concepts, this document presents the state-of-the-art solutions
including fleet management and path and motion planning for airports and other environments,
human-machine interactions, and explainable Al.

1.2 Scope

In this document, we review 3 interrelated domains relevant to the ASTAIR project, which are mainly
the (i) airport surface operations regarding conventional and engine off taxiing, (ii) Human-Al
interactions, (iii) fleet assighnment and path and motion algorithms for airport surface movement
operations

A review of airport ground movement operations defines the main context that is considered within
the project including conventional and engine off taxiing techniques and constraints. Some of the
described aspects of airport surface movement operations will be further elaborated in the ASTAIR
concept of operation and use cases considered in the project.

The review of the state-of-the-art regarding Human-Al interactions includes Human-Automation
Teaming, controlling automated systems, mixed-initiatives with high automation levels, and
understanding Al behaviors. Introducing higher levels of automation in airport operation will likely
introduce changes for the involved persons with redefined roles and tasks among the stakeholders

Page | 9

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D1.1 STATE OF THE ART
Edition 01.01

sesar’

JOINT UNDERTAKING

with some possibly transferred to Al. However, Al alone will not be able to handle the complex and
constantly evolving situation involved in airport operations. Humans will need not only to supervise Al
systems but also likely to work with Al systems to optimize their performances or to cope with failures.
This results in the need to study related work covering Human-Automation Teaming (HAT), studies of
human behaviors when using automated systems, mixed-initiative interaction and Al-Explainability
(XAl) that topics related to the design and evaluation of highly automated interactive systems. From
this state of the art, methods and design guidelines that should be applicable during the project are
identified, to understand users’ needs and to design new technologies including Al.

An overview of existing research on fleet management for the assignment of aircraft fleet to flight legs,
allocation of tug fleet to aircraft, and assignment and routing of ground handling vehicles to complete
ground handling tasks are presented. To reduce congestion at airports flight scheduling and aircraft
fleet management are critical and a considerable amount of previous research is relevant to this area.
To reduce emissions and improve the capacity usage, electrification and automation of taxiing and
ground handling operations have also gained importance in recent years. Thus, the recent literature
includes the studies focusing on tug fleet management for electric taxiing and the fleet management
regarding ground support equipment.

Algorithms for path and motion planning are explained focusing on the solution approaches applied
for airport surface movement on airport surface area and the state-of-the-art path and motion
planning algorithms that are used in various environments. Furthermore, the recent research
directions that combine path planning with target assignment are summarized. A comprehensive
evaluation and comparison of the state-of-the-art solvers regarding the computational complexity and
solution quality is presented. Also, the explainable Al frameworks proposed for path and motion
planning are briefly mentioned.

1.3 Structure of the document
The remainder of this deliverable is organized as follows.

In Section 2, to provide the context, the concepts of both conventional and engine-off airport surface
movement operations are introduced.

In Section 3, related work focusing on Human-Al interaction is described. Concepts and directions from
the EASA Artificial Intelligence Roadmap 2.0 Report as well as several research fields are presented.
Several guidelines and methodologies and research directions to be investigated within the ASTAIR
project are identified.

In Section 4, the state-of-the-art solution methodologies for fleet management and path and motion
planning are presented. This section is split into two subsections. Fleet management is described in
Section 4.1 and the content related to path and motion planning algorithms is presented in Section
4.2,

Section 4.1 includes three subsections. Existing research on fleet management for the assignment of
aircraft fleet to flight legs is presented in Section 4.1.1. The literature on allocation of tug fleet to
aircraft is given in Section 4.1.2. Recent studies on management of ground support equipment fleet
are summarized in Section 4.1.3.
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In Section 4.2, algorithms for path and motion planning are explained in four subsections. Section 4.2.1
focus path and motion planning algorithms for airport surface movement, Section 4.2.2 explains the
state-of-the-art path and motion planning algorithms that are used in various environments, Section
4.2.3 summarizes the recent research directions heading towards the solution of path planning
combined with target assignment, Section 4.2.4 presents a comparison of solvers in terms of
complexity and solution quality, and Section 4.2.5 provides with a brief summary of explainable Al
methods for path and motion planning.

Lastly, in Section 5, conclusions and research directions are provided.
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2 Airport ground movement operations

In this section, both conventional and engine-off airport ground movement operations are considered,
which are within the scope of ASTAIR. Furthermore, several SESAR projects relevant to ASTAIR are
reviewed.

2.1 Conventional aircraft taxiing

During the landing and take-off (LTO) cycle, on average the aircraft spend most of the time on the
ground, as they have to manoeuvre different aerodrome layouts to take-off or land. Conventional
departure procedures include pushback (with engines-off) from the parking stand and taxi (with
engines-on) till they lift-off from the runway, while the arrivals follow an engine-on schedule till the
parking stand (see Figure 1).

A\ o

Taxkin

Approach LTO cycle
Mode Thrust Time
K Take-off 100% 0.7 min

- < Climb  85% 2.2 min
Approach 30% 4.0 min
Taxi 7% 26 min

Figure 1: Landing and take-off cycle.

Conventional operating methods on ground involve keeping main engines-on or use single engine
technique to taxi aircraft from gate to runway or vice versa as shown in Figure 2.
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fumoconTacy

Figure 2: Current operating method — DET and SET

The Dual Engine Taxi (DET) is normally adopted during both Taxi-Out (EXOT) and Taxi-In (EXIT) phases
of aircraft ground operations. Single Engine Taxi (SET) method is usually used by airlines during the EXIT
phase more than the EXOT phase, to save fuel during longer taxiing times at the airports. It can also be
seen that these methods add procedures/personnel on the ground that eventually increase the
turnaround time for the AO. Figure 2 also shows that engines are kept on right from the aircraft off-
block time till the on-block time, even though there are stop and go situations that arise, like de-icing
of an aircraft or airside delays causing aircrafts to hold for longer duration.

In Figure 2, the double red polygon symbols indicate both engines are ON while the red and green
polygon symbols indicate one engine is OFF and the other one is ON. The other parameters that are
compared for the conventional technique with new AEON solution(s) are fuel saving, noise, CO,
emission and EXOT or EXIT times. Also, the actors and stakeholders who are involved at various stages
of operation, from pushback on apron, taxiing in the manoeuvring area to take-off on the runway, are
illustrated.

In the following we review the main ground phases of the flight.

The pushback is the movement of an aircraft from a nose-in parking stand using the power of a
specialized ground vehicle attached to or supporting the nose landing gear. It is commonly the second
part of a taxi in push out procedure at airport terminal gates and will be necessary to depart from all
except self-manoeuvring parking stands, unless the aircraft type is capable of power back and local
procedures allow this. Once the Pilot in Command (PIC), has given the confirmation of ‘brakes released’
to the person in charge of the ground crew who are to carry out the “Pushback”, the ground crew
becomes temporarily responsible for the safe manoeuvring of the aircraft in accordance with either
promulgated standard procedures or as specifically agreed beforehand.
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The traditional pushback method involves attaching a ground vehicle to the aircraft nose landing gear
by means of a towbar. An alternative method, which is more common for pushback, is the use of a
specialized vehicle called a ‘towbarless tug’. This tug positions two low level ‘arms’ either side of the
aircraft nose landing gear and these are used to engage with the aircraft gear leg and raise it slightly
off the ground. These specialized vehicles can also be used to tow aircraft forward.

Effective communication between the person in charge in the flight deck and the person in charge of
the ground crew, and between the members of the ground crew team is critical. If the aircraft is pushed
back prior to the intended flight and the person in charge of the flight deck is therefore an aircraft
commander, the procedures of the aircraft operator may require that the designated pilot flying, who
may be the co-pilot, should oversee the pushback and in this case all communications with the ground
crew will be undertaken by that person rather than necessarily by the aircraft commander.

Taxi-out (EXOT) is defined by the time taken by the aircraft to move from a gate or a parking stand to
a runway take-off point.

After being cleared by the ground crew and with the warmed-up engines, the pilot in control is able to
taxi according to the instructions/clearances received from the ground controller (or ATC) to
designated hold points near the proposed take-off runway or de-icing pads or along with the taxiways
etc. The choice of speed to drive through taxiways would depend largely on the human factor, airport
speed limitations and airline internal policies. It is often seen at many airports that where speed
limitations are not set the pilots operate the aircraft at a highest speed in order to achieve the allotted
Calculated Take-Off Time (CTOT).

Normally, based on the respective airport operating plan, the routing of the departing aircraft are
planned in a way to avoid intersection conflicts, jet blasts or any other safety concerns and aid in
quicker and seamless exits.

The Flight Crew and the ATCO/Ground Controller are in constant contact to exchange any real time
updates and guidance. Today, most ANSP at airports update real time data through D-ATIS (Datalink
Automatic Terminal Information Service) that enhances the safety for the Flight Crew (FC) and reduces
interaction time with the ATCOs.

Once taxied to the designated hold point close to the runway, the Flight Crew prepares the aircraft for
take-off after taking into consideration the entire pre-departure checklist. On FC’'s confirmation for
aircraft readiness to take-off, necessary communications are exchanged between FC and ATCo, who in
turn provide line-up and take-off clearances to the FC. This way a smooth transition for take-off is
achieved.

Taxi-in (EXIT) is defined by the time taken by the aircraft to move from the runway touch down point
to a parking stand or a gate.

Once the pilot in command touches down the aircraft on the runway and exits to a taxiway, the Flight
Crew is instructed by the ATCO to contact the Ground Crew to be guided to the parking stand. Upon
entering the taxiway, the pilot in command either operates all engines or taxi using single engine.

Single engine taxiing (SET) procedures are nowadays more frequently adopted by the airlines upon
arrivals rather than departures. The Flight Crew maximises the speed while taxiing (both during EXIT
and EXOT phase) in order to reduce the round-trip time on ground. The aircraft is guided into the apron

Page | 14

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D1.1 STATE OF THE ART
Edition 01.01

sesar’

JOINT UNDERTAKING

stands using Visual Docking Guidance System (VDGS) or hand signals by trained marshallers. After
stopping at the designated nose wheel position with chocks on, brake released and upon engines being
switched off and set into the cooling mode and once confirmed by the pilot in control, the Ground Staff
begins the ground handling operation.

2.2 Engine-off taxiing

Among the solutions for engine-off taxiing developed in the past years, two are particularly useful to
be applied in the airport environment, which are currently considered by major airports:

e Non-autonomous taxiing techniques based on Dispatch Towing Vehicle Electric Taxi System
(DTVETS) (see Figure 3)

e Autonomous taxiing techniques, referring to Nose & Main Landing Gear Electric Taxi System
(NLGETS & MLGETS) and categorised under Landing Gear Electric Taxi System (LGETS)

Both these solutions are reviewed in this section.
Dispatch Towing Vehicle Electric Taxi System (DTVETS)

The DTVETS System is a dispatch towing system that allows aircraft to taxi for departure to the runway
end with engines off. It may also be used for arrival aircraft with some procedure change after the
aircraft has left the rapid exit track. It was specially designed to tow aircraft safely, efficiently and
without causing fatigue damage to the nose landing gear and does not have speed or distance
limitations of normal tow trucks.

During The EXOT phase of DTVETS-based taxiing the pushback is performed in the same way as normal
operations, however DTVETS is always in line with the aircraft. When the pushback is completed,
control is handed over to the pilot. Pilot control of the DTVETS is performed in the same way as normal
taxi operations, steering via tiller and nose gear and braking via the aircraft brakes. No thrust needs to
be applied, as DTVETS operates like a car with automatic transmission, accelerating when brakes are
not applied. The DTVETS tug also functions as an aircraft push-back tug.
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Figure 3: CONOPS diagram flow for DTVETS

Most aircraft require no modifications to use of DTVETS. As illustrated in Figure 3, once the DTVETS is
attached at the “coupling point” on the apron and cleared for “delivery” by the Ground Controller, the
DTVETS will push the aircraft back from the gate/stand in the same manner as it is done today under
the direct responsibility of the trained DTVETS driver. Once pushback is completed, the control would
then be transferred/switched to the pilot in command and the flight crew can begin DTV taxi
movement (DTVETS ON) till the uncoupling point/area where the aircraft engines can be started while
being connected to DTVETS, closer to the assigned runway end. Once decoupled and the control
switches to the DTVETS driver, the tug is driven back in the manoeuvring areas of the airport to the
next operation.

On arrival, the aircraft can use the DTVETS technology as shown in Figure 3. The assigned DTVETS tug
will be stationed at an area close to the runway/taxiway designated point and once the aircraft reaches
the designated coupling point, the DTVETS driver would attach the tug to the aircraft nose wheel and
transfer or switch control to the flight crew for DTV taxi movement. During this phase of coupling the
pilot can decide to switch off the engines and allow them to cool down during the DTVETS coupling
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and control handover process is taking place. Once the DTVETS is attached, the flight crew can steer
the aircraft to the gate / parking stand with engines off. Upon reaching the parking stand the pilot can
decouple and transfer back the control of the tug to the DTVETS driver, who in turn can position the
tug for its next assignment.

The Landing Gear Electric Taxi System (LGETS)

The Landing Gear Electric Taxi System (LGETS) is an on-board innovative in-wheel electric taxi system
with electric motors integrated in the nose wheel — termed as Nose landing gear electric taxi system
(NLGETS) or in the main landing gear — termed as Main landing gear electric taxi system (MLGETS). It
enables pilot-controlled forward and reverse movement in gate and terminal areas without tractors or
jet engines. The technology also comes with optional camera/sensor systems that will provide pilots
with improved situational awareness for all manoeuvres. The LGETS is designed to reserve the use of
the aircraft engines for take-off and flight. It practically eliminates engine usage during ground
movement except during engine start-up, warm-up and taxi onto the runway.

With LGETS, the pilot in control is responsible for the pushback. The pilot control of the LGETS is
performed in the same way as normal taxi operations, steering via tiller and nose gear and braking via
the aircraft brakes till the aircraft reaches the designated cut — off point. As per the airside operational
constraints, the pilot in control can decide to start the engines during the taxiing phase of the aircraft
or after reaching the designated cut off point.

LGETS-, DTVETS-based, as well as single engine taxi can be used independently or in combination, as
was explored in SESAR AEON project.

2.3 Related SESAR projects

Some SESAR project dealing with problematics close to ASTAIR’s scope have been identified. Total
Airport Management is terminated but ADP, who was coordinating the project, is a partner of ASTAIR
consortium. CODA and TRUSTY are funded on the same program as ASTAIR and are on-going, ENAC
participates in both of them.

2.3.1 TAM - Total Airport Management

The Total Airport Management project (PJ0O4 TAM, grant 733121) is interesting for ASTAIR
development at several levels. First because centralization and automation of ground movement
promoted in ASTAIR follows the same philosophy as PJ04 TAM, but also because PJ04 looked into the
usage of Al for routing.

In the context of the PJO4-W2-Solution 29.3 Environmental performance management, the Level 1Al
has been experimented to help decision making in order to manage environmental performance.

Two use cases have been considered:
e ENV friendly time slot for conducting runways inspections.

e Fuel-savings taxing routes (studies of taxiing speed to propose alternative taxiing routes with
recommended speeds profile for specific flights).
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The developed models proposed to the operational solutions and decision-makers decided whether
the proposed solution will be applied. This corresponds to the level 1B (in reference to EASA level of
automation). ASTAIR will go further into looking for conflict-free routing.

2.3.2 CODA - Controller adaptative Digital Assistant

The CODA project aims at developing a system in which hybrid human-machine teams collaboratively
perform tasks. To do so, the system put together state of art from different fields: i) Prediction models
to foresee future situations and have the system know which activities will be carried out by the
operators and their impact on the same human performance; ii) Neurophysiological assessment of
mental states to enable the system to know operators’ real current level of workload, attention, stress,
fatigue, and vigilance by validating the predicted cognitive models and maximizing the effectiveness
of the interaction between the human and the machine by developing an HMPE; iii) Al-based adaptable
and explainable systems, to have the system act to prevent future performance or safety issues.
Specifically, the project will show how a system could adapt to specific situations and react accordingly
by using advanced adaptable and adaptive automation principles that will dynamically guide the
allocation of tasks. The system will assess the operator's cognitive status, use current traffic data to
foresee the future tasks that the operator will need to perform in the future, and calculate the impact
of those tasks in terms of cognitive complexity. With this information, the system will predict the future
mental state of the operator and will act accordingly by developing an adaptive automation strategy.
For example, imagine an ATCO managing a complex traffic situation and experiencing a medium
workload. The system is aware of this (thanks to the neurophysiological assessment). It predicts that
the additional upcoming tasks the ATCO will need to take care of will increase their workload,
exceeding the maximum an operator can handle. To avoid this, the system decides how to act,
following an adaptation strategy: it may, for instance, increment the level of automation, enable
additional Al-based tools, or request a sector splitting.

ASTAIR and CODA do not share the same approach on Human Automation Teaming, especially in the
use on neurophysiological measures, nevertheless some questions on delegation strategies may be
addressed similarly.

2.3.3 TRUSTY - TRUStworthy inTellingent sYstem for remote digital tower

Remote digital towers (RDT) are taking place around the world to ensure efficiency and safety. TRUSTY
harnesses the power of artificial intelligence (Al) to enhance resilience, capacity, and efficiency in
making significant advancements in the deployment of digital towers. The overall goal of TRUSTY is to
provide adaptation in the level of transparency and explanation to enhance the trustworthiness of Al-
powered decisions in the context of RDT. Through the video transmission data from RDT, TRUSTY
considers the following major tasks:

1. Taxiway monitoring (i.e., bird hazard, presence of a drone, autonomous vehicle monitoring,
human intrusion, etc.).

2. Runway monitoring (approach and landing) misalignment warning and the corresponding
explanation.
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To deliver trustworthiness in an Al-powered intelligent system several approaches are considered:
e ‘Self-explainable and Self-learning’ system for critical decision-making
e ‘Transparent ML’ models incorporating interpretability, fairness, and accountability
¢ ‘Interactive data visualization and HMI dashboard’ for smart and efficient decision support
e ‘Adaptive level of explanation’ regarding the user's cognitive state.
e “Human-centric Al” enhances the trustworthiness of Al-powered systems.

e “Human-Al teaming” to consider users’ feedback to insure some computation flexibility and
the users’ acceptability.

To achieve the goal, TRUSTY will rely on the SotA developments in interactive data visualization, and
user-centric explanation and on recent technological improvements in accuracy, robustness,
interpretability, fairness, and accountability. We will apply information visualization techniques like
visual analytics, data-driven storytelling, and immersive analytics in human-machine interactions
(HMI). Thus, this project is at the crossroad of trustworthy Al, multi-model machine learning, active
learning, and UX for human and Al model interaction.

TRUSTY and ASTAIR will most probably share some problematics concerning human centric Al and
humain Al teaming, thus staying closely in touch will be fruitful for the project.
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3 State of the art on Human-Al Interaction

In this section, we describe the state-of-the-art regarding interactions in mixed initiatives automated
systems. We start by reviewing the EASA’s artificial Intelligence Roadmap 2.0 report to clarify levels
of automations and specific challenges identified for the ASTAIR project. We then define and discuss
Human-Automation Teaming research. We then articulate related work relevant for understanding
and controlling highly automated systems among several dimensions including studies of human
behaviors when using automated systems, mixed-initiative interaction and Al-Explainability that we
will build upon to design shared representations between human and Al to enable efficient
collaboration. We conclude with a review of methodologies adequate for designing highly automated
systems.

3.1 EASA - Artificial Intelligence Roadmap 2.0
The ARTIFICIAL INTELLIGENCE ROADMAP 2.0 report [1] from EASA defines three levels of Automation

according to the roles of Humans and Al. Figure 4 describes the roles of Humans and Al for these three
levels.

Level 1 Al: Level 2 Al: Level 3 Al:
assistance to human human-Al teaming advanced automation

* Level 1A: Human e Level 2A: Human and * Level 3A: The Al-based system
augmentation Al-based system performs decisions and
o Level 18: Human cognitive cooperation La)ctiuo;nshthat are overridable
assistance in decision- e Level 2B: Human R
making and action selection and Al-based system  Level 3B: The Al-based system
collaboration performs non-overridable
decisions and actions
(e.g. to support safety upon
loss of human oversight).

Figure 4: EASA levels of automation defined in [1].

The levels 2A and 2B are different because of the two terms cooperation and collaboration that are
defined as follows:

Cooperation is a process in which the Al-based system works to help the end user accomplish their own
objective and goal. The Al-based system will work according to a predefined task allocation pattern
with informative feedback on the decision and/or action implementation. Cooperation does not imply
a shared vision between the end user and the Al-based system. Communication is not a paramount
capability for cooperation.

