
 

 

 

 

Abstract  

This deliverable discusses the state-of-the-art related to interaction between human actors and 
automated systems for the management of ground operations in potentially highly automated 
airports. Furthermore, in this deliverable, existing support algorithms and tools for fleet management 
and path planning will be reviewed, which could be used to enable collaboration between human 
actors and support automation. The literature review serves as a starting point for the activities in WP2 
(Support algorithms) and WP3 (Automation Supervision & Control HMI design and development). 
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Executive summary 

The goal of the ASTAIR project is to design a seamless partnership between Human and Artificial 
Intelligence (AI) to manage and perform engine-off and conventional airport surface movement 
operations at major European airports. ASTAIR original approach to automation is to consider an 
integrated airport system instead of many separate sub-systems, analyse the level of autonomy an AI 
system could take on tasks and to make the automation controllable by humans at different levels. 

With the introduction of high-level automation for airport surface movement operations, the role of 
operators and airport operation procedures will significantly change. The key to optimize the overall 
performance of the collaboration between humans and AI is to adapt intelligent systems to the 
operators’ modus operandi. This will ensure logical consistency across manual and automated control 
and reduce the cognitive distance between levels of automation by mapping system functions to goals 
and mental model of operators. In ASTAIR, we will propose interactive tools and adaptative AI 
algorithms that take advantage of operators’ expertise for controlling and engaging with the 
automation at diverse levels. 

As a first step towards developing the ASTAIR solutions, this report identifies the state-of-the-art on 
airport ground operations, Human-AI Interaction, and path and motion planning and fleet 
management algorithms. 

Related work on airport ground operations sets the operational context and identifies important 
procedural elements of conventional and engine-off taxiing, which will be elaborated further in the 
project’s concept of operation and use cases. 

Related work focusing on Human-AI Interaction has been surveyed. The EASA Artificial Intelligence 
Roadmap 2.0 Report is first described to define levels of automations and identified research gaps for 
such levels of automation. We then describe related work covering Human-Automation Teaming 
(HAT), studies of human behaviors when using automated systems, mixed-initiative interaction and AI-
Explainability (XAI) that are topics related to the design and evaluation of highly automated interactive 
systems. From this state of the art, methods and design guidelines that should be applicable during 
the project are identified, to understand users’ needs and to design new technologies including AI. 

Fleet management is crucial for airports to prevent congestion. We have reviewed the literature on 
fleet management for aircraft, tug fleet and ground support equipment. The fleet management for 
aircraft mainly focuses on assignment of aircraft fleet to flight legs. Tug fleet management is related 
to allocation of tugs or Taxibots to aircraft so that taxiing operations can be handled more fluently. 
This involves not only the allocation of tugs or Taxibots but also the planning their conflict-free paths. 

In ASTAIR, the path and motion planning algorithms are intended to be used for controlling the 
movement of tugs or taxi-bots and aircraft on airport surface layouts. To this end, the literature survey 
is presented in this document related to existing path and motion planning algorithms, including their 
comparison with respect to requirements relevant for ASTAIR. 
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Furthermore, we reviewed literature on methods combining path and motion planning with target or 
task assignment, which usually have better computational properties in comparison with when these 
problems are considered separately.   

Based on this state-of-the-art, several research directions have been identified to be explored during 
the ASTAIR project that integrate the different aspects discussed in this document.  

Regarding the Human-AI Interaction in ASTAIR, we will be targeting high levels of automation (Levels 
2B and 3A according to the EASA’s classification). Previous work on how to design efficient interactions 
for such high levels of automation is scarce and often studied within very narrow and controlled 
settings.  To address this challenge, the following research directions will be considered in ASTAIR: 

• Clearly defining the roles and tasks allocation between AI and Humans. 

• Identifying shared goals, constraints and representations to enable an efficient partnership 
between humans and AI with adequate situation awareness and control. 

• Investigating interactions that enable fluid transition from different levels of automation 
according to user preferences or AI performances. 

Based on the comparison of solvers for path and motion planning, it is concluded that compared to 
optimal solvers, bounded sub-optimal solvers perform better in terms of computational time, while 
slightly decreasing the solution quality. On the other hand, unbounded suboptimal solvers generate 
solutions much faster than optimal and sub-optimal solvers, however the completeness of the 
obtained solutions are not always guaranteed even though a feasible solution exists. Thus, the trade-
offs between solution quality, completeness and computational complexity should be considered 
while selecting the best solver.  
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1 Introduction 

1.1 Purpose of this document 

This document provides background information and state-of-the-art on solution approaches related 
to the electrification and automation of airport surface movement operations, human-machine 
interactions in automated systems, management of the vehicle fleet, path and motion planning for 
automated vehicles, and explainable AI solutions to improve the understanding of the human-in-the-
loop.  