Collaboration is a process in which the human and the Al-based system work together and jointly to
achieve a common goal (or work individually on a defined goal) and solve a problem through co-
constructive approach. Collaboration implies the capability to share situational awareness and to
readjust strategies and task allocation in real time. Communication is paramount to share valuable
information needed to achieve the goal, to share ideas and expectations.
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For the first two levels (1 and 2), EASA also proposed several guidelines regarding human-factors
among several dimensions including Al operational explainability, Human-Al teaming, Modality of
interaction and style of interface, Error management, Workload management, Failure management
and alerting systems, Integration or Customization of Human-Al interface [2].

The report also specifies that: “For Level 1A, existing guidelines and requirements for interface design
should be used. For Level 1B, an initial set of design principles are proposed for the concept of
operational explainability. For Level 2A and Level 2B, new objectives have been developed and others
from existing human factors certification requirements and associated guidance have been adapted to
account for the specific end-user needs linked to the introduction of Al-based systems.”

The report from EASA also provides an impact assessment of different levels of automations on end-
users regarding Human-Al Interaction, Explainability and Guidance. Figure 5 and Figure 6 summarize
the impact assessment.

OVERALL IMPACT ASSESSMENT HAlIl EXPLAINABILITY GUIDANCE
E d level of evolution in E d level of inability Need for specific human
the human-Al interaction needed during operation factors certification guidance
(HAII) compared to existing linked with the introduction of
interactions Al-based systems
The implementation of an Al-based
system is not expected to have an
= impact on the current operation of the
2 end user. No change compared to existing No need for dedicated
2 e.g. Enhanced visual traffic as the imp ion of guidance.
3 g detection/indication system in flight- No change compared to an Al-based system at Level 1A is Existing guidelines and
3 . deck. existing systems. impacting neither the operation, requirements for interface
E e.g. The analysis of aircraft climb nor the interaction that the end design should be used.
S | profiles by an Al-enhanced conflict user has with the systems. e.g. CS/AMC 25.1302
= probe when checking the
intermediate levels of an aircraft climb
instruction.

The implementation of an Al-based

system is expected to impact the Specific guidance needed.
8 current operation of the end user with Medium change: There is a Explainability is there to support Need for operationalising the
a g the introduction of, for example, a need for explain.abilitv sothat and facilitate end-user decisi lainability in the
3 cognitive assistant. the end user is in a position to At this level, decision still requires frame of future design and
3 c e.g. Cognitive assistant that provides use the Al outcomes to take human judgement or some certification.
g the optimised diversion option or decisions/actions, agreement on the solution -> Definition of attributes of
X | optimised route selection. ) method. explainability with design
e.g. An enhanced final approach principles.
sequence within an AMAN
Level 2A corresponds to the
implementation of an Al-based system
capable of teaming with an end user.
The operation is expected to change
by moving from human-human teams Specific guidance needed
to human-Al-based system teams . Medium change: With the exp d i duction of ing human factors

More specifically, Level 2A is
introducing the notion of cooperation
as a process in which the Al-based
system works to help the end user

Communication is not a
paramount capability for
cooperation, However,
informative feedback on the

lish their own objective and
goal.
The operation evolves by taking into
account the work from the Al-based
system based on a predefined task

decision and/or action
implementation taken by the
Al-based system is expected.
HAIl evolution is foreseen to
for the i duction of

Level 2A
Human-Al teaming: Cooperation

allocation pattern.

e.g. Al advanced assistant supporting
landing phases (automatic approach

configuration)

e.g. conflict detection and resolution
in ATM.

the cooperation process.

new ways of working with an Al-
based system, the end user will
require explanations in order to
cooperate to help the end user
accomplish their own goal.

A trade-off is expected at design
level between the operational
needs, the level of detail given in
an explanation and the end-user
cognitive cost to process the
information received.

certification requirement and
associated guidance will have
to be adapted for the specific
needs linked with the
introduction of Al

-» Development of future
design criteria for novel
modality of interaction and
style of interface as well as
criteria for HAT, and criteria to
define roles and tasks
allocation at design level.

Figure 5: First part of the table from the EASA report [2] presenting the anticipated human factors guidance

modulation.
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Specific guidance needed
Level 2B corresponds to the High change: Existing human Existing human factors
. v . po 8 sA ) g hu With the expected introduction of X ) e .u N
implementation of an Al-based system | factors certification certification requirements and
. . . new ways of working with an Al- . . .
capable of collaboration. On top of requirements and associated based system. the end user will associated guidance will have
< | the evolution linked to the notion of guidance are adapted to the N ystem, L, to be adapted to the specific
o . . ) ) ) require explanations in order to X 3
b= HAT, the collaboration will make the specific needs linked with the . needs linked with the
o O . X . collaborate, negotiate or argument | . X
~ S operation evolve towards a more introduction of Al. towards a common goals. A trade- introduction of Al.
E & | flexible approach where the human -> Development of design 3 8, y -> Development of future
° ) off is expected at design level N
9 O | andthe Al-based system will both criteria for novel modality of . design criteria for novel
= A X . between the operational needs, ) R .
; communicate and share interaction and style of o . modality of interaction and
I . . . - the level of detail given in an ! L
strategies/ideas to achieve a common | interface as well as criteria for explanation and the end-user style of interface, criteria for
goal. HAT, and criteria to define P . HAT, and criteria to define
. S . A cognitive cost to process the R
e.g.: Virtual co-pilot in single-pilot roles and tasks allocation at . . X roles and tasks allocation at
. ) information received. R
operations design level. design level.
The Al-based syst'em is opera'tl'n'g Very high change: Expected
=4 independently with the possibility i . . .
change in the job design with In order for the end user to
3 from the end user to override an L ) , Specific guidance needed.
< o . L. evolution in HAII to support override the Al/ML systems' .
-3 13 action/decision only when needed. L - ) On top of the specific
2 ) the end user being in a decision, the appropriate level of .
® 5 No permanent oversight from the end . . X i N guidance needed for Level 2,
g3 user. A significant modification in the position to override the explanation or information is going EASA anticipates additional
= g -ASiE L. decision and action of the Al- to be needed for the good ) P
4 current operation is expected. guidance development.
=] X based system when needed. operation of the system.
= e.g. UAS ground end user managing
several aircraft
<
§ There is no more end user. N/A: The end user is effectively
-] g The Al-based system is fully removed from the process. There is no need for explainability
T 5 | autonomous. There is no requirement for at the level of the end user. N/A in operation.
5 § e.g. Fully autonomous flights end-user interaction. There is no end user.
= | e.g. Fully autonomous sector control.
3
w

Figure 6 : Second part of the table from the EASA report [2] presenting the anticipated human factors guidance
modulation.

The impact of levels 2B and 3A are important [2]. For level 2B, the impact on Human Al Interaction
will require the “Development of design criteria for novel modality of interaction and style of
interface as well as criteria for Human-Automation Teaming, and criteria to define roles and tasks

allocation at design level.” For level 3A there are “expected change in the job design with evolution in
HAII to support the end user being in a position to override the decision and action of the Al-based
system when needed.”

In summary, based on the data from the EASA report [2] we identified several research directions for
the ASTAIR project. We will focus mostly on 2B and 3A automation levels according to this classification
since the need for additional work is explicitly identified. For such levels of automation, we will need
to investigate the roles and tasks allocation between Al and Humans as well as to identify relevant
criteria to validate such allocation. We will also need to formulate guidelines that will serve not only
as themes or concerns for designing for high level of automation (2B-3A) but also as practical tools that
can be leveraged by designers of such systems. In particular, providing guidelines and
recommendations on how to design interactions for overriding Al decisions and how to collaborate
effectively with the Al needs to be explored in the project.

3.2 Human-Automation Teaming
Human Automating Teaming (HAT) can be defined as a group of human and autonomous agents,

performing activities and achieving outcomes together towards a common goal [3]. In particular in
HAT, the autonomous agents work alongside humans performing essential tasks and teamwork
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functions that a human would [4]. They now perform complex tasks with no or little intervention of
humans, which require to engage with other teammates to achieve team objectives [5].

Humans and machines have different capabilities. While autonomous agents are able to manage
workload better, human operators can adapt to new situations better [6], thanks to the way human
agents communicate to each other. For instance, machines are usually better than humans at solving
problems involving a high number of variables but are almost unable to take into account new variables
that were unknown during their design [7]. In addition, most of the safety-critical automated systems
still rely on humans in a range of non-nominal or critical situations [8]. The unpredictable nature of
airport ground traffic and operation makes full automation difficult, hence requiring human knowledge
to assess situations and specify relevant strategies to the algorithm.

Artificial intelligence agents are expected to perform in certain ways before they can be considered as
teammates. In particular, research has found that humans expect Al teammates to have at least
instrumental skills for completing collaborative tasks, shared understanding of human teammates,
sophisticated communication abilities for information exchange and human-like performance [9].
Furthermore, humans expect agents to perform like humans while collaborating with them to
complete tasks [9]. In other words, humans are more likely to collaborate and coordinate effectively
with high-performance Al, which behaves like humans, which can be directed and whose actions can
be anticipated.

Although designing human substitutes is unrealistic, novel research can build upon computer-
supported cooperative work (CSCW) research to improve interactions with Al by identifying where Al
can outperform human performance for relevant roles and tasks allocations and facilitate mutual
understanding between Als and humans. We have extensively covered CSCW fundamentals in AEON
deliverable 1.3 and we redirect readers to the document for an understanding and an overview of
CSCW [10]. We focus the remainder of the section on the relevant research that will support the design
of optimal collaborations between human and Al teammates in ASTAIR.

3.3 Understanding and controlling automated systems

In this section, we describe previous work related to the design of Human-Al interaction. We start by
reviewing work from organizational psychology and Human Computer Interaction (HCl) related to the
design of interactive systems able to facilitate collaboration and delegation of tasks between human
and Al. We also cover interaction styles and existing approaches for mixed initiative systems as well as
present recent work in Al explainability related to automated airports.

3.3.1 Delegation aspects from organizational psychology

While there is little agreement on exactly what constitutes an intelligent agent, many definitions
embody a user-interface model that differs from the traditional one where users perform tasks with
the help of computer-based “tools”. In contrast, the “delegation” model associated with agents is
based on entrusting tasks to an autonomous, sometimes anthropomorphized system, whose
performance is monitored and evaluated. This change in user-interface model is a dramatic one since
delegation can be a difficult and often-avoided behavior in humans. Agent-interface designs need to
overcome well-established drawbacks in delegation. For this purpose, designers should find the
management sciences and organizational psychology literatures to be as relevant as that of traditional
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human factors. This section describes issues regarding task delegation between humans as they
pertain to the design of intelligent-agent—user interfaces [11].

Nearly all definitions of “agent” contain some combination of the following traits: Ability to work
asynchronously and autonomously, Ability to change behavior according to accumulated knowledge,
Ability to take initiative, Inferential capability (i.e. capable of abstracting), Prior knowledge of general
goals and preferred methods, Natural language, Personality.

“Delegation” is the process of passing on responsibility for a task to a subordinate by giving him/her
authority to act on your behalf, but without giving up control, or ultimate accountability [12]. For many
reasons, delegation is often an unnatural and taxing activity: Managers often feel that they can
perform a task better than a subordinate; Managers often enjoy doing certain tasks even if it may be
more efficient to delegate them; For urgent tasks, needing to be done immediately, managers often
believe that explaining the task to a delegate will be a waste of time; Managers fear that the
subordinate will fail at the task; not only may the task not be accomplished, but the subordinate may
feel bad.

For delegating to succeed, the following design guidelines should be followed [11]:

e The benefits of delegation need to exceed the cost. Agents are more appropriate for some
tasks than for others. Users must have the option of delegating vs. self-performing tasks.

e Delegation requires sophisticated, interactive communication: Users should be encouraged to
convey the intentions and goals of a task to the agent; Natural language interfaces can be used
for tasks that are easy to describe.; For many complex task environments, interface dialogues
could employ speech—act structure; Agents must be designed to indicate clearly when
instructions are not understood; Anthropomorphizing agents with the use of facial displays
and vocal intonation may be useful in conveying comprehension and lack of comprehension;
For some tasks, it may be most efficient for the user to convey what is desired by
demonstration.

e Delegation requires trust: Build agents to be reliable and use them in stable environments;
Create specialized agents capable of a small, circumscribed set of capabilities, and emphasize
their expertise. Increase the observability of the agent’s behaviors; Provide the user with data
about the predictability of the agent’s behaviors; Design the agent to evolve, with the user,
through stages of trust; Train users to understand how the agent works; Use
anthropomorphized agent interfaces.

e Performance controls are key part of delegation: Designers need to emphasize sub-tasking,
scheduling and deadlines; Users need to be able to solicit and receive status reports at any
time; For some tasks, users need an independent way of checking on agents’ performance
while the task is being carried out; Users need a way of evaluating agents’ performance in such
a way that the agents’ subsequent performance will be improved or strengthened.

e Delegation depends on personality and culture: Experience with delegation may make agent-
based interfaces easier to use; Managers who already are effective at delegating tasks to
humans may prefer and excel at using intelligent agents, while ineffective delegators may be
so with both human and computer-based delegates; Applications for international use need
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to be designed with careful considerations for cultural differences in leadership and
delegation.

While these guidelines focus on human-to-human delegation, we will use these guidelines while
designing interaction between human operators and Al within the ASTAIR project.

3.3.2 Studies on human behavior with automation

This section presents the latest results on various studies on human behavior with automation. Even
if their application domains are unrelated to air traffic management and the subjects are not always
experts of their domain, their results and design implications might prove useful for the ASTAIR project.

3.3.2.1 Delegation with knowledge about Al

When collaborating with artificial intelligence (Al), humans can often delegate tasks to leverage
complementary Al competencies. However, humans may delegate inefficiently. Enabling humans with
knowledge about Al can potentially improve inefficient Al delegation. A between-subjects experiment
(two groups, n = 111) has examined how enabling humans with Al knowledge can improve Al
delegation in human-Al collaboration [13]. The task consisted of classifying images. One group was
informed of the capabilities of Al vs Humans at classifying (e.g. “Humans are superior with images
which necessitate social intelligence or highly complex perception” or “Al is superior with images with
distinctive patterns or objects”). The findings suggest that Al knowledge-enabled humans align their
delegation decisions more closely with their assessment of how suitable a task is for humans or Al (i.e.,
task appraisal). Delegation decisions closely aligned with task appraisal increase task performance.
However, Al knowledge lowers future intentions to use Al, suggesting that Al knowledge is not strictly
positive for human-Al collaboration.

The significance of human appraisal for Al delegation decisions indicates that we must consider human
attributes in designing Al for human-Al collaboration. As a complement to the Al-attribute- focused
principles, a new design principle might state, “Make clear what humans can do.” An Al could provide
information on average (or even individualized) human performance to promote efficient delegation.
On the other hand, Al might also state what humans cannot do. For example, it could make interacting
humans aware of their biases (“Create awareness of human biases”).

Besides including educational features in Al-based tools, practitioners must also invest in Al training
and upskilling programs for humans that promote basic Al literacy, which might be difficult to learn
while using an Al-based tool.

The user’s intention to continue using Al is arguably one of the most critical metrics for HCl researchers
and practitioners when designing Al for human-Al collaboration. A lack of human intention to use Al
dooms human-Al collaboration from the outset. Information overload might be a potential reason for
lowered Al usage continuance intention (AUCI) AUCI through Al knowledge and is worth exploring. HCI
researchers need to better understand how to balance Al knowledge’s positive and negative effects,
or which specific components of Al knowledge are decisive for the positive and negative effects of Al
knowledge.
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In summary Al knowledge-enabled humans align their delegation decisions more closely with their
assessment of how suitable a task is for humans or Al.

3.3.2.2 Human-machine interaction, environment, and performance factors

In the manufacturing field, a semi-automated system that entails human intervention in the middle of
the process is a representative collaborative system that requires active interaction between humans
and machines. User behavior induced by the operator’s decision-making process greatly impacts
system operation and performance in such an environment that requires human-machine
collaboration. There has been room for utilizing machine-generated data for a fine-grained
understanding of the relationship between the behavior and performance of operators in the industrial
domain, while multiple streams of data have been collected from manufacturing machines. A study
has been conducted with a large-scale data-analysis methodology that comprises data
contextualization and performance modelling to understand the relationship between operator
behavior and performance [14]. For a case study, machine-generated data were collected over 6-
months periods from a highly automated machine in a large tire manufacturing facility. The authors
devised a set of metrics consisting of six human-machine interaction factors and four work
environment factors as independent variables, and three performance factors as dependent variables.
The modelling results reveal that the performance variations can be explained by the interaction and
work environment factors. Even if conducted in a factory, the analyzed system shares some aspects
with Air Traffic Control (the use of alarms, human intervention or proactiveness). This research may
thus inform us on how to assess the performance of the whole system.

3.3.2.3 Appropriate reliance on Al systems

The promises of Al systems to augment humans in various tasks hinge on whether humans can
appropriately rely on them. Recent research has shown that appropriate reliance is the key to
achieving complementary team performance in Al-assisted decision making. The problem of whether
the Dunning-Kruger Effect (DKE) among people can hinder their appropriate reliance on Al systems has
been explored [15]. DKE is a metacognitive bias due to which less-competent individuals overestimate
their own skill and performance. Through an empirical study (N = 249), the authors explored the impact
of DKE on human reliance on an Al system, and whether such effects can be mitigated using a tutorial
intervention that reveals the fallibility of Al advice and exploiting logic units-based explanations to
improve user understanding of Al advice. The tasks consist of presenting a text and letting the subject
choose another text among 4 others that would best match the semantics of the presented text. The
Al condition would highlight those parts of the text that would best help the subjects choose the
correct answer. The tutorial condition would provide more explanation on why the answer is correct
or not.

They found that participants who overestimate their performance tend to exhibit under-reliance on Al
systems, which hinders optimal team performance. Logic unit-based explanations did not help users
in either improving the calibration of their competence or facilitating appropriate reliance. While the
tutorial intervention was highly effective in helping users calibrate their self-assessment and
facilitating appropriate reliance among participants with overestimated self-assessment, the authors
found that it can potentially hurt the appropriate reliance of participants with underestimated self-
assessment.
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An implication for the design of tutorials designed for promoting appropriate reliance should not only
reveal the shortcomings of users or Al systems (i.e., when they are less capable of making the right
decision), but also their strengths (i.e., when they are capable or more capable).

In summary, humans who overestimate their performance tend to exhibit under-reliance on Al
systems, which hinders optimal team performance.

3.3.2.4 Human attitude toward Human or Automation leadership

It remains unclear how power functions in interactions with both humans and robots, especially when
they directly compete for influence. An experiment where every participant was matched with one
human and one robot to perform decision-making tasks has been conducted [16]. By manipulating
who has power, the authors created three conditions: human as leader, robot as leader, and a no-
power-difference control. The results showed that the participants were significantly more influenced
by the leader, regardless of whether the leader was a human or a robot. However, they generally held
a more positive attitude toward the human than the robot, although they considered whichever was
in power as more competent.

The authors believe this suggests a new way that we can design for an agent’s influence by designing
for its power. For example, if an Al agent is known to perform well yet users are reluctant to adopt its
suggestions for reasons such as algorithm aversion, we might consider increasing its power by giving
the Al an expert framing, a higher organizational position, or the power to reward users. By doing so,
we might be able to increase its perceived competence and thus its influence on users.

In summary, humans tend to be significantly more influenced by the leader, regardless of whether the
leader was a human or a robot. However, they generally held a more positive attitude toward the
human than the robot, although they considered whichever was in power as more competent.

3.3.2.5 Performances and delegation in hybrid teams

A study on how humans make decisions when they collaborate with an artificial intelligence (Al) in a
setting where humans and the Al perform classification tasks has been performed [17]. The
experimental results suggest that humans and Al who work together can outperform the Al that
outperforms humans when it works on its own. However, the combined performance improves only
when the Al delegates work to humans but not when humans delegate work to the Al. The Al’s
delegation performance improved even when it delegated to low-performing subjects; by contrast,
humans did not delegate well and did not benefit from delegation to the Al. This bad delegation
performance cannot be explained with some kind of algorithm aversion. On the contrary, subjects
acted rationally in an internally consistent manner by trying to follow a proven delegation strategy and
appeared to appreciate the Al support. However, human performance suffered as a result of a lack of
metaknowledge—that is, humans were not able to assess their own capabilities correctly, which in
turn led to poor delegation decisions. Lacking metaknowledge, in contrast to reluctance to use Al, is
an unconscious trait. It fundamentally limits how well human decision makers can collaborate with Al
and other algorithms.

With inversion, humans still contribute to the superior result; without them, the Al would not reach it.
Inversion might also improve human work perspectives. Humans are more motivated when working
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in a stimulating environment [18]. For example, classifying easily identifiable images is perhaps routine
and boring, whereas the classification of difficult images could be an interesting challenge. Inversion
might enable humans to spend less time on mundane tasks and more time on challenging tasks,
thereby creating a more fulfilling workplace. Thus, receiving assignments from a machine could be
interpreted not only as a delegation to humans but also as freeing humans from tedious tasks. The Al
would not be the humans’ boss but rather an assistant who swipes away distractions from the real
work.

In summary, Humans and Al who work together can outperform the Al that outperforms humans when
it works on its own. However, the combined performance improves only when the Al delegates work
to humans but not when humans delegate work to the Al.

3.3.2.6 Characteristics and dynamics of human-Al teams

There are many unknowns regarding the characteristics and dynamics of human-Al teams, including a
lack of understanding of how certain human-human teaming concepts may or may not apply to
human-Al teams and how this composition affects team performance. An article outlines an
experimental research study that investigates essential aspects of human-Al teaming such as team
performance, team situation awareness, and perceived team cognition in various mixed composition
teams (human-only, human-human-Al, human-Al-Al, and Al-only) through a simulated emergency
response management scenario [19]. Results indicate dichotomous outcomes regarding perceived
team cognition and performance metrics, as perceived team cognition was not predictive of
performance. Performance metrics like team situational awareness and team score showed that teams
composed of all human participants performed at a lower level than mixed human-Al teams, with the
Al-only teams attaining the highest performance. Perceived team cognition was highest in human-only
teams, with mixed composition teams reporting perceived team cognition 58% below the all-human
teams. These results inform future mixed teams of the potential performance gains in utilizing mixed
teams over human-only teams in certain applications, while also highlighting mixed teams' adverse
effects on perceived team cognition.

In summary, for such scenario, the results tend to show that teams composed of all human participants
may perform at a lower level than mixed human-Al teams, with the Al-only teams attaining the highest
performance.

3.3.2.7 Human perception and acceptance of imperfect Al

Al technologies have been incorporated into many end-user applications. However, expectations of
the capabilities of such systems vary among people. Furthermore, bloated expectations have been
identified as negatively affecting perception and acceptance of such systems. Although the
intelligibility of ML algorithms has been well studied, there has been little work on methods for setting
appropriate expectations before the initial use of an Al-based system. Some authors used a Scheduling
Assistant - an Al system for automated meeting request detection in free-text email - to study the
impact of several methods of expectation setting [20]. They explore two versions of this system with
the same 50% level of accuracy of the Al component, but each designed with a different focus on the
types of errors to avoid (avoiding False Positives vs. False Negatives). They show that such different
focus can lead to vastly different subjective perceptions of accuracy and acceptance. They also design
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an Accuracy Indicator (Figure 7) and an Example-based Explanation (Figure 8) to depict the expected
level of performances of the Al to help prepare users at coping with imperfection, as well as a slider to
control the performance of the Al (Figure 9). They show that user satisfaction and acceptance can be
improved through these simple expectation adjustment techniques. They also show that focus on High
Precision rather than High Recall of a system performing at the same level of accuracy can lead to much
lower perceptions of accuracy and decreased acceptance.

y = A
@ The Scheduling Assistant can correctly detect

meeting requests about 50% of the time. 50%

/ CORRECT

C meeting request detection

B>

Figure 7: Accuracy Indicator [20].

The Scheduling Assistant examines each sentence separately and looks for
meeting related phrases to make a decision. ‘_C

Example sentences Scheduling Assistant’s detection

Let's meet this Friday at 12:30 for 30 mins in the main conference room ﬁVery likely a meeting request

Can we discuss this tomorrow at 5pm? ﬁ Likely a meeting request ‘—B
Can we discuss in the morning? "’ A [E] Unlikely a meeting request

Have a great trip! [E] Very unlikely a meeting request

Figure 8: Example-based explanation [20].

Adjust how aggressive you would want the Scheduling Assistant to be in
detecting meetings in your emails:.« A

~— o
/7 ® Fewer detections O More detections /® : .\-,
| ® ] some requests more non-requests | ® z |
\. ./ might be missed \ might be suggested "\_.._’ b/

7 5 x

Figure 9: Performance control [20].

D

In summary, different focus on the types of errors to avoid (avoiding False Positives vs. False Negatives)
can lead to vastly different subjective perceptions of accuracy and acceptance.
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3.3.2.8 Dealing with Al mishaps

Many subfields of machine learning share a common stumbling block: evaluation. Advances in
machine learning often evaporate under closer scrutiny or turn out to be less widely applicable than
originally hoped. Some researchers conducted a meta-review of 107 survey papers from natural
language processing, recommender systems, computer vision, reinforcement learning, computational
biology, graph learning, and more, organizing the wide range of surprisingly consistent critique into a
concrete taxonomy of observed failure modes [21]. Inspired by measurement and evaluation theory,
they divided failure modes into two categories: internal and external validity (see Figure 10). Internal
validity issues pertain to evaluation on a learning problem in isolation, such as improper comparisons
to baselines or overfitting from test set re-use. External validity relies on relationships between
different learning problems, for instance, whether progress on a learning problem translates to
progress on seemingly related tasks. This work might help the way we assess the performance of our
solutions.

I . .
Goal of a paper ! Chain of supporting evidence Internal validity

. dangers
1. Test set construction

1. Implementation 1. Overfitting from

. o | Baselines
T test-set re-use
New algorithmic _ . Test set | Improvement over
. » Trained model > -
idea performance existing methods

Experimental evaluation on a single learning problem

Hypothetical application to real-world examples of the task

Progress on real- Apply to real-world learning problem 1
world application(s) and evaluate with associated metric

\ Apply to real-world learning problem N

and evaluate with associated metric

1. Metrics | Dataset External validity

1
1
1
1
1 . . . .
i misalignment misalignment dangers

Figure 10: Framework for Al failure modes [21].

Inappropriate design and deployment of machine learning (ML) systems lead to negative downstream
social and ethical impacts — described here as social and ethical risks — for users, society, and the
environment. Despite the growing need to regulate ML systems, current processes for assessing and
mitigating risks are disjointed and inconsistent. A group of researchers interviewed 30 industry
practitioners on their current social and ethical risk management practices and collected their first
reactions on adapting safety engineering frameworks into their practice — namely, System Theoretic
Process Analysis (STPA) and Failure Mode and Effects @Analysis (FMEA) [22]. Their findings suggest
STPA/FMEA can provide an appropriate structure for social and ethical risk assessment and mitigation
processes. However, they also find nontrivial challenges in integrating such frameworks in the fast-
paced culture of the ML industry. Even though our project does not primarily address social and ethical
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risks, such analyses may inform on some related aspects such as balance between Al and humans as
well as issues regarding responsibilities.

Traditionally, Al research has been more concerned with improving accuracy rates of the algorithms
than putting humans in the loop. However, recent work found that while accuracy is good,
controllability may be better for specific tasks [23] and could prevent some risks due to
misunderstanding of the Al. However, while this holds true for simple tasks as discussed in the study,
for high level of automation the results might be different.

3.3.2.9 Summary

Most of the studies mentioned above rely on very specific experiments designed to be controllable
and to lead to statistically significant results. Their concerns, results and implications are useful for
ASTAIR as such. However, most of them admit that generalization is at stake. ASTAIR is meant to be a
more complex ecosystem than simple image or text recognition applications. An important research
question is thus the evaluation of the impact of ASTAIR interaction and automation on the ATC activity.
The controllability of our future experiments will likely not reach the level of controllability of the
above research. Still, we will have to design the experiments in such a way that they will inform us as
well as the community on the usability of our approach and enable us to formulate new guidelines for
designing Human-Al interaction.

3.3.3 Styles of interaction with automation

In a suggestive interface, the user gives hints about a desired operation to the system by highlighting
related components in a graphical scene, thus improving the usability of gestural interfaces and
augments typical command-based modelling systems [24]. Chateau is an instance of a suggestive
interface for 3D drawings [24]. Chateau infers possible operations based on the hints and presents the
results of these operations as small thumbnails. The user completes the editing operation simply by
clicking on the desired thumbnail. The hinting mechanism lets the user specify geometric relations
among graphical components in the scene, and the multiple thumbnail suggestions make it possible
to define many operations with relatively few distinct hint patterns. The suggestive interface system is
implemented as a set of suggestion engines working in parallel and is easily extended by adding
customized engines.

Schmidt & Herrmann [25] have proposed the concept of intervention interfaces to enable joint control
“where the majority of decisions are automated but where users can intervene “. Given the expertise
needed to supervise airport ground traffic and the uncertainty inherent to airport ground movements,
full automation alone will not ensure an optimal operation of the system. Gradual control of the
automation decision power by the end-users is therefore required.

Calhoun et al. [26] surveyed the literature to compare adaptable and adaptive automation in
application with different levels of automation. They define adaptable automation as user-initiated
change in the level of automation and adaptive automation as system initiated. They found that
adaptable automation (the human operator assigns how automation is applied) has been found to aid
human’s situation awareness and provide more perceived control versus adaptive automation (the
system assigns automation level) that may impose less workload and attentional demands by
automatically adjusting levels in response to changes in one or more states of the human, task, or the
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environment. In their survey, they found a very limited number of studies comparing the two
conditions but for the one that did, their result show that adaptable automation was not only preferred
over adaptive automation, but it also resulted in improved task performance and, notably, less
perceived workload.

In ASTAIR, we want to explore different levels of automation and possibly consider transition between
such levels according to user preferences but also Al performances. This might prove successful in
improving the overall system performance.

3.3.4 Authoring and programming automation

Interacting with automation can be seen as a way to control a program that automatically controls
entities. As such, interacting may also be considered as a form of programming. Usable programming
of usable automation is thus an important stake, especially if end-users are to be involved in the design
process [27]. Few works exist that tackle this topic. Automated machine learning (AutoML) is
envisioned to make ML techniques accessible to ordinary users [28].

For automation to be safe and usable, it needs to be suitable to the activity it supports, both when
authoring it and when operating it. Vizir is a Domain-Specific Graphical Language and an Environment
for authoring and operating airport automations [27]. Vizir combines visual interaction-oriented
programming constructs with activity-related geographic areas and events. Vizir offers explicit human-
control constructs, graphical substrates and means to scale-up with multiple automations.

The authors devised a set of guidelines for such programming tools: Foster a continuum of usage
between authoring, controlling and supervising; Provide space-based and event-based constructs;
Make current state and future behavior visible; Foster both seamless and “seamful” hybrid control;
Foster interaction-oriented programming.

Decision-making is a key software engineering skill. Developers constantly make choices throughout
the software development process, from requirements to implementation. While prior work has
studied developer decision-making, the choices made while choosing what solution to write in code
remain understudied. In a mixed-methods study, researchers examine the phenomenon where
developers select one specific way to implement a behavior in code, given many potential alternatives
[29]. They call these decisions implementation design decisions. The mixed-methods study includes 46
survey responses and 14 semi-structured interviews with professional developers about their decision
types, considerations, processes, and expertise for implementation design decisions. They find that
implementation design decisions, rather than being a natural outcome from higher levels of design,
require constant monitoring of higher-level design choices, such as requirements and architecture.
They also show that developers have a consistent general structure to their implementation decision-
making process, but no single process is exactly the same. They discuss the implications of their
findings on research, education, and practice, including insights on teaching developers how to make
implementation design decisions. This research might be related with the way automation is designed,
especially if we consider real-time decisions by controllers to delegate a task to Al as a programming
activity.
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While this is not expected, if during the ASTAIR project using Machine Learning (ML) becomes a
relevant approach for Al, providing usable means to program Machine Learning might be useful to
adapt to particularities in each airport. Automated machine learning (AutoML), a novel concept for
automating the whole ML pipeline without (or as little as possible) human intervention, is envisioned
to make ML techniques accessible to ordinary users. Recent work has investigated the role of humans
in enhancing AutoML functionality throughout a standard ML workflow. However, it is also critical to
understand how users adopt existing AutoML solutions in complex, real-world settings from a holistic
perspective. To fill this gap, a study has conducted semi-structured interviews of AutoML users (N =
19) focusing on understanding (1) the limitations of AutoML encountered by users in their real-world
practices, (2) the strategies users adopt to cope with such limitations, and (3) how the limitations and
workarounds impact their use of AutoML [28]. The findings reveal that users actively exercise user
agency to overcome three major challenges arising from customizability, transparency, and privacy.
Furthermore, users make cautious decisions about whether and how to apply AutoML on a case-by-
case basis. The authors suggest to: Foster User Agency in Developing Workarounds, Foster User Agency
in (Non-)Use of AutoML, Support Domain-Specific Customizability, Provide Multifaceted Transparency,
Enhance Data Privacy, Support Collaborative Work behind AutoML.

3.3.5 Initiative in Human Automation Teaming

Mixed-initiative interaction is concerned with interaction strategies where each agent (human or
machine) takes turn at the most appropriate time to contribute to a task where it performs best [30].
The goal of mixed initiative interaction is to create collaboration between humans and artificial
intelligence, leveraging the strengths and capabilities of both parties. By combining human expertise,
creativity, and contextual understanding with artificial intelligence’s analysis capacities and
automation, mixed initiative systems can tackle complex tasks more effectively and efficiently than
either humans or Al alone. Contrary to fixed initiative interaction where either a single human or
system has always control of the interaction flow, in mixed-initiative interaction any agent can take
the control of the interaction at any time.

Mixed-initiative interaction raises many challenges. For instance, intelligent agents are not good at
guessing about goals, needs and intents of users, at considering the costs and benefits of automated
actions, at performing timely and to advise users when they can perform better using automation [31].
To address these issues, Horvitz has proposed factors to be considered when designing mixed-initiative
interaction [31]. These factors emphasize the need of identifying the added value of automation,
understanding and predicting user’s intents and goals, providing users with timely and non-invasive
automation actions with means to control them, and appropriate communication between human and
Al agents to clarify users’ intentions. The author also suggests that mixed-initiative systems should
allow users to make “efficient references to object and services” by maintaining a memory of recent
interactions with users. Furthermore, a mixed-initiative system should provide means to “gracefully
degrade the precision of services” to offer potential solutions even in unpredictable situations where
correcting automation mistakes would be too costly.

With today’s Al advances, intelligent systems are now capable of making their own decisions without
the need of human input. Collaboration between humans and autonomous intelligent systems poses
newest challenges. For instance, defining roles and tasks is not trivial anymore. Linked to task design
and interpersonal dynamics, several strategies to negotiate who will do what have been proposed.
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These strategies include static division of labor, adjustable automation, mixed-initiative collaboration
and adaptive automation [32]. Although mixed-initiative collaboration has been investigated
significantly, static division of labor, adjustable automation and adaptive automation has received little
attention [33]. In static division of labor, the allocation of tasks to humans and agents is permanent.
While in adjustable automation, the level of autonomy can be regulated by humans, in adaptive
automation, the agent can alter its level of automation in response to the performance and human
behaviors.

To fluidify the interaction between humans and intelligent agents, Luciani et al. have proposed fined
grain interaction for continuous adjustment and immediate experienced results [34]. Not only
designing fine-grained interaction enables the design for fast turn-taking and short response time, but
also for closer and simultaneous interaction with a partially agentive system. This results in both
parties being active and getting continuous feedback allowing adjustments to be made without
interruption. Based on air traffic control activity observations and a co-design approach with air traffic
controllers (ATCOs), Luciani et al. have built an assisted sketching tool that allows ATCOs to take better
decision in guiding aircraft and managing the traffic [34]. Using visual cues and interaction techniques,
the authors have managed to materialize uncertainty which encouraged participants to find
alternative strategies to perform their tasks. In addition, they have found that sketching routes was a
good way to feed the system, give directions to pilots, and share their intentions and plans between
air traffic controllers for internal collaboration. Not only designing fine-grained interaction made the
authors consider the whole interaction design rather than the interface alone, but it also allowed them
to create displays with less visual clutter. Further research towards adaptability could be carried out
to change the system behavior while it is being used.

When autonomous systems cannot regulate their own behavior appropriately, external bounding of
autonomous behavior is required to assure their ongoing safety and effectiveness. Bradshaw et al.
have proposed policies to support the implementation of adjustable autonomy in mixed-initiative
interaction [35]. Their approach consists in constraining the autonomy of the system rather than
generating plans for what an agent should do. They argue that human coordination mechanisms are
required to assure effective teamwork among humans and agents. As an example of such mechanisms,
they introduce agreements, a set of policies and information required for coordination, that can be
represented within the system to govern specific aspects of joint activity among the parties. The
policies can affect different aspects of coordination such as initiative, delegation, notifications,
supervision, or human action constraints. This also allows for artificial agents to be adaptive and self-
adjust their autonomy consistently with the policies, providing hands-off control among team
members at any time, and renegotiation of roles and tasks when new opportunities arise or when
breakdown occurs. Moreover, the policies can also support agents to anticipate adjustments.

Intelligent systems can support humans take decisions under risks. Risky decisions can be defined as
taking a decision without knowing the exact consequences. Although intelligent systems are not
affected by cognitive biases, fatigue, recent experience and environmental factors, humans still
outperform Al in unknown and complex situations. This highlights the need for humans and intelligent
systems to partnership. Xiong et al. argue that when the decision task is associated with higher
uncertainty, human-centered research should be carried out [36]. When uncertainty is high, research
on transparent Al, explainable Al and trustable Al can support human decision-makers valuing their
own output. In complex systems with high automation such as aviation, a proper level of transparency
is required to enable operators to understand the system strategy and the internal working conditions.
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Representing the machine intent, the perception of the environment, and system status can help build
a mental model of the system and reduce decision-making conflicts [36]. In addition, the authors
suggest that human-machine collaboration for making decisions under risk should allow dynamic task
allocation based on task requirements and the capability and characteristics of humans and machines.
Furthermore, the machine should be able to adapt to human’s cognitive limitations and rapid
behavioral changes. Finally, both humans and machines as a team should be able to identify,
understand and align with each other’s goals, values, and intention to take timely and unintrusive
initiatives.

In ASTAIR, we envision an environment where humans and artificial intelligence collaborate as a team.
In our vision, some of the intelligent systems can be autonomous and make decisions on their own. To
ensure the safety of passengers on the airport ground, uncertainty in risky decisions must be limited.
Therefore, transparency is key. Human operators should be able to understand the intent, the
knowledge and the status of intelligent systems to build a mental model of their operating and
anticipate their and teammates' actions. Literature shows that maintaining a memory of recent actions
should help build a mental representation of the Al teammates' operating. Human operators should
also be provided with fine-grained interaction for closer and simultaneous interaction with Al and
encouraging fast adjustments without interruption. Finally, operators should be able to constrain the
Al with appropriate interactive tools by either limiting its autonomy so the operators can engage
themselves into the task or degrade the Al performance with a simpler model that human operators
can understand and manipulate easily.

Finally, the ethics guidelines for trustworthy Al delivered by High-Level Expert Group on Artificial
Intelligence (setup by the European commission)® would be useful during ASTAIR project
implementation with the guidelines to realise a trustworthy Al. In particular, we will build upon the
assessment list for trustworthy artificial Intelligence [37] to provide inputs for the validation of the
solution.

3.3.6 Explainable Al (XAl): definition and application to ATM and aviation

As for any interactive system, the adoption rate of Al algorithms is not only dependent on the
performance of the algorithms, but also on the way the algorithms are perceived and understood by
the users. Moreover, laws are enforcing the “Right to Explanation” [38].

While early Al systems were quite easy to understand for humans, the recent rise of Deep Learning
(DL) models, including Deep Neural Networks (DNNs), has increased complexity of the algorithms [39].
DNNs are even described as “black boxes”. Especially in critical domains, the ability to explain the
model is now considered crucial for building trust and deployment of artificial intelligence systems
[40]. The danger lies in using decisions that are not justifiable, or that miss detailed explanations of
their behavior [39].