Another goal is to determine the research directions based on comprehensive evaluation and 
comparison of existing approaches and the requirements of the cases that will be dealt with in ASTAIR.  

In particular, we want this document to feed the design of novel interactions for supervising and 
controlling a highly automated airport that will be carried out in WP3. Furthermore, based on a 
comprehensive review of existing path and motion planning and task assignment approaches, and a 
set of ASTAIR-related requirements, we identified candidate solution techniques to be further 
elaborated in WP2. 

The ASTAIR solution is aimed to be capable of controlling the movements of airplanes and tugs 
(Taxibots and conventional) on a platform between parking stands and runway entries, between 
parking aprons, and managing the fleet of available tractors on service roads. To achieve this, AI 
solutions including the AEON based multi-agent routing solution that compute 4D trajectories with 
speed profiles for aircraft and tugs, fleet management solution that assigns Taxibots to aircraft taking 
the contract-based constraints and availability of Taxibots into consideration, and relevant interactive 
tools for operators. Regarding these concepts, this document presents the state-of-the-art solutions 
including fleet management and path and motion planning for airports and other environments, 
human-machine interactions, and explainable AI. 

 

1.2 Scope 

In this document, we review 3 interrelated domains relevant to the ASTAIR project, which are mainly 
the (i) airport surface operations regarding conventional and engine off taxiing, (ii) Human-AI 
interactions, (iii) fleet assignment and path and motion algorithms for airport surface movement 
operations 

A review of airport ground movement operations defines the main context that is considered within 
the project including conventional and engine off taxiing techniques and constraints. Some of the 
described aspects of airport surface movement operations will be further elaborated in the ASTAIR 
concept of operation and use cases considered in the project.  

The review of the state-of-the-art regarding Human-AI interactions includes Human-Automation 
Teaming, controlling automated systems, mixed-initiatives with high automation levels, and 
understanding AI behaviors. Introducing higher levels of automation in airport operation will likely 
introduce changes for the involved persons with redefined roles and tasks among the stakeholders 
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with some possibly transferred to AI. However, AI alone will not be able to handle the complex and 
constantly evolving situation involved in airport operations. Humans will need not only to supervise AI 
systems but also likely to work with AI systems to optimize their performances or to cope with failures. 
This results in the need to study related work covering Human-Automation Teaming (HAT), studies of 
human behaviors when using automated systems, mixed-initiative interaction and AI-Explainability 
(XAI) that topics related to the design and evaluation of highly automated interactive systems. From 
this state of the art, methods and design guidelines that should be applicable during the project are 
identified, to understand users’ needs and to design new technologies including AI. 

An overview of existing research on fleet management for the assignment of aircraft fleet to flight legs, 
allocation of tug fleet to aircraft, and assignment and routing of ground handling vehicles to complete 
ground handling tasks are presented. To reduce congestion at airports flight scheduling and aircraft 
fleet management are critical and a considerable amount of previous research is relevant to this area. 
To reduce emissions and improve the capacity usage, electrification and automation of taxiing and 
ground handling operations have also gained importance in recent years. Thus, the recent literature 
includes the studies focusing on tug fleet management for electric taxiing and the fleet management 
regarding ground support equipment. 

Algorithms for path and motion planning are explained focusing on the solution approaches applied 
for airport surface movement on airport surface area and the state-of-the-art path and motion 
planning algorithms that are used in various environments. Furthermore, the recent research 
directions that combine path planning with target assignment are summarized. A comprehensive 
evaluation and comparison of the state-of-the-art solvers regarding the computational complexity and 
solution quality is presented. Also, the explainable AI frameworks proposed for path and motion 
planning are briefly mentioned.  

1.3 Structure of the document 

The remainder of this deliverable is organized as follows. 

In Section 2, to provide the context, the concepts of both conventional and engine-off airport surface 
movement operations are introduced. 

In Section 3, related work focusing on Human-AI interaction is described. Concepts and directions from 
the EASA Artificial Intelligence Roadmap 2.0 Report as well as several research fields are presented. 
Several guidelines and methodologies and research directions to be investigated within the ASTAIR 
project are identified. 

In Section 4, the state-of-the-art solution methodologies for fleet management and path and motion 
planning are presented. This section is split into two subsections. Fleet management is described in 
Section 4.1 and the content related to path and motion planning algorithms is presented in Section 
4.2. 