A concrete example of critical incidents related to misunderstanding Al systems is the occurrence of
mode confusion. Mode confusion is defined as the user’s incorrect understanding of the current and
future status and behavior of the automation [41]. On the other hand, mode awareness is the person's

3 https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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awareness of the current automation mode [42]. The automotive industry has explored a variety of
mode awareness interfaces and interface elements designed to enhance the driver's awareness of
current automation modes or overall automation capabilities [43]. The industry of commercial aircraft
is more resistant to changing user interfaces due to the high financial costs, the need for pilot retraining
and the complex certification procedures. This comes with an increased safety risk, as several critical
incidents in aviation have been linked with misunderstanding autopilot modes [44], [45], [46].

The field of explainable artificial intelligence (XAl) aims at enabling users to understand the inner
workings of Al systems and to get insights into the results of the algorithms [40]. The goal of XAl is to
create machine learning techniques that 1) produce more explainable models while maintaining a high
level of learning performance, and 2) enable users to understand, trust, and manage the emerging
generation of Al systems [39]. Zhu et al. defined explainability in the context of XAl as “as being clear
of obscurity and understandable in all aspects” and being able “to answer why questions” [47].
Kaadoud et al. defined explanation as “information in a semantically complete format, which is self-
sufficient and chosen according to the target audience regarding its knowledge, its expectations and
the context” [48]. Degas et al. [49] differentiate between “Understandability / Intelligibility” and
“Comprehensibility”, where the first explain the functioning of the model without explaining the
internal algorithm, and the latter include the explanation of learned knowledge. Moreover, XAl is
distinguished from “Observable Al”, which allows to understand black-box systems from observation
of all potential combinations of input and their related outputs [47].

Current XAl systems exhibit a diverse set of dimensions and functionalities for simple exploratory data
analysis to understanding complex Al models [40]. Two main XAl techniques exist: (i) Ante-hoc
techniques aim at optimizing an already transparent Al model by adding constraints or features to
increase transparency through metrics, data visualization, etc. Explanation is considered from the very
beginning of the training. (ii) Post-hoc techniques aim at explaining black-box Al models (e.g., DNNs).
An external model mimics a base model’s behavior to generate an explanation to the user [48], [49].

XAl systems have been applied in a variety of domains, including machine learning, robotics, multi-
agent systems, computer vision, Knowledge Representation and Reasoning, etc. [48]. It is important
to take the context (users, goals, environmental context) into account in XAl, although this is
challenging [48].

In the context of air traffic management (ATM), Degas et al. [49] proposed a Design Space on XAl use
in ATM, including “explanation” as one dimension. They observed that mainly four types of
explanations have been used (numeric, rules, textual and visual explanations) or a combination of
those explanation types. Their analysis also shows that most existing solutions are post-hoc solutions.
Most of the methods aimed at improving explainability of prediction tasks (e.g. landing time
prediction), while modelling / simulation were explored least. The authors suggest that optimization /
automation would present an important use case, but which has so far rarely been studied in the
literature. They argue that “fully understanding the underlining reasons of conflict avoidance
procedures (e.g., explaining why one aircraft is moved away from its planned trajectory and not
another), sequencing, or any other optimization result, is more than required to be accepted and used
by human operators such as ATCO” (p.19). Finally, based on their findings, the authors propose to
distinguish three types of XAl (see Figure 11): (1) Descriptive XAl which describes an Al model or output
and is the basis for the following steps; (2) Predictive XAl which predicts the behavior of an Al model
to a specific input or modification and allows to ask “what if” and “why not” questions; and (3)
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Prescriptive XAl which detects errors or unwanted behavior of an Al model, suggests solutions to
overcome these and allows to ask “how to” questions.

Descriptive
Predictive

Prescriptive

Modelling /
Simulation

Optimisation /
Automation

Prediction Analysis

Figure 11: Synthesis of XAl framework for ATM [49]

Prior work in the cockpit demonstrated that bi-directional communication with a shared language
between the autonomous agents and the pilot could enhance the teaming efficiency [50]. Such a
language between automation of surface movements and airport ground operation stakeholders is
required. We believe that a human-centric approach is necessary to maximize the capacity of humans
to share their knowledge with the system using constructs that they are familiar with. However, we
are still lacking knowledge on shared representations between human and Al agents to create an
effective partnership for airport ground operations. Furthermore, interaction is necessary to ensure
that each agent has an adequate situation awareness on its tasks and the behaviors of other agents
[51].

The Al tools that will be used in the ASTAIR project are optimization based. This implies that we will
have to investigate what inputs and outputs the Al is using to model and compute solutions to solve
users’ problems. Based on the identification of such parameters, we will need to align end-users' goals
and expectations so that we can create shared representations for humans and Al to work efficiently
together. As demonstrated by Degas et al. [49] few prior works have explored optimization as a use
case for XAl. The Astair project will allow contributing to this field of research.

3.4 Designing Human-Al systems with high levels of automation
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The promises of advances in Al created opportunities for creating new interactions and new user
experiences that would otherwise not be possible. This trend has led to the idea of Al as a design
material in the research community, with the hope that HCl researchers and designers can effectively
envision and refine new uses for Al that have yet to be imagined [52].

From the Human-Computer Interaction (HCI) community, researchers have proposed principles,
frameworks, and guidelines to help understand the characteristics of such interaction for over decades
[20], [31], [53], [54], [55]. For example, Amershi et al. [53] proposed 18 applicable guidelines for
human-Al interaction in mass market products as text editors or calendars, which are categorized into
four groups, including initially, during interaction, when wrong, and over time. Cimolino and Graham
[55] reviewed prior work about human-Al shared controls and contributed a four-dimensional
framework as an analysis tool, including Al role, supervision, influence, and mediation. Unfortunately,
most of these guidelines are either very generic or focusing on mass-market products and not
necessarily adequate for critical systems such as airports’ ground operations.

In ASTAIR we will focus on designing interactions between humans and Al systems for automation
levels categorized as 2B and 3A according to EASA’s classification. Recent work suggests that in order
to do so, designers need to understand both how the system-side Al works, but also how people think
about, understand, and use Al tools and systems [56]. Conducting user-centered design activities such
as interviews and stakeholders' workshops to understand the contexts, needs and goals of our end-
users remains important [57]. It is particularly important to conduct activities ensuring that both users’
and Al goals and constraints are well aligned together. As identified by Xu et al., it is very important to
clarify the envisioned roles of humans and Al [58]. This is a main challenge in the ASTAIR project and
part of our work will be dedicated to the identification of automation opportunities and then to the
exploration of several alternative alternatives that corresponds to the level 2B and 3A of the EASA
classification.

Another important aspect identified by Feng et al. [59] is related to the use of prototypes to
communicate with end-users and technical teams. They conducted a study with 27 user experience
practitioners in which they prototyped and created a design presentation for an Al-enabled interface
while having access to a simple Al model training tool. Their results suggest that communicating Al
concepts to end-users could be very challenging but that iteratively using prototypes was very helpful.
The authors suggest that starting with even incomplete and not very efficient Al models could help
elicit new requirements and improve both the interaction design and the Al for the task.

Designing for highly automated systems is also more difficult and more challenging than designing
from traditional systems [56], [60], [61], [62]. HCI researchers have discussed challenges that persist
in designing human-Al interaction encountered by designers [56] such as failing to recognize the
appropriate situations where Al might help or envisioning novel features that exceed Al’s current
capabilities. Yang et al. [61], proposed a mapping of the challenges faced by designers according to
several phases of a typical user centered design process [63]. Fortunately, the type of Al that will be
used in ASTAIR is based on optimization techniques and not Machine Learning approaches which poses
many of the identified challenges. Moreover, using ML algorithms would have required additional
user-centered work to collect relevant data, validate that both the training and the results are
adequate to end-users [64] as well as to cope with Al outcome uncertainty [61].
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Figure 12: Mapping the human-Al interaction design onto a user-centered design process [61]

In ASTAIR we will face several design challenges induced by the use of Al. To overcome these challenges
and mitigate the risks, we will follow recommendations from the literature and use a user-centered
approach to carefully identify needs and requirements from the user perspective. We will also involve
the Al team so that we get a mutual understanding of Al possibilities and be able to align users and Al
constraints and goals.
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4 State of the art on support algorithms for fleet management and
path planning

To manage and perform engine-off and conventional airport surface movement operations in ASTAIR,
the support algorithms previously developed in AEON will be further elaborated and extended.

These algorithms address two broad categories of tasks: (1) algorithms for tug fleet management; (2)
algorithms for conflict-free and efficient path planning of all aircraft, tugs, and other ground vehicles.

This section reviews literature on both to identify research directions for algorithmic extensions
related to ASTAIR goals and requirements to be further elaborated in WP2.

In particular, algorithms for tug fleet management should be able to adapt the assignment of tugs in
real time during operation based on changes of schedules, as well as be able to take diverse temporal
constraints into account.

Algorithms for path planning should be computationally efficient, should consider spatiotemporal
constraints reflecting the airport’s traffic rules. Furthermore, these algorithms should be able to
dynamically adapt motion trajectories of aircraft and other ground vehicles, taking into account spatial
and temporal constraints provided by ATCos, change of runway mode of operation, weather
conditions, wake turbulence categories of aircraft. Furthermore, motion trajectories of aircraft and
tugs should be optimized taking into account energy use and manoeuvrability.

The related literature was reviewed taking these considerations into account.

4.1 Algorithms for fleet management

Airport congestion is a major cause for the large delays that affect the air transport industry. Flight
scheduling and fleet assignment are fundamental stages of the airline planning process. The problems
faced by airlines when making their flight scheduling and fleet assignment decisions are highly
complex, particularly when the airlines operate in congested, slot-constrained airports. In many
airports, particularly in Europe, airlines are limited in the number of slots they can use because the
declared capacity of airports is insufficient to accommodate peak period demand, constraining the
choices of airlines in terms of time and frequency of flights [65]. A vast amount of previous research
has focused on aircraft fleet management for assigning fleet types to flights.

An average of 4%—7% of fuel is burnt during ground activities at airports (taxing, waiting, and extra fuel
carried to complete the journey at the destination airport). The greenhouse gas emissions released by
airports is not only contributing to global warming, but also impacting the health of local communities
living next to airports [66]. Thus, recent studies include electrification of taxiing operations to reduce
emissions and create a positive environmental impact. Tug fleet management plays a critical role in
improving the efficiency of taxiing operations.

In addition to aircraft fleet assignment and tug fleet allocation, fleet management is also required for
allocating and routing autonomous vehicles to complete ground handling operations at the airport.
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We present an overview of existing research on fleet management for the assignment of aircraft fleet
to flight legs in Section 4.1.1, allocation of tug fleet to aircraft in Section 4.1.2, and assignment and
routing of ground handling vehicles to complete ground handling tasks in Section 4.1.3.

4.1.1 Fleet assignment: aircraft fleet to flight legs

Flight scheduling determines the set of legs that the airline flies. A station is an airport serviced by the
airline. A leg consists of an origin station, a destination station, a departure time, and an arrival time.
After airline planners determine the flight schedule, each leg must be assigned a type of aircraft, or
fleet type, which is called fleet assignment [67].

The fleet assignments must satisfy certain operational constraints, such as coverage, maximum
overnight stays, and airport compatibility. Fleet assignments are tactical decisions, and changes in
demand and maintenance requirements require an intermediate decision-making process to capture
these changes before a flight’s day of departure [68]. The factors considered in assigning a fleet to a
flight leg are passenger demand, revenue, seating capacity, fuel costs, crew size, availability of
maintenance at arrival and departure stations, gate availability, and aircraft noise [69].

[70] formulate and solve the fleet assignment problem as an integer linear programming model,
permitting assignment of two or more fleets to a flight schedule simultaneously. The objective function
can take a variety of forms including profit maximization, cost minimization, and the optimal utilization
of a particular fleet type.

[65] propose a mixed-integer linear optimization model for integrated flight scheduling and fleet
assignment. The objective is to maximize the expected profits of an airline that operates in congested,
slot-constrained airports. Both airline competition and airline cooperation are dealt with in the model,
though in a simplified manner. The model was applied to a case study involving the main network of
TAP Portugal, which comprises 31 airports and 100 daily flight legs. [71] develop a modeling and
optimization environment to identify the optimum fleet composition and the network of routes that
best serve the predicted demand and demonstrate the ability of this environment to solve large fleet
assignment and scheduling problems to near optimality by applying it to the United States Northeast
Corridor using a fleet of electric and hybrid-electric regional aircraft.

[72] present a time-space network model and mixed integer programming formulations for the
integrated flight scheduling and fleet assignment problem. A time—space network for a single aircraft
type consists of a set of activity nodes and arcs. An activity node represents the occurrence of certain
event. In the context of flight scheduling and fleet assignment, there are two types of events, departure
event and arrival event. Each event uniquely corresponds to one activity node. The time and location
of the node is exactly the time and location of its correlated event. Two events with the same time and
location generate only one node in the network. Based on this definition, each flight corresponds to
one departure event and one arrival event. An arc in the time—space network is a directed arc
connecting two activity nodes. There are three types of arcs in this network, which are flight arc,
ground arc and wrap-around arc. Each flight corresponds to one flight arc starting from its departure
event and ending at its arrival event. Each ground arc connects two subsequent nodes at the same
airport. Wrap-around arc is a special type of ground arc. It connects the last node and the first node at
certain airport. The wrap-around arc represents circulation of aircrafts between two consecutive days.
To keep the flow balance in the network, there is a need to guarantee the flow balance at each activity
node. Each activity node has input flows (along input flight arcs, input ground arcs and input wrap-
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around arcs) and output flows (along output flight arcs, output ground arcs and output holding arcs).
The proposed mixed integer programming models are based on the well-known multi-commodity flow
problem which generates relatively small optimality gaps and multi-commodity flow problem with side
constraints which is NP-hard. The main constraints ensure that exactly one aircraft type is assigned to
the mandatory flight legs (1), at most one aircraft type is assigned to the optional flight legs (2), the
flow balance is maintained at each node in the network (3), maximum number of the available aircrafts
is not exceeded for each aircraft type (4), flow values of the beginning wrap-around arc and ending
wrap-around arc at the same airport are the same which guarantees that the schedule is repeated
daily (5), the number of passengers choosing one flight leg is smaller than passenger capacity assigned
to it (6), the market share of each itinerary follows the trend that they are proportional to utility value
(7), the number of the flight leg copies assigned to each airport resource slot must be smaller than
capacity of the slot (8).

Similarly, [69] solve the large-scale integer program of the basic daily fleet assignment problem. The
mathematical model of the problem is a large multi-commodity flow problem with side constraints
defined on a time-expanded network. These problems are often severely degenerate, which leads to
poor performance of standard linear programming techniques. The large number of integer variables
can make finding optimal integer solutions difficult and time-consuming. The methods used to attack
this problem include an interior-point algorithm, dual steepest edge simplex, cost perturbation, model
aggregation, branching on set-partitioning constraints and prioritizing the order of branching. The
algorithm finds solutions with a maximum optimality gap of 0.02% and faster than using default
options of a standard LP-based branch-and-bound code. The integer programming formulation of the
basic fleet assignment does not consider the maintenance and crew planning constraints.

Let Fis the set of available fleets, Ssis the number of aircraft in each fleet f € F, Cis the set of cities in
the schedule. The set of flights in the schedule is denoted by L. Each flight i € L is alternatively
represented by the elements (o, d, t) where 0,d € C are respectively the origin and destination and t
is the time. t- and t* denote the times preceding and following the time t. The set of nodes N include
the elements (f, o, t) where f € F, 0 € C, and t is the takeoff or landing time at 0. The mathematical
model of the basic fleet assignment problem [69] is given in the equations (i), (ii),..., (vii).

Z=min2 2 crixpi (1)
ieL &=feF

foi =1, VielL, (ll)
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where c¢f; denotes the cost of assigning fleet type fto flight / and x¢; is the binary decision variable
which takes 1 when fleet type fis assigned to flight i and 0 otherwise. The objective (i) is to minimize
the sum of all assignments. xg; variables are alternatively represented as xf,q; Where (0,d,t)
corresponds to the flight i € L, 0,d € C and t are respectively the cities and time in the schedule. The
constraint set (ii) ensures that each flight leg is flown by exactly one fleet. The constraint set (iii)
include balance constraints. The fleet assignment solution must satisfy balance constraints that force
the aircraft to circulate through the network of flights. The decision variable xf,4; Which is also written
as xg; is equal to 1 if fleet f flies the flight leg from o to d departing at time t, and 0 otherwise. Y4+
where f € F, ¢ € C, and [t,t*]is a time interval, are called ground arc variables that count the
number of aircraft on the ground at each station at every point in time for each fleet. The balance
constraints are enforced by modeling the activity at each station with a timeline for each fleet. This
timeline has entries designating the arrivals and departures from the station for each fleet. Each
departure (arrival) from the station splits an edge and adds a node to the timeline at the departure
(arrival + refueling/baggage handling) time. In constraint set (iv) the flight legs of each required
through are enforced to be flown by aircraft of the same fleet. Certain pairs of flights are required to
be connected. These connections are called required throughs, and the set of required throughs is
denoted by H, with elements (i, j), i,j € L. The schedule may need to violate the minimum ready times
for some flights because of fleet size restrictions. These special short ready times are also modeled as
required throughs. The constraints in set (v) are the fleet size constraints which count the number
of aircraft of each fleet used in the solution. Each fleet network is sliced at 3am EST and the flow
across this cut set is counted. The set of O(f) denotes the flight arcs whose time span contains 3am
EST. (f, o, t™) is the last node in a timeline which is the node that precedes 3am EST. The successor of
the node (f, o, t™) is the node (f,0,t!). (vi) and (vii) show the continuous and binary decision
variables.

The scale of the flight legs, the equipment types, complex operational constraints, maintenance
requirements, and other complex criteria specified by the route planners necessitates the
development of a sophisticated optimization suite to generate swaps of flight legs among the different
equipment types for the allotted fleet assignments. [68] propose a swapper optimization suite (SOS)
which uses optimization models to generate the optimal swaps, for one of the largest airlines in Japan.

Even though the assignment of aircraft fleet to flight legs is less relevant regarding the application
areas of ASTAIR, the mathematical models for assigning the aircraft to timeslots can be used as a
guideline in ASTAIR for assigning taxibots to aircraft within specific time windows.

4.1.2 Tug fleet management

The introduction of towing techniques involves a considerable increase in the number of vehicles
running on taxiways and service roads. The safe and efficient use of these vehicles implicitly requests
the redefinition of the procedures previously in force and, when needed, the introduction of new ones.
The AEON project [73] designed and assessed interconnected solutions to enable an optimized
allocation of a fleet of tugs to aircraft, predefined routing providing speed profiles to avoid conflicts,
dedicated HMI for Air Traffic Controllers as well as a new role, the Tug Fleet Manager. In the
long/medium planning phase, the AEON fleet management algorithm supports the operator in the
estimation of the adequate number of tugs, considering the needs of a given airport (and its
stakeholders) in each period considering its specific traffic conditions. In addition, considering the
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arrival and departure sequences and the operational constraints of the tugs fleet, this algorithm sizes
the fleet of tugs needed and at the executory level can reallocate the fleet if needed.

The AEON tug scheduling algorithm takes the following as input: (1) the airport road networks, their
types and the time it takes to traverse the airport using the different networks, (2) flights schedule
during a day of operation to estimate the drop-off time and corresponding energy based on a single-
agent version of the path planning algorithm, (3) the list of tugs present at the airport that has to start
and end their day of operations at the depot with a full battery. Using these input parameters, the tug
fleet management algorithm creates a tug schedule. This schedule includes the town aircrafts, the
associated tugs, and when (and where) the tugs are going to recharge.

The literature also includes methods for optimal allocation of tug fleet considering collision free taxiing
and finding the optimal tug fleet size.

[66] propose a mixed Integer linear programming (MILP) model which aims at assigning electric
powered tow-tractors for airplanes to complete taxiing operations with minimum jet-fuel usage. The
flight schedule which includes aircraft type, arrival time, departure time and the gate number, is known
in advance. Each aircraft completes its taxiing operations by following physical lines which are available
in most airports as taxiways. A mesh network is generated to enable surface movements. Each
intersection is a node, and nodes are connected to each other by arcs (links). Airplanes can follow each
other on the same link by respecting the minimum allowed safety distance. No two airplanes can travel
from opposite directions on the same link at the same time. All parallel links are assumed to be
separated from each other by a sufficient distance to ensure collision free taxiing. Travelling times
between two nodes is bounded by a fastest travelling time. Fuel consumption rate is assumed to be
constant per minute of operation, although fuel consumption rate changes when aircraft speed is
changed. When they are not serving an aircraft, tow-tractors would not conflict with other moving
aircraft. The objectives are to minimize airport ground operations cost, fuel cost and delay cost. The
performance of the proposed model is shown for a case at Montreal’s Pierre Elliott Trudeau
International Airport (YUL) that has three runways which can be used in both directions and handles
an average of 730 flights daily through its 89 gates. The network of the YUL taxiways includes 125
nodes and 282 arcs. An airplane may enter (or exit) the network through gate or runway nodes. In the
case study, 60 gates, 16 entry/exit points on runways, and 49 intersections between taxiways were
considered. In addition to the tow-tractor assignments, minimizing taxiing collisions and determining
the optimum number of tow-tractors were also the part of the proposed model.

[74] propose an end-to-end optimization framework for electric towing vehicles (ETVs) dispatchment
at large airports. They integrate the routing of the ETVs in the taxiway system where minimum
separation distances are ensured, with the assignment of these ETVs to aircraft towing tasks and
scheduling ETV battery recharging. The results show that the 913 arriving and departing flights can be
towed with 38 ETVs, with battery charging distributed throughout the day. The fleet size is shown to
increase approximately linear with the number of flights in the schedule.

[75] propose strategic and disrupted models to create an adaptive vehicle-to-aircraft assignment, using
Mixed Integer Linear Programming. The objectives are to maximize the number of towed aircraft and
minimize the schedule changes for vehicle operators. Vehicle and aircraft routing, conflict avoidance,
and energy usage are also considered in the models. Authors investigate also the impact of fleet size
and general on-time performance on the assignments. [76] and [77] also study the vehicle-to-aircraft
assignments for ETVs. They propose a Linear Programming model for selecting the aircraft to be towed,
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to maximize fuel reduction. [76] perform sensitivity analysis on ETV fleet size. [77] include also the
collision avoidance in the model. [78] combine vehicle-to-aircraft assignment with the vehicle and
aircraft routing, by simulating all ground movement.

[79] present a receding horizon genetic algorithm (RHGA) for dynamic resource allocation. They
consider a fleet of tugs operating along a coastline with the purpose of preventing oil tankers from
drift grounding. The main role of these tugs is that if an oil tanker loses manoeuvrability through
steering or propulsion failure, there will be a tug sufficiently close that it can intercept the drifting oil
tanker before it runs ashore. The tugs must dynamically be assigned moving target positions for
tracking such that the overall risk of any oil tankers drifting aground is minimised. A simulated case
study on optimal positioning of a fleet of tugs along the northern Norwegian coast serves as a means
of evaluating the algorithm. The proposed algorithm plans iteratively the movement trajectories for
each individual tug such that the net collective behaviour of the tugs outperforms that of stand-by tugs
stationed at bases located uniformly along the coast. An improved version of this algorithm is later
presented by [80] to solve the same tug fleet optimization problem. A receding horizon mixed integer
programming (RHMIP) model for optimal dynamic allocation of tug vessels to oil tankers was proposed
by [81].

Despite being the most relevant concept for ASTAIR, fleet assignment models focusing on tug
allocation to aircraft is rather new and existing research on this area is comparatively less. The main
contributions are the outcomes of the projects such as AEON and the recent research on assigning
electric towing vehicles to aircraft. The remaining research focus on tug allocation in maritime. The
innovative solutions we aim to design and develop for assigning taxibots to aircraft in ASTAIR will
provide a significant contribution to state-of-the-art in this area.

4.1.3 Fleet management for ground handling

The aircraft Ground Handling (GH) operations represent the airside activities at airports in charge of
processing passengers, cargo, facilities, and supplies at and around parked aircraft. Most of these
operations are performed by different service providers, using specialized vehicles and equipment
known as Ground Support Equipment (GSE) whose management is core to GH [81].

Automation of ground handling processes using electric vehicles plays an important role in improving
efficiency and reducing carbon emissions. Automation of tasks requires strategic allocation and
scheduling of tasks given a limited size of heterogeneous GSE fleet, as well as creating the conflict free
routes for the GSE vehicles traveling on aircraft stands.

Assignment of GSE fleet to a heterogeneous set of ground handling tasks and generating task
sequences that minimize both the turnaround time between consecutive flights and the makespan for
all vehicles becomes a challenging problem when the available GSE fleet is limited, and the flights are
frequent.

[82] present a framework that combines task allocation and path planning for automation of ground
handling operations, using a multi-agent perspective. In this study, the task allocation problem is
handled using an integrated solver that combines an auction algorithm with a mixed integer
programming model which is used to generate bids at each round of the auction. For each candidate
task, possible assignment to a potential position of existing schedule of each GSE vehicle is evaluated
by reoptimizing the schedule of the vehicle including the candidate. The candidate is assigned to a
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vehicle if only that vehicle is the winner of the auction in that round. By this way, partial schedules are
created by taking the interests of different agents into account at each decision phase until all tasks
are allocated. To develop the mixed integer programming model, the task scheduling problem for a
single vehicle is converted into a single vehicle pick-up and delivery problem with time windows, which
also considers the movements of GSE vehicles on the paths in addition to processing times of tasks.
The considered GSE fleet includes refuelling, catering, baggage handling, water and lavatory service
vehicles.

To lower the ramp risk and improve the aircraft ground handling efficiency, [83] propose solutions for
accurate tracking, collision detection, and optimal scheduling of airport Ground Support Equipment
which includes vehicles with one carriage, such as tractors and shutters, as well as the baggage transit
trains that contain one tug plus multiple dollies. For optimal scheduling of GSE, a mixed-integer linear
programming model that aims to minimize the total rental cost and travel time of the equipment while
respecting the constraints that include flight timetables, speed limits, size of available GSE fleet,
maximum number of dollies that can be attached to baggage transit trains. An efficient heuristic
algorithm is proposed to solve the model.

[84] develop a mathematical model for determining the number of airport equipment dedicated for
the baggage loading and unloading. The demand for the carts and loaders is predicted and based on
the prediction, the optimal number of equipment that can handle all flights is obtained. [85] design a
model for scheduling aircraft ground handling operations with uncertain durations which might be due
to breakdowns, weather conditions, cargo loading and unloading incidents. Critical Path Analysis and
Monte Carlo Simulation are used to improve the aircraft ground handling operations during the
turnaround.

[86] study the GSE scheduling problem with mixed fleet of fuel vehicles and electric vehicles with time
windows and the objective of minimizing the sum of time, energy and emission costs and propose an
optimal fleet configuration model. Scenarios with different characteristics of road network scale,
terminal configuration and flight are tested and results show that scenario characteristics affect the
optimal fleet allocation strategy.

[87] consider the problem of scheduling de-icing vehicles. The objective is to minimise the delay of
flights due to de-icing, and the travel distance of the de-icing vehicles. They propose a greedy
randomised adaptive search algorithm. A case study of real-life data from Stockholm Arlanda Airport
shows that proposed method performs significantly better compared to simple scheduling strategies.

[88] propose a ground handling management structure which allows the automation of operations to
face the growing demand for this service. It is shown how at operations level, information exchange
with the airport collaborative decision-making system turns possible on-line fleet assignment to
ground handling tasks. This is done by designing different heuristics for assignment of fully automated
or semi-automated vehicles to ground handling tasks. Numerical results for an actual airport are
presented to illustrate the potential performance of automated ground handling operations.

4.2 Algorithms for path and motion planning

Algorithms for path and motion planning are explained in four subsections. Section 4.2.1 focus path
and motion planning algorithms for airport surface movement, Section 4.2.2 explains the state-of-the-
art path and motion planning algorithms that are used in various environments, Section 4.2.3
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summarizes the recent research directions heading towards the solution of path planning combined
with target assignment, Section 4.2.4 presents a comparison of solvers in terms of complexity and
solution quality, and Section 4.2.5 provides with a brief summary of explainable Al methods for path
and motion planning.

4.2.1 Path and motion planning for airport surface movement

Research in airport ground movement include the path and motion planning of aircraft taxiing on
airport surface layouts.

[89] develop a mixed-integer linear programming formulation to optimize the timed taxiing routes of
all aircraft on an airport surface. The constraints of the model include boundary constraints which
enforce initial location, initial time based on pushback ready time, runway exit time, routing
constraints, timing constraints, conflict constraints, and time windows constraints. The objective is
weighted function of emissions, taxiing times, deviations from intended departure times. A minimum
and a maximum taxiing speed exist for each aircraft type. The taxiway grid is represented by a directed
graph. The aircraft can hold at any node of the graph. Only the conflicts between taxiing aircraft are
resolved, Deviations from departure times are allowed only if they do not affect the departure slot of
other flights. Amsterdam Schiphol Airport is used as a case study.

[90] integrate speed profiles into conventional routing and scheduling problem. Speed profile
optimization problem is defined as a multi-objective optimization problem where the objectives are to
minimize total taxi time and fuel consumption. The routing and scheduling problem is to route aircraft
from source to destination locations in a time and fuel-efficient manner, respecting routes and
schedules of other aircraft while preventing conflicts between them. The airport surface is represented
as a directed graph, where the edges represent the taxiways and the vertices represent the taxiway
crossings, intermediate points and sources/destinations such as gates, stands and runway exit points.
All edges of taxiway network are assumed to be bidirectional. Only one aircraft can travel along one
edge at a time so that a minimum safety distance from all other aircraft is ensured. The period when
the edge is not used by any other aircraft is called a time window. The k-Quickest Path Problem with
Time Windows (k-QPPTW) is used to solve the routing and scheduling problem. The k-QPPTW
algorithm, which was proposed by [91], sequentially routes aircraft considering their pushback/landing
time, while respecting time windows corresponding to edges, and generates a set of k-best solutions
regarding minimum taxi time and maximum allowed speed. These potential routes are used as input
for the speed profile optimization problem. A major European hub, Zurich Airport (ZRH), is used as
case study. A similar case was analyzed for Manchester Airport in the study of [92], where the Pareto
front for taxiing time and fuel consumption is found by applying an immune inspired multi objective
optimization algorithm (PAIA).
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Figure 13 : Layout of ZRH with taxiways [54]

[93] minimize the taxiing time considering the runway exit availability and modeling realistic flight
holding patterns at intersections. The presented integer programming model includes flow
conservation constraints, taxi-out constraints, taxi safety constraints, runway occupancy constraints,
taxiway occupancy constraints, re-taxiing avoidance constraints, parking position and runway taxiing
avoidance constraints, route uniqueness constraints, boundary constraints, runway exit availability
constraints and existing plan constraints.

[94] present a mixed-integer linear programming optimization method for the coupled problems of
airport taxiway routing and runway scheduling, that is validated at Heathrow Airport. The
mathematical model involves taxi timing constraints for speed and conflicts. Heathrow layout is
represented by the 126-node graph structure. The setup included 240 aircraft, 122 of which were
arrivals.

[95] propose optimization-based solution approaches for simultaneous aircraft scheduling and routing
in terminal area, to minimize delays. The disturbed traffic situations are generated by simulating
multiple delayed arriving/departing aircraft and a temporarily disrupted runway. Timing and routing
decisions are proposed for Milan Malpensa Airport (MXP).

[96] proposed ground taxiing route optimization model that avoids hotspots on the surface and
minimizes total taxiing time. Hotspots are the areas where taxi conflicts are most likely to occur.

In the study of [97] the Airport Surface Petri Nets (ASPN) is modeled with Colored Timed Petri nets
(CTPN). Optimal paths are obtained based on the evolving states of Petri nets. The path finding
problem for several aircraft is solved by finding the optimal path of each aircraft separately considering
dynamic obstacles. The use of petri nets in modeling airport surface movement is also observed in the
research of [98], [99], [100], [101], [102]. [100] propose a colored taxiway-oriented Petri net model.
Access priorities of aircraft for a road section are adjusted by decreasing the priority of delayed aircraft.
Sun and Hua [101] use fuzzy Petri net for aircraft trajectory segment sequencing,

[103] present an autonomous dispatch motion control framework for multiple carrier aircraft taxiing
on the deck. The problem of finding the optimal coordinated taxiing trajectory is defined as a
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centralized optimal control problem, where the constraints are based on safety limit for taxiing
velocity, physical limit on maximum aircraft front wheel steering angle, acceleration limit, collision-
free conditions between aircraft and other obstacles, and boundary conditions (parking position,
heading angle, ..., etc.). Feasible taxiing trajectories for several active aircraft and corresponding
control inputs are found by solving the optimal control problem. Optimal control technique is also used
by [104] to consider motion and control constraints in path planning for unmanned ground systems
including vehicles and robots, which are widely used in aerospace, military, civil and other fields.

[105] use genetic algorithm to solve the taxiing problem on a complex taxiway network at Chengdu
Shuangliu airport, considering the taxiway operation rules and conflict avoidance. The results are
compared to the results of Dijikstra algorithm.

[106] model the collaborative path planning for multiple carrier-based aircraft as a multi-agent
reinforcement learning problem.

[107] simulate aircraft ground movements at Lisbon International Airport, to predict taxi times for
TaxiBots, semi-robotic towbarless tractors suitable for dispatch towing at medium to large airports.

Path and motion planning algorithms focusing on airport surface area usually requires defining the
environment as complex graphs including intersections of taxiways and edges. Thus, they are highly
adaptable for solving the problems in ASTAIR, in which case the layouts of different airports are stored
in the databases in the form of graphs.

4.2.2 State-of-the-art algorithms for path and motion planning

The problem of path planning for multiple robots ranks among the most challenging problems of
artificial intelligence and particularly of theoretical robotics ([108], [109], [110]). A group of robots in
a certain environment need to move from their initial positions to the given goal positions. The robots
are required to avoid obstacles and must not collide with each other during their movements. Thus,
the task is to find spatial-temporal paths from the initial to the goal position for each robot such that
these paths do not intersect at the same time point ([111]). Application domains of Multi Agent Path
Finding (MAPF) include robotics, robotics, video games and logistics ([112], [113]). MAPF is also applied
for autonomous aircraft towing vehicles ([114]).

Motion planning is the extension of path planning. Motion planning aims at generating interactive
trajectories in workspace when robots interact with dynamic environment, therefore motion planning
needs to consider kinetics features, velocities and poses of robots and dynamic objects nearby [115].

MAPF solvers include optimal and bounded sub-optimal solvers ([116], [117], [118], [112], [119],
[120]), fast prioritized planners without any completeness/optimality guarantees ([121], [122]), and
complete, non-optimal algorithms ([123], [124], [111]).

[111] defines the environment of robots as bi-connected graphs with at least two unoccupied vertices,
where robots are placed in its vertices, which is equivalent to the problem of pebble motion on graphs.
To solve this class of the MAPF, [111] proposes a polynomial time algorithm, BIBOX, which scales well
in highly connected 2D and 3D spaces. Another complete, non-optimal algorithm for solving the
cooperative multi-agent path planning algorithm is PUSH AND ROTATE ([123], [124]). The algorithm is
complete for the class of instances with two unoccupied locations in a connected graph.
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A group of optimal and sub-optimal MAPF solvers are based on conflict-based search. Conflict Based
Search (CBS) is an optimal multi-agent pathfinding algorithm, which is presented by [113]. At the high
level, a search is performed on a Conflict Tree (CT) which is a tree based on conflicts between individual
agents. Each node in the CT represents a set of constraints on the motion of the agents. At the low
level, fast single-agent searches are performed to satisfy the constraints imposed by the high-level CT
node. In many cases the two-level formulation enables CBS to examine fewer states than A*. The
classical A* algorithm ([125]) can route a single agent to its destination. In a coupled approach, a simple
MAPF solver can be implemented by concatenating all the single agent states into a joint state and
then using a generic search algorithm like A* for traversing the joint space to find the joint state
solution. Coupled approaches tend to provide stronger guarantees on feasible paths and minimum
cost by exploring the joint space. However, they have a high computational cost as the dimensionality
of the joint space increases with the number of robots ([126]).

[119] formalize the problem of optimal pathfinding for multiple agents using a search tree called the
increasing cost tree (ICT) and present a search algorithm, called the increasing cost tree search (ICTS)
that finds optimal solutions. ICTS is a two-level search algorithm. The high-level phase of ICTS searches
the increasing cost tree for a set of costs (cost per agent). The low-level phase of ICTS searches for a
valid path for every agent that is constrained to have the same cost as given by the high-level phase.
The search strategy of the proposed algorithm is compared to A* search and outline the benefits and
limitations. It is also claimed that the proposed formalization allows further pruning of state space and
the pruning techniques for ICTS are studied further by [127].

Meta-agent CBS (MA-CBS) ([120]) generalizes CBS by merging groups of agents into meta-agents when
beneficial. Improved CBS (ICBS) ([117], [118]) improves MA-CBS. ICBS guarantees finding optimal
solutions for cooperative pathfinding problems ([128]). Enhanced CBS (ECBS) ([116]) is the
modification of CBS which trades off optimality for speed. [116] develop several suboptimal variants
of CBS, relaxing the high- and low-level searches to allow them to return suboptimal solutions. These
are Greedy-CBS (GCBS), a fast suboptimal solver, Bounded CBS (BCBS) that uses a focal-list in low- and
high-levels and ensures that the returned solution is within a given suboptimality bound, and Enhanced
CBS (ECBS) in which the high- and low-levels share a joint suboptimality bound. Nested ECBS (NECBS),
which is proposed by [127] is a nested architecture based on ECBS, where collisions within meta-agents
are resolved with ECBS. The merging technique from CBS is extended to ECBS, which results in Meta-
Agent ECBS (MA-ECBS) and using ECBS to resolve the collisions between agents within the same meta-
agent, results in Nested ECBS (NECBS). NECBS preserves the completeness and bounded-suboptimality
of ECBC and has a higher success rate than ECBS and its state-of-the-art variants for a runtime limit of
5 minutes.

[130] proposes a set of efficient decoupled approaches that break down the multi-agent path finding
problem into a series of single-agent searches, which are named as Cooperative A* (CA*), Hierarchical
Cooperative A* (HCA*), and Windowed Hierarchical Cooperative A* (WHCA*). The algorithms are
performed on maze-like environments and compared to Local Repair A*. Local Repair A* (LRA*) (Stout
[131]) describes a family of algorithms widely used in the video-games industry. Each agent searches
for a route to the destination using the A*, ignoring all other agents except for its current neighbours.
The agents follow their routes, until a collision is imminent, and the remaining route is replanned. In
Cooperative A*(CA*) the task is decoupled into a series of single agent searches. The individual
searches are performed in three-dimensional space-time and consider the planned routes of other
agents. A wait move is included in the agent’s action set. After each agent’s route is calculated, the
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states along the route are marked into a reservation table. Entries in the reservation table are avoided
during searches by subsequent agents. The reservation table represents the agents’ shared knowledge
about each other’s planned routes. Agents may be different in speed or size, however the reservation
table must be capable of marking off any occupied region. The order of agents might affect the solution
quality, which might be dealt using Prioritized Planning. Hierarchical Cooperative A* (HCA*) improves
performance using a heuristic, which ignores both the time dimension and the reservation table.
Abstract distances are perfect estimations of the distance on a 2-dimensional map ignoring the agents’
interactions. Windowed Hierarchical Cooperative A* (WHCA*) limits the space-time search depth to a
dynamic window, spreading computation over the duration of the route. M* ([132]) is an A*-based
algorithm that dynamically changes the branching factor based on conflicts.

[133] propose safe interval path planning (SIPP) and compare SIPP against HCA* ([130]). Safe intervals
represent time using the indices of contiguous periods, instead of using timesteps. This idea greatly
decreases the number of states that need to be searched, without sacrificing the theoretical
guarantees on optimality. The maximum number of safe intervals for any given configuration is at most
the number of dynamic obstacles whose trajectories intersect in that configuration. SIPP allows for
very fast planning in dynamic environments when planning time-minimal trajectories. Generalized Safe
Interval Path Planning (GSIPP) ([134]) extends the results from planning with safe intervals to derive a
state dominance relationship for dynamic environments that can be applied to continuous cost
domains. To deal with the uncertainty in the predicted trajectories of moving obstacles, they propose
Generalized Probabilistic Planning with Clear Preferences (PPCP) ([128]).

Bounded suboptimal SIPP algorithms include weighted SIPP (WSIPP), Weighted SIPP with Duplicate
States (WSIPP4 ), Weighted SIPP with Re-expansions (WSIPP, ), Focal SIPP (FocalSIPP) ([135]).