Section 4.1 includes three subsections. Existing research on fleet management for the assignment of 
aircraft fleet to flight legs is presented in Section 4.1.1. The literature on allocation of tug fleet to 
aircraft is given in Section 4.1.2. Recent studies on management of ground support equipment fleet 
are summarized in Section 4.1.3. 
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In Section 4.2, algorithms for path and motion planning are explained in four subsections. Section 4.2.1 
focus path and motion planning algorithms for airport surface movement, Section 4.2.2 explains the 
state-of-the-art path and motion planning algorithms that are used in various environments, Section 
4.2.3 summarizes the recent research directions heading towards the solution of path planning 
combined with target assignment, Section 4.2.4 presents a comparison of solvers in terms of 
complexity and solution quality, and Section 4.2.5 provides with a brief summary of explainable AI 
methods for path and motion planning. 

Lastly, in Section 5, conclusions and research directions are provided.  
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2 Airport ground movement operations  

In this section, both conventional and engine-off airport ground movement operations are considered, 
which are within the scope of ASTAIR. Furthermore, several SESAR projects relevant to ASTAIR are 
reviewed. 

2.1 Conventional aircraft taxiing 

During the landing and take-off (LTO) cycle, on average the aircraft spend most of the time on the 
ground, as they have to manoeuvre different aerodrome layouts to take-off or land. Conventional 
departure procedures include pushback (with engines-off) from the parking stand and taxi (with 
engines-on) till they lift-off from the runway, while the arrivals follow an engine-on schedule till the 
parking stand (see Figure 1). 

 

Figure 1: Landing and take-off cycle. 

Conventional operating methods on ground involve keeping main engines-on or use single engine 
technique to taxi aircraft from gate to runway or vice versa as shown in Figure 2. 
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Figure 2: Current operating method – DET and SET 

The Dual Engine Taxi (DET) is normally adopted during both Taxi-Out (EXOT) and Taxi-In (EXIT) phases 
of aircraft ground operations. Single Engine Taxi (SET) method is usually used by airlines during the EXIT 
phase more than the EXOT phase, to save fuel during longer taxiing times at the airports. It can also be 
seen that these methods add procedures/personnel on the ground that eventually increase the 
turnaround time for the AO. Figure 2 also shows that engines are kept on right from the aircraft off-
block time till the on-block time, even though there are stop and go situations that arise, like de-icing 
of an aircraft or airside delays causing aircrafts to hold for longer duration.  

In Figure 2, the double red polygon symbols indicate both engines are ON while the red and green 
polygon symbols indicate one engine is OFF and the other one is ON. The other parameters that are 
compared for the conventional technique with new AEON solution(s) are fuel saving, noise, CO2 
emission and EXOT or EXIT times. Also, the actors and stakeholders who are involved at various stages 
of operation, from pushback on apron, taxiing in the manoeuvring area to take-off on the runway, are 
illustrated. 

In the following we review the main ground phases of the flight. 

The pushback is the movement of an aircraft from a nose-in parking stand using the power of a 
specialized ground vehicle attached to or supporting the nose landing gear. It is commonly the second 
part of a taxi in push out procedure at airport terminal gates and will be necessary to depart from all 
except self-manoeuvring parking stands, unless the aircraft type is capable of power back and local 
procedures allow this. Once the Pilot in Command (PIC), has given the confirmation of ‘brakes released’ 
to the person in charge of the ground crew who are to carry out the “Pushback”, the ground crew 
becomes temporarily responsible for the safe manoeuvring of the aircraft in accordance with either 
promulgated standard procedures or as specifically agreed beforehand.  
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The traditional pushback method involves attaching a ground vehicle to the aircraft nose landing gear 
by means of a towbar. An alternative method, which is more common for pushback, is the use of a 
specialized vehicle called a ‘towbarless tug’. This tug positions two low level ‘arms’ either side of the 
aircraft nose landing gear and these are used to engage with the aircraft gear leg and raise it slightly 
off the ground. These specialized vehicles can also be used to tow aircraft forward.  

Effective communication between the person in charge in the flight deck and the person in charge of 
the ground crew, and between the members of the ground crew team is critical. If the aircraft is pushed 
back prior to the intended flight and the person in charge of the flight deck is therefore an aircraft 
commander, the procedures of the aircraft operator may require that the designated pilot flying, who 
may be the co-pilot, should oversee the pushback and in this case all communications with the ground 
crew will be undertaken by that person rather than necessarily by the aircraft commander.  

Taxi-out (EXOT) is defined by the time taken by the aircraft to move from a gate or a parking stand to 
a runway take-off point. 