[128] develop Any Angle Pathfinding Algorithm based on SIPP for multiple agents (AA-SIPP(m)). This is
a decoupled prioritized planner that applies Any Angle SIPP to multiple agents. Typically, in 2D grid
pathfinding an agent is presumed to move from one traversable (unblocked) cell to one of its eight
adjacent neighbours. Sometimes diagonal moves are prohibited, restricting an agent’s moves to the
four cardinal directions only. The limitations of 8 (or 4) connected grids increased the popularity of
any-angle pathfinding. In any-angle pathfinding, an agent is allowed to move into arbitrary directions
and a valid move is represented by a line segment, whose endpoints are tied to the distinct grid
elements (either the center or the corner of the cells) and which does not intersect any blocked cell.
Single agent any-angle pathfinding algorithms, Theta* ([136], [137]), optimal any-angle path finder
Anvya ([138]), fast near-optimal any-angle path finder with 2k neighbourhoods ([139]), find shorter and
realistic paths. When multiple agents follow any-angle paths the conflicts can occur at any point. Using
AA-SIPP(m), cooperative pathfinding problems are solved under any angle assumption. The proposed
multi-agent planner AA-SIPP(m) is compared with the grid-based planners including SIPP for multiple
agents (SIPP(m)) and coupled CBS based solvers ICBS and ECBS. The proposed method is complete
under well-defined conditions, as well as highly efficient in practice. The success rate of AA-SIPP(m) is
extremely high (>97%) and the average solution cost is significantly better (up to 20%) than the one
achieved by both coupled and decoupled planners, that rely on cardinal-only moves ([128]).

[140] extend SIPP by developing Any Time SIPP (ASIPP) planner, which works well in dynamic
environments, since any time planners find an initial solution quickly. They demonstrate the real-time
capabilities of the Any Time SIPP planner in UAV domain, planning paths on large maps with 50
dynamic obstacles in a short time. Each obstacle is treated as a sphere with a radius and a trajectory.
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A trajectory is a list of points, where each point has state variables, specifying its configuration and
time. The points in the trajectory list are ordered from earliest time to latest time. Thus, the trajectory
shows how the obstacle is predicted to move. The proposed algorithm extends SIPP to anytime
planning by combining it with ARA* (Anytime Repairing A*). ARA* performs anytime planning by
running a series of weighted A* searches with decreasing values of € ([141]). Weighted A* does not
guarantee optimality, however it has been shown that the obtained solution is not larger than the
optimal solution times €. ARA* initiates a weighted A* search with a high g, to find an initial solution
quickly and decreases the value of €. Given enough time, ARA* will reach € = 1 and return the optimal
solution. The results of ASIPP and SIPP are compared.

[142] combine SIPP and Constrained Path Following Control. First, they plan the reference trajectory
by the safe interval path planning algorithm that is capable of handling any-angle translation and
rotations. Second, the path following problem is treated as the constrained control problem. They use
an extension of Any Angle Safe Interval Path Planning Algorithm (AA-SIPP). AA-SIPP allows following
not only edges that were initially present in the graph but also the newly build ones that represent the
shortcuts. AA-SIPP is extended to AAt-SIPP to handle not only the translation moves but also the
rotation (turn-in place) moves. In the studied problem, the robot is modelled as an open disk of radius
r =0.51, where | is the size of the grid cell, and the robot’s action space includes wait in place, rotate in
place, translate from one un-blocked cell to the other. Trajectory of a robot is a sequence of such
actions. The dynamic obstacles are translating-and-rotating open disks of radii r and move in the same
way as the robot, and the static obstacles are a set of blocked cells. The path planning problem is to
find a collision free trajectory that is at each moment of time robot is at least r units away from the
closest static obstacle(s) and at least 2r units away from the closest dynamic obstacle(s). For path
planning, it is assumed that the robot accelerates/decelerates instantaneously. After the trajectory is
planned, a path following problem is solved, constructing a control that will follow the prescribed
trajectory. Supposing that a robot model is differentially flat, authors use a model based on Brunovsky
normal form, which has constraints on maximum linear velocity and acceleration although these
constraints were ignored at the path planning stage. Thus, the trajectory is refined considering these
constraints. To make the refined trajectory close to the original one, it is assumed that the spatial
movement on each segment of occurs in three stages: highest possible acceleration to required
velocity, a uniform motion with constant speed and highest possible deceleration to a full stop. A 46 x
70 grid representing a warehouse-like environment was used in experiments. The size of each cell was
1m2 and the size of the robot and the dynamic obstacles was 0.5. Translation speed and rotation speed
were 1 m/s and 180 degrees per second, respectively. 128 dynamic obstacles were moving on a grid.
100 different path finding instances were generated randomly. For the path-following algorithm the
parameters such as the maximum velocity and maximum acceleration were set. Maximum velocity
was set to 1 m/s as the same value was used for the path -planning algorithm. For the acceleration
rate, three different values were tested.

Existing research also includes reduction-based solvers where multi-robot path finding problems are
reduced to network flow models and combinatorial optimization problems and solved using the
network flow algorithms from graph theory, mixed integer linear programming (MILP), answer set
programming (ASP) and boolean satisfiability problem (SAT) solvers.

[143], [144], and [145] study the optimal multirobot path planning on graphs, using a special type of
multi-flow network and integer linear programming. In these studies, they show how the problem of
multi-agent path planning on collision-free unit-distance graphs (CUGs) can be reduced to network
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flow problems and exploit the results from graph theory. They focus on a specific case of multi-agent
path planning problem where the goals of agents are not pre-determined and obtain the paths while
assigning each agent to a different goal, using an adapted version of maximum flow algorithm. Yu and
LaValle [146] present near optimal solutions to multi-robot path planning problem on graphs.

[147] uses a time-space network (TSN) and mixed integer linear programming (MILP) to model the
problem of dispatching and routing automated guided vehicles (AGVs) with vehicle and machine buffer
capacities while avoiding conflicts.

[148] exploits the SAT solver to optimize the makespan of a sub-optimal solution for relatively small
instances. [149] use Answer Set Programming (ASP) approach to solve multi agent path finding
problems.

[149] present a study on improving the performance of reduction-based solvers for the problem of
multi-agent pathfinding, using graph pruning strategies.

LA-MAPF generalizes MAPF to agents with different shapes and sizes. Each agent has a fixed shape
around a reference point and can occupy multiple vertices at the same time. A vertex conflict happens
when the shapes of two agents overlap at some timestep, and an edge conflict happens when the
shapes of two agents overlap at some time when they move to their respective next vertices. Multi
constraint CBS (MC-CBS) ([150]) is a state-of-the-art optimal solver for LA-MAPF. Multi-Constraint CBS
(MC-CBS) adds multiple constraints (instead of one constraint) for an agent when it generates a high-
level search node. [151] improves both the success rate and runtime of MC-CBS by generalizing the
mutex based symmetry breaking techniques to LA-MAPF and proposing a new a mutex-based conflict
selection strategy (MC-CBS-MS). [150] embed a procedure to the well-known MAPF algorithm PUSH
and ROTATE enabling it to solve MAPF considering large ages, which is able to find solutions for non-
trivial instances. The proposed procedure is called P&R-LA. [152] show how the problem of MAPF for
large agents can be reduced to pebble motion on (general) graph. The procedure moves away the
agents away from the edge which is needed to perform a move action of the current agent. More
MAPF instances with large agents on arbitrary non-planar graphs (roadmaps) were solved compared
to the state-of-the-art MAPF solver—Continuous Conflict-Based Search (CCBS) [153].

A metaheuristic that has wide applications for path and motion planning is particle swarm optimization
(PSO). Particle swarm optimization (PSO) is used by [154], for robot path planning in dynamic
environments. Obstacles of different shapes (convex, concave and curved) with varying velocities are
considered. [155] combine Particle Swarm Optimization with Tabu Search for autonomous mobile
robot path planning. Other studies include path planning of mobile robots based on specialized genetic
algorithm and improved particle swarm optimization ([156]), hybrid multi-objective bare bones
particle swarm optimization for solving the three-objective robot path optimization model where the
objectives are path length, smoothness and safety of path ([157]), second-order oscillating particle
swarm optimization algorithm for mobile robot path planning with complex constraints ([158]), motion
planners inspired by particle swarm optimization to generate conflict free paths ([159]), local and
global path planner using particle swarm optimization to find conflict-free paths ([160]), path planning
using PSO based on grid network ([161]). [162] use particle swarm optimization for path planning of
UAVs in three-dimensional space, where UAV flight must consider multiple factors such as altitude,
terrain, and obstacles.
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Multi-Agent Motion Planning (MAMP) is the task of finding conflict-free kino-dynamically feasible
plans for agents from start to goal states.

Robots use motion planning algorithms to plan their trajectories both at global and local level. One of
the widely used robot architectures for autonomous robots is the hybrid deliberative/reactive
architecture ([163], [164]), which uses the deliberative layer and the reactive layer to realize high-level
long-term planning and local reactive planning, respectively. A typical example is where the maps of
the environment are constructed using information from sensors like the light detection and ranging
(LIDAR), high-level paths are planned by using the algorithms such as A*, and reactive strategies for
speed control or local planning are used to cope with dynamic and uncertain scenarios. High-level
planning, local planning or instant reactions are evaluated by the behaviour manager to generate a
better combined planning ([115]).

[165] define the problem of multi-agent cooperative motion planning using Signal Temporal Logic (STL)
specifications, where robots can have nonlinear and nonholonomic dynamics. Authors claim that
existing methods that are based on discrete abstractions and model predictive control (MPC) for
motion planning are not scalable. [165] suggest timed waypoints to abstract nonlinear behaviours of
the system as safety envelopes around the reference path defined by those waypoints. They encode
the search for the waypoints which satisfy the STL requirements as a mixed integer linear program
(MILP). The automatic task and motion planning according to high-level specifications is expected in
an intelligent and autonomous robotic system. It is not straightforward to directly derive a specific
sequence of locations to visit for each agent from these high-level specifications. Temporal Logic (TL),
especially Signal Temporal Logic (STL) provides a mathematically precise language for specifying tasks
and rules over continuous signals with explicit time semantics. Two approaches for motion planning
from TL specifications are discrete abstractions and MPC. Abstraction-based methods discretize the
state space and generate an abstract graph to perform the motion planning. MPC methods discretize
the trajectory with a fixed timestep, and the states at each timestep are viewed as the decision
variables of an optimization problem. The disadvantage of abstraction methods is that the number of
abstracted states can grow exponentially. Also, the graph generation requires domain knowledge.
Similarly, for MPC-based methods, the number of required timesteps might be too large for long-
horizon planning. [165] use piece-wise linear (PWL) reference paths, which are sequences of
timestamped waypoints, to handle more expressive STL specifications. The constraints are recursively
encoded over the timestamped waypoints. Also, to determine the tasks that are to be completed by a
group of cooperative agents, the multi-agent STL is defined, and subtasks are automatically assigned
to each agent such that they cooperate without colliding. The encoded constraints are linear because
of the PWL structure. Thus, optimal solutions can be found using MILP.

[166] present a scalable and effective multi-agent safe motion planner (52M2) that enables a group of
agents to move to their desired locations while avoiding collisions with obstacles and other agents,
with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation
limits, and disturbances. They address this problem by finding a piecewise linear path for each agent
such that the actual trajectories following these paths are guaranteed to satisfy the reach-and-avoid
requirement. The spatial tracking error of the actual trajectories of the controlled agents can be
precomputed for any qualified path that considers the minimum duration of each path segment due
to actuation limits. Using these bounds, a collision-free path for each agent is found by solving Mixed
Integer-Linear Programs and agents are coordinated using the priority-based search. They
demonstrate the method by benchmarking in 2D and 3D scenarios with ground vehicles and
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quadrotors, respectively, and show improvements over the solving time and the solution quality
compared to two state-of-the-art multi-agent motion planners, ECBS-CT ([167]) and MAPF/C+POST
([168]).

ECBS-CT is a generalization of ECBS for the MAMP problem. In the high-level search, it takes a problem
instance and a suboptimality bound w > 1 as input and it generates a solution with a cost which is not
higher than w times the optimal cost. Thus, it generates optimal or bounded suboptimal solutions. The
low-level search uses SCIPP, which is developed by [167] and is a generalization of SIPP that is suitable
for focal search. ECBS-CT solve the MAMP problem in the state lattice world representation. State
lattices ([169]) are extensions of grids that are able to model motion constraints and suitable for
planning non-holonomic and highly constrained agents with limited manoeuvrability. A state lattice is
constructed by discretizing the configuration space into a high-dimensional grid and connecting the
cells of grid with motion primitives. A motion primitive models kino-dynamically feasible actions of the
agent. A state in a lattice is a tuple of the form (x, y, z, 0, v, ...), where X, y, z are the coordinates of the
agent’s centre, 0 is the orientation, v is the velocity, ... etc. An edge in a state lattice is associated with
the duration and a list of cells swept by the agent to execute a motion ([167]).

MAPF/C+POST is a method which is used by ([168]) for multirobot trajectory planning in known,
obstacle-rich environments. They perform this solution approach on a quadrotor swarm navigating in
a warehouse setting. First a roadmap generation procedure, which generates sparse roadmaps
annotated with possible interrobot collisions, is used. Later, valid execution schedules are found in
discrete time and space, using discrete planning. Finally, smooth trajectories are created using
continuous refinement. Safe and smooth trajectories for a high number of quadrotors in dense
environments with obstacles are computed in a short time.

Multi-Agent Motion Planning (MAMP) is the problem of computing feasible paths for a set of agents
each with individual start and goal states within a continuous state space. By extending the optimal
MAPF technique, Conflict-Based Search (CBS), to continuous state spaces, [126] propose an efficient
and scalable MAMP solver, CBS-MP. They compare the suggested solver with standard coupled and
decoupled Probabilistic Roadmap (PRM) variants and ECBS-MP, another CBS extension to solve MAMP
problems.

Multi-agent motion planning (MAMP) is a critical challenge in applications such as connected
autonomous vehicles and multi-robot systems. [170] model the problem of coordination of connected
self-driving vehicles as MAMP and formulate the problem using a novel, flexible sphere-based
discretization for trajectories and propose a space-time conflict resolution approach adhering to
kinematic constraints. They use a depth-first conflict search strategy to improve scalability and
compare the results with state-of-the-art solvers.

[126] presents an overview of some of the state-of-the-art MAPF and MAMP solvers in Table 1. MAMP
is a superset of MAPF. in coupled approaches, all agent paths are computed in unison. These
approaches work in the joint space of all agent states. They tend to provide stronger guarantees on
feasible paths and minimum cost by exploring the joint space. However, they have a high
computational cost. Decoupled approaches work in single-agent spaces allowing to rapidly compute
feasible paths for problems with many agents. However, individual agent state spaces are explored in
isolation, and later solutions are combined. This prevents ensuring completeness and optimality. Due
to the trade-off between faster computation times and finding optimal cost solutions, hybrid
approaches are used to leverage the strengths of both coupled and decoupled techniques. For
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example, a hybrid MAPF method, M*, solves the MAPF problem by initially planning a set of individual
policies in a fully decoupled manner. These policies are then used to guide a coupled search over the
joint state space. When an inter-agent conflict arises, the coupled search is backtracked until the last
collision-free joint state, and the conflicting agents are merged into a coupled meta-agent. New
collision-free paths are computed using a coupled planner for the meta-agent. If all agents are in
collision at the same place and time, M* may become a fully coupled planner as long as the inter-robot
conflict remains unresolved. In motion planning, the state space is the set of all possible agent
configurations known as the configuration space. In response to the complexity of motion planning,
sampling-based motion planners were developed as an efficient means of discovering valid paths in
the configuration space. These methods, such as the Probabilistic Roadmap Method (PRM) attempt to
create a roadmap, or graph, approximating the configuration space. Paths are found by querying this
roadmap. RRT is another sampling-based motion planning algorithm and MRARRT is an RRT-based
technique. ECBS-CT aims to solve the MAMP problem in the state lattice world representation, where
the workspace is discretized into a grid, and then grid cells are connected using a predefined set of
single agent motion primitives. It leverages using a state-lattice representation to map the agents’
motions to a common workspace discretization. Thus, all the agents’ motions can be incorporated into
the same state-space representation.

Table 1 : An overview of the state-of-the-art MAPF and MAMP solvers ([126])

Algorithm MAPF/MAMP | Coordination | Optimal | State representation
Composite-A* [125] MAPF Coupled Yes Grid

Decoupled-A* [171] MAPF Decoupled Roadmap

CBS [112] MAPF Hybrid Yes Grid

MA — CBS [81] MAPF Hybrid Yes Grid

ECBS [116] MAPF Hybrid Yes Grid

M* [132] MAPF Hybrid Yes Grid

MRARRT [172] MAMP Coupled Yes composite roadmap
Composite-PRM [173] | MAMP Coupled Yes composite roadmap
Decoupled-PRM [173] | MAMP Decoupled roadmap

MRP-IC [174] MAMP Decoupled composite roadmap
ECBS-CT [167] MAMP Hybrid Yes state-lattice
CBS-MP [126] MAMP Hybrid Yes roadmap

4.2.3 Recent advances in path and motion planning

Recent applications of A* include minimum dose path planning based on navigation mash ([175]), to
avoid radiation in large and complex radiation environments. [176] solve the path planning problem
of the automatic guided vehicle (AGV) sorting system on a mash topology map, using a two-stage
algorithm. [177] apply several recently developed MAPF solution approach to the 3D Pipe Routing (PR)
problem, which aims at placing collision free pipes from given start locations to given goal locations in
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a known 3D environment. Accordingly, a solution to a MAPF instance is a set of blocked cells in x-y-t
space, while a solution to the corresponding PR instance is a set of blocked cells in x-y-z space.

A considerable amount of the recent literature includes the solvers dedicated to handling the
combined problem of path finding and target or task assignment for the agents, or the problems where
single agents have multiple goal locations and a sequencing of these is also needed. These are
summarized in the following paragraphs.

[178] solve the combined Target-Assignment and Path-Finding problem (TAPF) which requires
simultaneously assigning targets to agents and planning collision-free paths for agents from their start
locations to their assigned targets. Instead of the Conflict-Based Search with Target Assignment (CBS-
TA) which uses K-best target assignments to create multiple search trees and Conflict-Based Search
(CBS) to resolve collisions in each search tree, [178] propose Incremental Target Assignment CBS (ITA-
CBS) to avoid duplicated collision resolution in multiple trees and the expensive computation of K-best
assignments. ITA-CBS generates only a single search tree and incrementally computes best
assignments during search. Other variants of TAPF are presented by [179], [180], [181], [182], [183],
[184], [185], and [186].

[179] adapt the Hungarian algorithm for solving the assignment problem with changing costs. [180]
propose a novel approach called conflict-based Steiner search (CBSS) for solving MAPF in combination
with Target-Sequencing which requires not only assigning targets to agents but also specifying the
visiting order of targets. [181] deal with the problem of optimal target assignment and path finding for
teams of agents by presenting the CBM (Conflict-Based Min-Cost-Flow) algorithm. On the low level,
CBM uses a min-cost max-flow algorithm on a time-expanded network to assign all agents in a single
team to targets and plan their paths. On the high level, CBM uses conflict-based search to resolve
collisions among agents in different teams. [182] propose Task Conflict-Based Search (TCBS) algorithm
to solve the combined delivery task allocation and path planning problem to optimality, which is to be
used as a baseline for sub-optimal solvers. [185] introduces multi-goal multi agent path finding (MG-
MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting
vertices to one individual goal vertex per agent, MG-MAPF assigns each agent multiple goal vertices
and the task is to visit each of them at least once. To solve MG-MAPF, [185] suggests two novel
algorithms: a heuristic search-based algorithm called Hamiltonian-CBS (HCBS) and a compilation-based
algorithm built using the satisfiability modulo theories (SMT), called SMT-Hamiltonian-CBS (SMT-
HCBS). [183] study the multi-goal task assignment and path finding (MG-TAPF) problem whereas many
tasks as agents are given, and each task consists of a sequence of goal locations. Tasks have to be
assigned to agents and each agent must follow the sequence of goal locations of the assigned task. The
aim is to find collision-free paths to minimize flow time. Authors prove that the problem is NP-hard
using a reduction from a specialized version of the Boolean satisfiability problem to the MG-TAPF
problem and propose the Conflict-Based Search with Task Assignment with Multi-Label A* algorithm
(CBS-TA-MLA) that solves the problem to optimality. The algorithm uses the best first search CBS-TA
on the high level to assign tasks and resolve conflicts, and multi-label A*, MLA ([187]), on the low level
to find the time-optimal path of each agent that visits a sequence of goal locations of its assigned task.
They also extend CBS-TA-MLA to a bounded-suboptimal version, called ECBS-TA-MLA, using ideas from
the bounded suboptimal version of CBS. [184] use Answer Set Programming for generalized target
assignment and path planning problem. [186] analyze the problem of allocating and sequencing goals
for each agent while simultaneously producing conflict-free paths for the agents. They introduce an
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exact algorithm called MS* which computes an optimal solution by fusing and advancing state of the
art solvers for multi-agent path finding (MAPF) and multiple travelling salesman problem (mTSP).

4.2.4 Comparison of solvers

In this section, the state-of-the-art solvers are classified as (i) optimal and complete, (ii) bounded
suboptimal and complete, (iii) unbounded suboptimal with no completeness guarantee, (iv) complete
and non-optimal, and (v) SIPP variants which might contain the characteristics of any of the former
groups, and evaluated in terms of performance, solution quality and completeness.

Optimal MAPF solvers can be divided into four categories: A*-based, increasing cost tree search (ICTS)
based, conflict-based search (CBS)-based, and reduction-based. The optimal solver also satisfies
completeness.

The reduction-based solvers are optimal and complete. For small-scale MAPF problems with dense
obstacles and agents, the reduction-based solver can solve the problem quickly. The difficulty for a
reduction-based solver is proof of the correctness of the reduction process, which usually requires
complex mathematical reasoning.

Optimal A* based solvers perform search in the k-agent state space. The drawback is that as the map
size and the number of agents increases, the state space grows. All successor nodes are added to the
OPEN list, regardless of whether they will be expanded. Both the joint state space and the joint
branching factor grow exponentially as the number of agents increases. Thus, computational cost is
high, and scalability is limited. M* is an improved version of optimal A* based solver which scales
better than A* since joint branching factors are established only between conflicting agents. Unlike A*,
M* does not need to add every neighbour to the OPEN list. M* initially uses decoupled planning to generate
a low-dimensional search space. As robot-robot collision are found in the search space, the local
dimensionality of the space is locally increased. When there is no conflict between agents, the state space
is expanded to only one node every timestep, which contains the optimal actions of all single agents. For
agents in conflict, the state space will generate all action combinations for them and combine them with
the optimal actions of other agents. M* is proven to be complete and optimal. The worst-case
computational cost of M* grows exponentially with the number of robots, however M* requires less time
than A* to find paths for multirobot systems.

In the two-level search framework of ICTS, the high-level searches a tree with the exact path cost for each
agent, while the low-level verifies to see whether there is a solution on each ICT node. If there exists a
subset of m agents for which no valid solution exists, the low-level can immediately terminate. Although
ICTS is faster than A*-based approach, it still works on the k-agent state space, which grows exponentially
with the number of ICT levels. It is not efficient if the instance contains dense obstacles or agents.

When the agent density is relatively sparse, CBS can solve large-scale problems to optimality. In most of
the instances, CBS performs better than ICTS and A*. However, in some instances with many path
conflicts, it is worse than Ax-based solvers. As the number of agents increases, path conflicts increase
rapidly, and solution efficiency decreases.

MA-CBS reduces the number of nodes in the constraint tree, by merging the agents into meta-agents when
number of conflicts between them exceeds a given value and uses the A*-based MAPF solver to plan the
path for the meta-agent at the low level, to speed up the search. ICBS applies Merge & Restart (MR) strategy
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that suggests re-establishing a root node to start searching after merging agents unlike the MA-CBS, which
keeps expanding the constraint tree nodes. MR can save a significant amount of computing cost.

Optimal and complete MAPF solvers are given in Table 2 :

Table 2 : Optimal and complete MAPF solvers

Solver Description | Search strategy Computational | Scalability

time

A* A* based Search in joint state space of all Exponential Limited

(coupled) agents

M* A* based State space is reduced compared | Exponential Better than A*
to A*

ICTS Two-level Search in joint state space of all Exponential Significantly better
agents than A*

CBS Two-level Binary tree search based on Exponential Significantly better
conflicts on the high level, fast than A* and ICTS for
single agent planner on the low most of the instances.
level

MA-CBS CBS based Agents are merged into meta- Exponential Better than CBS
agents, thus, the number of
nodes in the search tree is
reduced compared to CBS.

ICBS CBS based Prioritization of conflicts and Exponential Better than CBS and
Merge & Restart strategy speed MA-CBS
up search

MILP, SAT, | Reduction Reduction to MILP, SAT, ASP Exponential Small scale problems

ASP based with dense obstacles

and agents

Bounded sub-optimal solvers can give some guarantee of the quality of the solution. Bounded sub-optimal
solvers are generally derived from optimal MAPF solvers. Bounded sub-optimal A* based solvers trade-off
between optimality and search efficiency using inflated heuristics. Optimal A* based solvers can all be
transformed into bounded sub-optimal solvers by introducing a sub-optimality factor (inflation rate).
The dynamic potential search (DPS), which is a special case of focal search, is also an A*based bounded
sub-optimal solver. All Agent Costs (AAC), which is a bounded sub-optimal variant of ICTS, increases
the cost of all agents by one at each subsequent node in the search tree, while ICTS only increments
the cost of a single agent from a parent to a child in the increasing cost tree. CBS-based bounded sub-
optimal solvers include BCBS and ECBS, which use focal search in both levels of CBS, reducing the
number of collisions to be solved. ECBS guarantees bounded sub-optimal costs for each path in each
node of the constraint tree. MA-ECBS reduces the search space of ECBS, using meta-agents. However,
a joint-state-space MAPF solver makes resolving collisions within meta-agents inefficient. NECBS
overcomes this resolving the collisions within meta-agents with ECBS. NECBS is also a complete and
bounded suboptimal solver.
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Table 3 presents a brief comparison of bounded sub-optimal and complete solvers:

Table 3 : Bounded sub-optimal and complete MAPF of solvers

Solver Description | Search strategy Computational time | Scalability
Inflated A* based. Heuristic search where Lower than M*. Higher when sub-
M* deviation from optimality is optimality bound is
bounded larger, in which case
solution quality is
lower
DPS A* based A special case of focal search | Lower than A* Higher than A*
where the nodes in the OPEN
list are expanded based on
dynamic potential value
function that includes a sub-
optimality factor.
AAC ICTS based | Increases the cost of all Lower than ICTS Higher than ICTS
agents by one at each
subsequent node in the
search tree.
BCBS CBS based Focal search is applied in Lower than CBS Higher than CBS
both levels of CBS.
Suboptimlity bound is the
product of the bounds of the
two levels.
ECBS CBS based Focal search is applied in Lower than CBS Higher than CBS. More
both levels of CBS. High and than 50% of the
low levels share a joint instances on DAO
suboptimality bound. maps with 250 agents
were solved with 1%
optimality gap, while
CBS can perform well
up to 50 agents.
NECBS CBS based Meta-agents applied to ECBS | Lower than ECBS Higher success rate
(MA-ECBS). ECBS is also used than ECBS and its
to resolve collisions in the variants
joint state space within
meta-agents to speed up
MA-ECBS

Unbounded sub-optimal MAPF solvers can get solutions faster and generally have a higher success
rate, which include search-based, sampling-based, rule-based solvers. Search based solvers include
priority-based decoupled search solvers, where the priorities are used to resolve conflicts between the
agents’ independent paths. Sampling-based algorithms randomly sample a fixed workspace to
generate sub-optimal paths. Rule-based algorithms have agent-specific rules in place for different
scenarios. They usually do not include a massive search like search-based algorithms. Rule-based
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solvers usually guarantee to find a solution very fast, but those solutions are in most cases far from
optimal.

The search strategy, scalability and performance of unbounded sub-optimal MAPF solvers with no
completeness guarantee are summarized and compared in Table 4:

Table 4 : Unbounded sub-optimal MAPF solvers without completeness guarantee

Solver Description Search strategy Computational time Scalabillity
LRA* A* based Each agent searches | Faster than optimal and bounded | Higher than
local repair for a route using the | suboptimal solvers. optimal and

A* algorithm, bounded
ignoring all other suboptimal
agents except for its solvers. Path
current neighbours. lengths are more
Agents follow their than twice the
routes until a optimal lower
collision is imminent bound for 100
and replan the agents.
remainder of the
route.

CA* A* based For each agent the Faster than optimal and bounded | Higher than

(decoupled) | search is performed suboptimal solvers. Slower to optimal and

in 3D space that initialize compared to LRA*. bounded
includes a wait suboptimal
move, while the solvers. Solution
planned routes of quality is better
other agents that are than LRA* with
stored in a 20% deviation
reservation table are from optimal
avoided. lower bound. The

order of agents
might affect the
solution quality,
which might be

dealt using
Prioritized
Planning.
HCA* A* based Improves Faster than optimal and bounded | Higher than
(decoupled) | performance usinga | suboptimal solvers. Slower to optimal and
heuristic initialize compared to LRA*. bounded
Slightly faster than CA*. suboptimal

solvers. Solution
quality is better
than LRA* with
20% deviation
from optimal
lower bound.
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WHCA* A* based Dynamic windows Lower than 0.6ms per agent. Suitable for real-
MAPF solver. | that limit the space- | Faster than CA* and HCA*. time use.

Priority time search to a Performance depends on window
based fixed depth. size. With large window,
search. initialization time increase and
behaves like HCA*. With small
window size, behaves like LRA*
with lower solution quality.

CBSw/P An The whole More efficient than CBS, better Higher than the
adaptation prioritization space solution quality compared to optimal solver CBS
of CBS. is explored using CA*, HCA*, WHCA*. Obtains and usually finds
Priority best-first search. optimal and near optimal optimal or near-
based solutions. optimal solutions.
search.

PBS Priority The whole More efficient than CBSw/P. Remains near
based search | prioritization space Solves well-formed Instances optimal and

is explored using with six hundred agents in less efficient for more

depth-first search. than a minute. Finds solutions for | than one hundred
many instances where standard agents.
prioritized algorithms cannot.

Sampling- | A* based The joint state space | More efficient than A* based Small scale

based search is is searched using search. Exploring the joint state instances.

solvers replaced sampling methods space is not efficient for large
with scale instances.
sampling

Rule Agent- Based on specific Very fast High scalability

based specific rules | rules with no with low solution

solvers extensive search quality

BIBOX and PUSH AND ROTATE in Table 5 are reduction-based and rule-based solvers for which
completeness is guaranteed for the class of instances with two unoccupied locations in biconnected
graphs. Solutions are generated in polynomial time and non-optimal.

Table 5 : Complete non-optimal solvers

Solver Description Search strategy Computational time Scalability

PUSH AND Rule based Special movement Fast and complete Solves large-

ROTATE solver. rules are used in with large deviation scale instances
search from optimality. with low solution

quality.
BIBOX Reduction to The problem is Fast and complete for | Scales well in
pebble motion reduced to pebble bi-connected graphs highly connected

motion problem and with two unoccupied 2D and 3D space.
solved using a vertices.
polynomial algorithm.
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We compare SIPP variants in Table 6, even though they belong to different classes in terms of

optimality and completeness.

Table 6 : SIPP variants

Solver Description Optimality and Computational time and scalability
completeness
SIPP Single agent path Optimal complete. Outperforms HCA* in terms of
planner with dynamic computational time and success rate.
obstacles. The search space is reduced compared
to A* since continuous time intervals
are used rather than discrete
timesteps.
WSIPP Weighted SIPP speeds Bounded suboptimal, Outperforms SIPP in terms of
up SIPP by sacrificing complete computational time and scalability.
solution quality Solution quality is lower than SIPP.
WSIPPy4 Improves the search Bounded suboptimal, Outperforms SIPP
strategy of Weighted complete
SIPP
WSIPP, Improves the search Bounded suboptimal, Outperforms SIPP
strategy of WSIPP4 complete
Focal SIPP | Applies focal search Bounded suboptimal, Outperforms SIPP
complete
ASIPP Any time SIPP. Each Bounded suboptimal, Large maps with 50 dynamic obstacles
obstacle is treated as a complete are solved in short time. Finds an initial
sphere with a radius and solution quickly. Works well in dynamic
a trajectory. environments.
AA-SIPP(m) | Decoupled prioritized Complete under well- Significantly better than decoupled
planner that applies Any | defined conditions. No SIPP(m) (SIPP for multiple agents) and
Angle SIPP to multiple optimality guarantee the coupled CBS based solvers ICBS and
agents. ECBS. Success rate is higher than 97%.
AAt-SIPP + | Path and motion Obtained trajectories Performed on 46 x 70 grid with 128
Constraint | planning. Handles not are not always collision- | dynamic obstacles.
path only the translation free
following moves but also the
control rotation (turn-in place)
moves. The robot is
modelled as an open
disk of radius r =0.5I,
where | is the size of the
grid cell. Translation and
rotation velocities are
also considered.

Motion planning is the extension of path planning. Path planning aims at finding the path between the
origin and destination in workspace by strategies like shortest distance or shortest time, therefore path
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is planned from the global metric or topological level. Motion planning, however, aims at generating
interactive trajectories in workspace when robots interact with dynamic environment, therefore
motion planning needs to consider kinetics features, velocities and poses of robots and dynamic
objects nearby when robots move towards the goal. On one hand, motion planning must consider
short-term optimal or suboptimal reactive strategies to make instant or reactive response. This is
achieved by rotary or linear control in hardware from the perspective of robotic and control
engineering. On the other hand, motion planning should achieve long-term optimal planning goals as
path planning when robots interact with the environment [115].

[115] classify the traditional motion planning algorithms as graph search algorithms, sampling-based
algorithms, interpolating curve algorithms, and reaction-based algorithms. Graph search algorithms
include the algorithms based on depth first search, best first search, breadth first search, such as
Dijkstra, A*. Sampling based algorithms, the RRT and the probabilistic roadmap method (PRM), are
two algorithms that are commonly utilized in motion planning. The RRT constructs a tree that attempts
to explore the workspace rapidly and uniformly via a random search. The RRT algorithm can consider
non-holonomic constraints, such as the maximum turning radius and momentum of the vehicle. The
PRM algorithm is normally used in a static scenario. It is divided into two phases: learning phase and
qguery phase. In the learning phase, a collision-free probabilistic roadmap is constructed and stored as
a graph. In query phase, a path that connects original and targeted nodes is searched from the
probabilistic roadmap. Interpolating curve algorithms use a set of mathematical rules to draw
trajectories. Mathematical rules are used for path smoothing and curve generation. Typical path
smoothing and curve generation rules include line and circle, clothoid curves, polynomial curves,
Bezier curves and spline curves. Reaction-based algorithms are about making reactions or doing local
path planning quickly and intuitively, rather than searching global solutions. Examples of reaction-
based algorithms are potential field method (PFM) which uses vectors to represent behaviours and
combine vectors to produce an emergent behaviour, velocity obstacle method (VOM) which relies on
current positions and velocities of robots and obstacles to compute a reachable avoidance velocity
space (RAV), and selecting a proper avoidance maneuverer (velocity) to avoid static and moving
obstacles, and DWA which is about is about choosing a proper translational and rotational velocity (v,
w) that will maximize an objective function that includes forward velocity of the robot, distance to the
next obstacle on the trajectory and a measure of progress towards a goal location. Disadvantages of
PFM include oscillation of motion when robots navigate among very close obstacles at high speed,
impossibility to go through small openings. Collisions with obstacles still exist when using velocity
obstacle method in complex scenarios like dense and dynamic cases. In addition to traditional motion
planning algorithms, classical machine learning algorithms that are used for motion planning are listed
by [115] as three supervised learning algorithms, SVM, LSTM, CNN, and a reinforcement learning
algorithm, Monte-Carlo tree search (MCTS). [115] present the key characteristics of traditional and
learning based motion planning algorithms in Table 7 and Table 8.

Table 7 : Traditional motion planning algorithms

Classification | Example Input Key features Output
Dijkstra (1) Best-first search (1)
Graph search o )
| Graph or map. Heuristic function for cost | Trajectory
ale. A* (1), (2) imati
estimation (2)
PRM (1) Random search (1)
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Sampling Non-holonomic constraint
based alg. RRT (1), (2) (2)
Line and circle
Clothoid curves
Interpolating ) Mathematical rules
Polynomial curves )
curve alg. Path smoothing
Bezier curves
Spline curves
. . . Different potential field .
Robot configurations i.e. Movin
PFM . & functions U for different . 'g
position . directions
targets, i.e. goal, obstacle
Reaction VOM Positions and velocities Exhaustive/global,
based alg. (robot and obstacles) heuristic search w.r.t. U Selected
Robot’s position, distances Velocity selection velocity
DWA to goals/obstacles and y -
. . according to objective U
kinematics of robot
Table 8 : ML algorithms
Algorithm Input Key features Output
MSVM Vector Maximum margin classifier None-sequential actions
LSTM Vector Cell (stack structure) Time-sequential actions
MCTS Vector Monte-Carlo method/Tree structure Time-sequential actions
CNN Image Convolutional layers/ Weight matrix None-sequential actions

Analytical comparison of traditional and learning based path and motion planning algorithms are
presented by [115] in Table 9. Accordingly, graph search algorithms plan their path globally by search
methods (e.g., depth-first search, best-first search) to obtain a collision-free trajectory on the graph or
map. Sampling-based algorithms samples local or global workspace by sampling methods (e.g., random
tree) to find collision-free trajectories. Interpolating curve algorithms draw fixed and short trajectories
by mathematical rules to avoid local obstacles. Reaction based algorithms plan local paths or reactive
actions according to their objective functions. MSVM and CNN make one-step prediction by trained
classifiers to decide their local motions. LSTM and MCTS can make time-sequential motion planning
from the start to destination by performing their trained models. Velocity criterion denotes the ability
to tune the velocity when algorithms plan the paths, and safe distance criterion denotes the ability to
keep a safe distance to obstacles.

Table 9 : Analytical comparison of traditional and ML algorithms for motion planning

Algorithm Local/global | Path length | Velocity Reaction | Safe distance Time
planning speed seq.
path
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Graph search Global Optimal - Slow Fixed distance/high | No
collision rate

Sampling based Local/Global | Suboptimal | - Slow Fixed distance/high | No
collision rate

Interpolating Local Fixed - Medium | Fixed distance No

curve

Reaction based Local Optimal Optimal Medium | Suboptimal distance | No

MSVM Local Suboptimal | Suboptimal | Fast Suboptimal distance | No

LSTM Local/Global | Suboptimal | Suboptimal | Fast Suboptimal distance | Yes

MCTS Local/Global | Optimal Fast Optimal distance Yes

CNN Local Suboptimal | Suboptimal | Fast Suboptimal distance | No

All things considered, for path planning, compared to optimal solvers, bounded sub-optimal solvers
perform better in terms of computational time, while slightly decreasing the solution quality. On the
other hand, unbounded suboptimal solvers generate solutions much faster than optimal and sub-
optimal solvers, however the completeness of the obtained solutions are not always guaranteed even
though a feasible solution exists. Thus, the trade-offs between solution quality, completeness and
computational complexity should be considered while selecting the best solver. An interesting fact is
that despite being optimal and complete, the single agent path planning solver, SIPP, is faster than
some of the unbounded sub-optimal solvers with no completeness guarantees. For multi-agent path
planning, when priority-based search is combined with the solvers such as CBS, larger scale instances
can be solved with better solution quality compared to other unbounded sub-optimal solvers such as
CA*, HCA*, WHCA*. One example is CBSw/P which usually finds optimal or near-optimal solutions,
even though it is classified as an unbounded sub-optimal solver. A similar and improved solver is PBS,
which solves well-formed Instances with six hundred agents in less than a minute, finds solutions for
many instances where standard prioritized algorithms cannot, and remains near optimal and efficient
for more than a hundred agents.

The state-of-the-art multi-agent motion planner, ECBS-CT, generates optimal or bounded suboptimal
solutions. In the high-level search, it takes a problem instance and a suboptimality bound as input. The
low-level search uses SCIPP, which is a generalization of SIPP that is suitable for focal search. A scalable
and effective multi-agent safe motion planner is S2M that enables a group of agents to move to their
desired locations while avoiding collisions with obstacles and other agents, with the presence of rich
obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation limits, and disturbances. A
piecewise linear path is obtained for each agent such that the actual trajectories following these paths
are guaranteed to satisfy the reach-and-avoid requirement. a collision-free path for each agent is
found by solving Mixed Integer-Linear Programs and agents are coordinated using the priority-based
search. S2M shows improvements over the solving time and the solution quality compared to two
state-of-the-art multi-agent motion planners, ECBS-CT, in 2D and 3D scenarios with ground vehicles
and quadrotors.