After being cleared by the ground crew and with the warmed-up engines, the pilot in control is able to 
taxi according to the instructions/clearances received from the ground controller (or ATC) to 
designated hold points near the proposed take-off runway or de-icing pads or along with the taxiways 
etc. The choice of speed to drive through taxiways would depend largely on the human factor, airport 
speed limitations and airline internal policies. It is often seen at many airports that where speed 
limitations are not set the pilots operate the aircraft at a highest speed in order to achieve the allotted 
Calculated Take-Off Time (CTOT).   

Normally, based on the respective airport operating plan, the routing of the departing aircraft are 
planned in a way to avoid intersection conflicts, jet blasts or any other safety concerns and aid in 
quicker and seamless exits.  

The Flight Crew and the ATCO/Ground Controller are in constant contact to exchange any real time 
updates and guidance. Today, most ANSP at airports update real time data through D-ATIS (Datalink 
Automatic Terminal Information Service) that enhances the safety for the Flight Crew (FC) and reduces 
interaction time with the ATCOs.  

Once taxied to the designated hold point close to the runway, the Flight Crew prepares the aircraft for 
take-off after taking into consideration the entire pre-departure checklist. On FC’s confirmation for 
aircraft readiness to take-off, necessary communications are exchanged between FC and ATCo, who in 
turn provide line-up and take-off clearances to the FC. This way a smooth transition for take-off is 
achieved. 

Taxi-in (EXIT) is defined by the time taken by the aircraft to move from the runway touch down point 
to a parking stand or a gate.  

Once the pilot in command touches down the aircraft on the runway and exits to a taxiway, the Flight 
Crew is instructed by the ATCO to contact the Ground Crew to be guided to the parking stand. Upon 
entering the taxiway, the pilot in command either operates all engines or taxi using single engine.  

Single engine taxiing (SET) procedures are nowadays more frequently adopted by the airlines upon 
arrivals rather than departures. The Flight Crew maximises the speed while taxiing (both during EXIT 
and EXOT phase) in order to reduce the round-trip time on ground. The aircraft is guided into the apron 
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stands using Visual Docking Guidance System (VDGS) or hand signals by trained marshallers. After 
stopping at the designated nose wheel position with chocks on, brake released and upon engines being 
switched off and set into the cooling mode and once confirmed by the pilot in control, the Ground Staff 
begins the ground handling operation.  

  

2.2 Engine-off taxiing 

Among the solutions for engine-off taxiing developed in the past years, two are particularly useful to 
be applied in the airport environment, which are currently considered by major airports: 

• Non-autonomous taxiing techniques based on Dispatch Towing Vehicle Electric Taxi System 
(DTVETS) (see Figure 3) 

• Autonomous taxiing techniques, referring to Nose & Main Landing Gear Electric Taxi System 
(NLGETS & MLGETS) and categorised under Landing Gear Electric Taxi System (LGETS) 

 
Both these solutions are reviewed in this section. 

Dispatch Towing Vehicle Electric Taxi System (DTVETS) 

The DTVETS System is a dispatch towing system that allows aircraft to taxi for departure to the runway 
end with engines off. It may also be used for arrival aircraft with some procedure change after the 
aircraft has left the rapid exit track. It was specially designed to tow aircraft safely, efficiently and 
without causing fatigue damage to the nose landing gear and does not have speed or distance 
limitations of normal tow trucks.  

During The EXOT phase of DTVETS-based taxiing the pushback is performed in the same way as normal 
operations, however DTVETS is always in line with the aircraft. When the pushback is completed, 
control is handed over to the pilot. Pilot control of the DTVETS is performed in the same way as normal 
taxi operations, steering via tiller and nose gear and braking via the aircraft brakes. No thrust needs to 
be applied, as DTVETS operates like a car with automatic transmission, accelerating when brakes are 
not applied. The DTVETS tug also functions as an aircraft push-back tug.  
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Figure 3: CONOPS diagram flow for DTVETS 

Most aircraft require no modifications to use of DTVETS. As illustrated in Figure 3, once the DTVETS is 
attached at the “coupling point” on the apron and cleared for “delivery” by the Ground Controller, the 
DTVETS will push the aircraft back from the gate/stand in the same manner as it is done today under 
the direct responsibility of the trained DTVETS driver. Once pushback is completed, the control would 
then be transferred/switched to the pilot in command and the flight crew can begin DTV taxi 
movement (DTVETS ON) till the uncoupling point/area where the aircraft engines can be started while 
being connected to DTVETS, closer to the assigned runway end. Once decoupled and the control 
switches to the DTVETS driver, the tug is driven back in the manoeuvring areas of the airport to the 
next operation.  