In ASTAIR, the goal is to generate realistic solutions in short computational time so that disruptions or
changes in environmental conditions are addressed on time. Thus, rather than optimal and complex
solvers, both high quality and efficient solvers are aimed to be integrated with human-machine
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interface to aid the planning and execution of instant changes. The problems are to be solved on
complex airport surface layouts that are to be converted into graphs including nodes, edges,
intersections. Thus, application of fast solution procedures becomes crucial for airport surface
operations.

For path and motion planning, considering its efficiency and high-quality solutions in many of the
instances, priority-based search, PBS, will be one of the tools that will be integrated with other
approaches. One example of priority-based modelling for airport surface movements exists in the
literature where access priorities of aircraft for a road section are adjusted by decreasing the priority
of delayed aircraft. In combination with PBS, safe interval path planning solver, SIPP, is worth
considering due to its computational efficiency, optimality and completeness. In addition to path
finding, SIPP has also been combined with path tracking or following algorithms for motion planning
or adapted to deal with agents with different shapes and sizes. Thus, combining SIPP with PBS and
local level motion planning approaches to find trajectories by considering the speed profiles and other
kino-dynamic constraints is a promising approach for dealing with path and motion planning problems
in ASTAIR. The multi-agent safe motion planner, S2M, which combines mixed integer programming
with priority-based search is also worth considering due to its scalability and some of its procedures
could be integrated into the path and motion planning solutions of ASTAIR. Apart from these, the
recent trend of combining path planning with task allocation or simultaneous target assignment and
sequencing fits well to the scope of ASTAIR, where finding a tug allocation solution or dynamic
assignment of tugs to aircraft while handling the path and motion planning at the same time is among
the main interests.

4.2.5 Explainable Al for path and motion planning

In many of the safety critical applications (e.g., air traffic control, hazardous materials), planning is not
fully automatic, and the plan is only suggested to a human supervisor, who may act upon it. In such
settings, the plan has to be presented to the supervisor in a humanly understandable manner. In
particular, the presentation should enable the supervisor to understand the paths taken by the agents,
and to easily verify that the agents do not collide, as otherwise the supervisor would not necessarily
trust the plan. Such a representation is called an explanation of the plan [188].

[188] propose an explanation scheme, vertex-disjoint decompositions, for MAPF, which bases
explanations on simplicity of visual verification by human’s cognitive process. The scheme decomposes
a planinto segments such that within each segment, the paths of the agents are disjoint. The simplicity
of a plan is measured by the number of segments required for the decomposition. Authors present a
formal definition of the explanation scheme as follows: “An explanation scheme for a decision problem
P is a mechanism that outputs, for a given input /, some information called an explanation, or outputs
that no explanation is found”. Accordingly, the following statements define the three properties of the
explanation scheme: (i) If an explanation exists, then I is a yes-instance, i.e. | € P (Soundness), (ii) If | is
a yes-instance, then an explanation exists (Completeness), (iii) An explanation is easy to find and to
verify if it exists (Simplicity). The simplicity requirement is context-dependent and not formal. The
soundness and the completeness are the key requirements for the proof. The complexity of the
problems that arise by the explanation scheme are studied and it is shown that finding optimal
explanations for existing plans can be done efficiently, whereas planning for MAPF problems with
simple explanations is NP-Complete. Additionally, the tradeoff between time-optimal plans and plans
with simple explanations is analyzed. Experiments are performed in both continuous and discrete
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settings. Furthermore, the practical difficulties that arise in implementing a search-based algorithm for
planning with explanations are demonstrated.

Another study that addresses the Explainable Multi-Robot Motion Planning via disjoint decomposition
is presented by [189]. They show that standard notions of optimality may create conflict with short
explanations, and propose meta-algorithms, namely multi-agent plan segmenting-X (MAPS-X) and its
lazy variant, that can be plugged on existing centralized sampling-based tree planners, represented by
X, to produce plans with good explanations using a desirable number of images. We demonstrate the
efficiency of the explanation scheme and evaluate the performance of MAPS-X and its lazy variant in
various environments and agent dynamics. The study focuses on explanations for realistic robotic
systems in the continuous space with kino-dynamical constraints. Explainability is treated as an
additional concept on top of the multi-robot motion planning and incorporated into existing sampling-
based algorithms. Due to the fact that there is often a trade-off between planning for short
explanations and short paths, explainability might conflict with the state-of-the-art heuristics. To deal
with this, generic meta-algorithms that search for optimally explainable plans using any centralized
sampling-based algorithm are proposed. The performance of the proposed meta-algorithms is
demonstrated by plugging them with classical motion planners such as rapidly exploring random trees
(RRT).

[190] propose methods that generate explanations for the optimality of paths, focusing on the case of
path planning on navigation meshes, which are heavily used in the computer game industry and
robotics. The proposed methods are based on single inverse-shortest-paths optimization, and
incrementally solving complex optimization problems. [190] show that scalability and performance of
these methods are better than domain independent search-based methods. Although the domain-
independent methods for Explainable Al such AS Model Reconciliation are also applicable to path
planning, they lack the domain knowledge that would allow them to deal with large-scale path
planning problems. Computation speed is a requirement for interactive interfaces such as human-in-
the-loop designs, for safety-critical robots in dynamic environments, or when a speedy investigation
of planner behaviour is desirable. [190] focus on explaining why a specific path is optimal rather than
another path, unlike other studies for explainable multi-agent path finding which focus on explaining
why the paths are not colliding or failures in motion planning. Inverse shortest path problem looks for
a minimal change graph weights so that a desired path becomes optimal. Thus, it is a relevant problem
to explanations of optimality of paths.

[191] investigate the explainability for multi-modal multi-agent path finding problem with resources
(mMAPF), considering queries about the (in)feasibility and the optimality of solutions, as well as
queries about the observations about these solutions. In real-world automated warehouses, the
robots’ battery levels change as they move around, and, in some parts of these warehouses, due to
presence of humans or tight passages, the robots may need to move slowly to ensure safety. mMAPF
is a general version of MAPF proposed by [191] to handle more realistic autonomous warehouse
scenarios, considering multi-modal transportation, multiple objectives, resource constraints and
waypoints. A flexible framework is proposed to solve the problem, using Answer Set Programming.
Given a solution for mMAPF, the explainable framework is able to explain infeasibility or nonoptimality
of the solution, confirm its feasibility and suggest alternatives, and provide explanations for queries. If
a modified solution is found infeasible, then, an explanation regarding infeasibility of this modified
solution can be “due to collisions with obstacles or other robots” or “due to low battery-level”. An
explanation regarding non-optimality can be “more time is needed to complete tasks” or “more
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charging is required”. If the modified solution is found feasible, alternative feasible solutions with
better solution quality are obtained and returned to the engineer. Other queries may include why an
agent is waiting too long at a location in which case the response can be “to avoid collision with another
robot”. The explainable framework is implemented using Python and the Answer Set Programming
solver Clingo.

[192] provide a comprehensive outline of the different threads of work in Explainable Al Planning
(XAIP). They present definitions and clarifications of the decision-making problem, explanation
process, explanation artifacts, properties of explanations, algorithm-based explanations, model-based
explanations such as Inference Reconciliation and Model Reconciliation, and plan-based explanations,
as main concepts in XAl. They focus on automated planning as a subfield of decision-making problems.
More specifically, [193] provide a taxonomy of concepts in the area of Interpretable Agent Behaviour.
There has been significant interest in the robotics and planning community lately in developing
algorithms that can generate behaviour of agents that is interpretable to the human (observer) in the
loop. This notion of interpretability can be in terms of goals, plans or even rewards that the observer
is able to ascribe to the agent based on observations of the latter. Interpretability remains a significant
challenge in the design of human-aware Al agents. Authors introduce a general framework for
describing problems in the space of “plan interpretability” and outline how existing works have
addressed different aspects of this problems in cooperative settings. The planning problem, plan,
computational model, completion function, observation model are formally defined and the concepts
in cooperative settings which are relevant to motion planning are outlined and formulated based on
the literature. These concepts are explicability, predictability, legibility and transparency. The concepts
in adversarial setting which include privacy, plan-obfuscation, and security are also evaluated.

[194] introduce plan explicability and predictability for robot task planning so that intelligent robots
can synthesize plans that are more comprehensible to humans. To achieve this, they must consider
not only their own models but also the human’s interpretation of their models. Humans understand
agent plans by associating abstract tasks with agent actions (labelling). To compute the measures of
explicability and predictability, [194] propose a model that learns the labelling scheme of humans for
agent plans from training examples using conditional random fields (CRFs) and use the learned model
to label a new plan. The measures of explicability and predictability are used by agents to proactively
choose or directly synthesize plans that are more explicable and predictable to humans. The tests are
performed on a synthetic domain with a physical robot.

[195] also focus on providing explanations for robot motion planning. Motion planners are traditionally
not self-explanatory about their output. The result of running a motion planner is typically either a
trajectory or a failure notice, so users may have problems understanding why a planner failed or why
a trajectory is different from what was expected. However, notions of explanation in the existing
motion planning literature are narrow. Thus, [195] introduce a new taxonomy of explanations in the
context of motion planning and extend the concept to contrastive explanations and clarifications;
propose methods for generating explanations and evaluate them on a user study; and elaborate on a
comprehensive research agenda for explainable motion planning. Contrastive explanations explain
why a trajectory A was returned by a planner, instead of a different trajectory B expected by the user.
Optimization based and sampling based explainable motion planners which are capable of answering
failure and contrastive questions are developed.
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Explainable Al solutions for path and motion planning can be used in ASTAIR for explaining the
motivations behind selecting certain paths over others to the users as part of human machine
interactions and contributes to the concept of human-in-the-loop process in automation.
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5 Conclusion and research directions

This deliverable presents the results of a comprehensive study on the state-of-the-art methodologies
for Human-Al interaction, fleet management and path planning algorithms for operating a highly
digitalised and automated airport that could be relevant to the ASTAIR project.

Based on this state-of-the-art, some research directions have been identified to be explored during
the ASTAIR project that integrate the different aspects discussed in this document.

Regarding the Human-Al Interaction in ASTAIR, we will be targeting high levels of automation (Levels
2B and 3A according to the EASA’s classification). Previous work on how to design efficient interactions
for such high levels of automation is scarce and often studied within very narrow and controlled
settings. According to previous literature, this specific context of Al-based system presents specific
challenges related that we will have to consider during the project.

First, we will need to investigate the roles and tasks allocation between Al and Humans as well as to
identify relevant criterions to validate such allocation. We need to identify requirements for humans
and Al so that they can share similar goals and constraints. As recommended by the literature review,
we will use user centered design methods but also involve Ai researchers in the process to avoid over
confidence in Al possibilities. This will enable us to invent new shared representations between
humans and Al so that we can create successful conditions for Human-Automation Teaming.

Another important aspect that remains understudied in the identified related work concerns the
transition between several levels of automation, either human initiated or system initiated. In ASTAIR,
we want to explore how to transition between levels of automations according to user preferences or
Al performances.

For path planning, compared to optimal solvers, bounded sub-optimal solvers perform better in terms
of computational time, while slightly decreasing the solution quality. On the other hand, unbounded
suboptimal solvers generate solutions much faster than optimal and sub-optimal solvers, however the
completeness of the obtained solutions are not always guaranteed even though a feasible solution
exists. Thus, the trade-offs between solution quality, completeness and computational complexity
should be considered while selecting the best solver. An interesting fact is that despite being optimal
and complete, the single agent path planning solver, SIPP, is faster than some of the unbounded sub-
optimal solvers with no completeness guarantees. For multi-agent path planning, when priority-based
search is combined with the solvers such as CBS, larger scale instances can be solved with better
solution quality compared to other unbounded sub-optimal solvers such as CA*, HCA*, WHCA*. One
example is CBSw/P which usually finds optimal or near-optimal solutions, even though it is classified
as an unbounded sub-optimal solver. A similar and improved solver is PBS, which solves well-formed
Instances with six hundred agents in less than a minute, finds solutions for many instances where
standard prioritized algorithms cannot, and remains near optimal and efficient for more than a
hundred agents. The state-of-the-art multi-agent motion planner, ECBS-CT, generates optimal or
bounded suboptimal solutions. In the high-level search, it takes a problem instance and a suboptimality
bound as input. The low-level search uses SCIPP, which is a generalization of SIPP that is suitable for
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focal search. A scalable and effective multi-agent safe motion planner is S2M that enables a group of
agents to move to their desired locations while avoiding collisions with obstacles and other agents,
with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation
limits, and disturbances. A piecewise linear path is obtained for each agent such that the actual
trajectories following these paths are guaranteed to satisfy the reach-and-avoid requirement. a
collision-free path for each agent is found by solving Mixed Integer-Linear Programs and agents are
coordinated using the priority-based search. S2M shows improvements over the solving time and the
solution quality compared to two state-of-the-art multi-agent motion planners, ECBS-CT, in 2D and 3D
scenarios with ground vehicles and quadrotors.

In ASTAIR, the goal is to generate realistic solutions in short computational time so that disruptions or
changes in environmental conditions are addressed on time. Thus, rather than optimal and complex
solvers, both high quality and efficient solvers are aimed to be integrated with human-machine
interface to aid the planning and execution of instant changes. The problems are to be solved on
complex airport surface layouts that are to be converted into graphs including nodes, edges,
intersections. Thus, application of fast solution procedures becomes crucial for airport surface
operations. For path and motion planning, considering its efficiency and high-quality solutions in many
of the instances, priority-based search, PBS, will be one of the tools that will be integrated with other
approaches. One example of priority-based modelling for airport surface movements exists in the
literature where access priorities of aircraft for a road section are adjusted by decreasing the priority
of delayed aircraft. In combination with PBS, safe interval path planning solver, SIPP, is worth
considering due to its computational efficiency, optimality and completeness. In addition to path
finding, SIPP has also been combined with path tracking or following algorithms for motion planning
or adapted to deal with agents with different shapes and sizes. Thus, combining SIPP with PBS and
local level motion planning approaches to find trajectories by considering the speed profiles and other
kino-dynamic constraints is a promising approach for dealing with path and motion planning problems
in ASTAIR. The multi-agent safe motion planner, S2M, which combines mixed integer programming
with priority-based search is also worth considering due to its scalability and some of its procedures
could be integrated into the path and motion planning solutions of ASTAIR. Apart from these, the
recent trend of combining path planning with task allocation or simultaneous target assignment and
sequencing fits well to the scope of ASTAIR, where finding a tug allocation solution or dynamic
assignment of tugs to aircraft while handling the path and motion planning at the same time is among
the main interests.
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7 List of acronyms

The following table reports the acronyms used in this deliverable.

Term Definition

A* A - star

AAC All Agent Costs

AA-SIPP Any Angle Safe Interval Path Planning

AA-SIPP(m) Any Angle Safe Interval Path Planning (Multi-agent)

AAt-SIPP Any Angle Safe Interval Path Planning with Turn-in-place (rotation)
AEON Advanced Engine Off Navigation

AGV Automated Guided Vehicle

Al Artificial Intelligence

ARA* Anytime Repairing A*

ASIPP Any Time Safe Interval Path Planning

ASP answer set programming

ASPN Airport Surface Petri Nets

ASTAIR Auto Steer Taxi at Airport

ATCO Air traffic Controller

ATM Air Traffic Management

AUCI Al Usage Continuance Intention

BCBS Bounded Conflict Based Search

BIBOX Reduction Based Solver (Reduction to Pebble Motion)

CA* Cooperative A*

CBM Conflict Based Min Cost Flow

CBS Conflict Based Search

CBS-MP Conflict Based Search for Motion Planning with Continuous State Spaces
CBSS Conflict Based Steiner Search

CBS-TA Conflict Based Search with Target Assignment

CBS-TA-MLA Conflict-Based Search with Task Assignment with Multi-Label A*
CBSw/P Conflict-Based Search with Priority Based Search

CCBS Continuous Conflict-Based Search

CNN Convolutional Neural Network
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CRF Conditional Random Field
cscw Computer Supported Collaborative Work
CT Conflict Tree
CTPN Colored Timed Petri nets
CUG Collision-free Unit-distance Graph
DKE Dunning-Kruger Effect
DL Deep Learning
DNN Deep Neural Networks
DPS Dynamic Potential Search
DWA Translational and Rotational Velocity Selection Algorithm
EASA European Aviation Safety Agency
ECBS Enhanced Conflict Based Search
ECBS-CT Enhanced Conflict Based Search for Motion Planning with State Lattice Representation
ECBS-MP Enhanced Conflict Based Search for Motion Planning
ECBS-TA-MLA Enhanced Conflict Based Search with Task Assignment with Multi-Label A*
ETV Electric Towing Vehicle
FMEA Failure Mode and Effects Analysis
FSIPP Focal Safe Interval Path Planning
GCBS Greedy Conflict Based Search
GH Ground Handling
GSE Ground Support Equipment
GSIPP Generalized Safe Interval Path Planning
HAT Human Automation Teaming
HCA* Hierarchical Cooperative A*
HCBS Hamiltonian Conflict Based Search
HCI Human Computer Interaction
HMI Human Machine Interface
ICBS Improved Conflict Based Search
ICT Increasing Cost Tree
ICTS Increasing Cost Tree Search
10T Internet Of Things
IPA Intelligent Personal Assistants
ITA-CBS Incremental Target Assignment Conflict Based Search
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k-QPPTW k-Quickest Path Problem with Time Windows
LA-MAPF Multi Agent Path Finding for Large Agents
LIDAR Light Detection and Ranging
LLM Large Language Model
LP Linear Programming
LRA* Local Repair A*
LSTM Long Short Term Memory
MA-CBS Meta Agent Conflict Based Search
MA-ECBS Meta Agent Enhanced Conflict Based Search
MAMP Multi Agent Motion Planning
MAPF Multi Agent Path Finding
MAPF/C+POST Multirobot Trajectory Planning with Continuous Refinement for Path Smoothing
MAPS-X Multi Agent Plan Segmenting - X
MC-CBS Multi Constraint Conflict Based Search
MC-CBS-MS Multi Constraint Conflict Based Search with Mutex-based Symmetry-breaking
MCTS Monte-Carlo tree search
MG-MAPF Multi Goal Multi Agent Path Finding
MG-TAPF Multi Goal Task Assignment and Path Finding
MILP Mixed Integer Linear Programming
ML Machine Learning
MLA Multi-Label A*
mMAPF Multi Modal Multi Agent Path Finding
MPC Model Predictive Control
MR Merge & Restart
MRARRT RRT based Motion Planning Technique
MS* Exact Algorithm based on MAPF and mTSP
MSVM Multi-class Support Vector Machine
mTSP Multiple Travelling Salesman Problem
MXP Milan Malpensa Airport
NECBS Nested Enhanced Conflict Based Search
NN Neural Network
NP Non-deterministic Polynomial
PAIA Immune Inspired Multi Objective Optimization Algorithm
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PBS Priority based search
PFM Potential Field Method
PPCP Probabilistic Planning with Clear Preferences
PR Pipe Routing
P&R-LA Push and Rotate for Large Agents
PRM Probabilistic Roadmap
PSO Particle Swarm Optimization
PWL Piece-wise Linear
RAV Reachable Avoidance Velocity
RHGA Receding Horizon Genetic Algorithm
RRT Rapidly-exploring Random Trees
SAT Boolean Satisfiability Problem
SCIPP Safe Interval Path Planning with Focal Search
SIPP Safe Interval Path Planning
SMT Satisfiability Modulo Theory
SMT-HCBS Satisfiability Modulo Theory — Hamiltonian Conflict Based Search
SOS Swapper Optimization Suite
STL Signal Temporal Logic
S2M2 Multi-agent Safe Motion Planner
STPA System Theoretic Process Analysis
SVM Support Vector Machine
TAP Transportes Aéreos Portugueses
TAPF Target Assignment and Path Finding
TCBS Task Conflict Based Search
Theta* Theta - star
TL Temporal Logic
TSN Time Space Network
u Potential Field Function
UAV Unmanned Aerial Vehicle
VOM Velocity Obstacle Method
WHCA* Windowed Hierarchical Cooperative A*
WSIPP Weighted Safe Interval Path Planning
WSIPPy Weighted Safe Interval Path Planning with Duplicate States
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WSIPP, Weighted Safe Interval Path Planning with Re-expansions
XAl Explainable Artificial Intelligence
XAIP Explainable Artificial Intelligence Planning
YUL Pierre Elliott Trudeau International Airport
ZRH Zurich Airport
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