On arrival, the aircraft can use the DTVETS technology as shown in Figure 3. The assigned DTVETS tug 
will be stationed at an area close to the runway/taxiway designated point and once the aircraft reaches 
the designated coupling point, the DTVETS driver would attach the tug to the aircraft nose wheel and 
transfer or switch control to the flight crew for DTV taxi movement. During this phase of coupling the 
pilot can decide to switch off the engines and allow them to cool down during the DTVETS coupling 
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and control handover process is taking place. Once the DTVETS is attached, the flight crew can steer 
the aircraft to the gate / parking stand with engines off. Upon reaching the parking stand the pilot can 
decouple and transfer back the control of the tug to the DTVETS driver, who in turn can position the 
tug for its next assignment. 

The Landing Gear Electric Taxi System (LGETS) 

The Landing Gear Electric Taxi System (LGETS) is an on-board innovative in-wheel electric taxi system 
with electric motors integrated in the nose wheel – termed as Nose landing gear electric taxi system 
(NLGETS) or in the main landing gear – termed as Main landing gear electric taxi system (MLGETS). It 
enables pilot-controlled forward and reverse movement in gate and terminal areas without tractors or 
jet engines. The technology also comes with optional camera/sensor systems that will provide pilots 
with improved situational awareness for all manoeuvres. The LGETS is designed to reserve the use of 
the aircraft engines for take-off and flight. It practically eliminates engine usage during ground 
movement except during engine start-up, warm-up and taxi onto the runway. 

With LGETS, the pilot in control is responsible for the pushback. The pilot control of the LGETS is 
performed in the same way as normal taxi operations, steering via tiller and nose gear and braking via 
the aircraft brakes till the aircraft reaches the designated cut – off point. As per the airside operational 
constraints, the pilot in control can decide to start the engines during the taxiing phase of the aircraft 
or after reaching the designated cut off point. 

LGETS-, DTVETS-based, as well as single engine taxi can be used independently or in combination, as 
was explored in SESAR AEON project. 

2.3 Related SESAR projects 

Some SESAR project dealing with problematics close to ASTAIR’s scope have been identified. Total 
Airport Management is terminated but ADP, who was coordinating the project, is a partner of ASTAIR 
consortium. CODA and TRUSTY are funded on the same program as ASTAIR and are on-going, ENAC 
participates in both of them. 

2.3.1 TAM - Total Airport Management 

The Total Airport Management project (PJ04 TAM, grant 733121) is interesting for ASTAIR 
development at several levels. First because centralization and automation of ground movement 
promoted in ASTAIR follows the same philosophy as PJ04 TAM, but also because PJ04 looked into the 
usage of AI for routing. 

In the context of the PJ04-W2-Solution 29.3 Environmental performance management, the Level 1AI 
has been experimented to help decision making in order to manage environmental performance. 

Two use cases have been considered: 

• ENV friendly time slot for conducting runways inspections. 

• Fuel-savings taxing routes (studies of taxiing speed to propose alternative taxiing routes with 
recommended speeds profile for specific flights).  
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The developed models proposed to the operational solutions and decision-makers decided whether 
the proposed solution will be applied. This corresponds to the level 1B (in reference to EASA level of 
automation). ASTAIR will go further into looking for conflict-free routing.  

2.3.2 CODA – Controller adaptative Digital Assistant 

The CODA project aims at developing a system in which hybrid human-machine teams collaboratively 
perform tasks. To do so, the system put together state of art from different fields: i) Prediction models 
to foresee future situations and have the system know which activities will be carried out by the 
operators and their impact on the same human performance; ii) Neurophysiological assessment of 
mental states to enable the system to know operators’ real current level of workload, attention, stress, 
fatigue, and vigilance by validating the predicted cognitive models and maximizing the effectiveness 
of the interaction between the human and the machine by developing an HMPE; iii) AI-based adaptable 
and explainable systems, to have the system act to prevent future performance or safety issues. 
Specifically, the project will show how a system could adapt to specific situations and react accordingly 
by using advanced adaptable and adaptive automation principles that will dynamically guide the 
allocation of tasks. The system will assess the operator's cognitive status, use current traffic data to 
foresee the future tasks that the operator will need to perform in the future, and calculate the impact 
of those tasks in terms of cognitive complexity. With this information, the system will predict the future 
mental state of the operator and will act accordingly by developing an adaptive automation strategy. 
For example, imagine an ATCO managing a complex traffic situation and experiencing a medium 
workload. The system is aware of this (thanks to the neurophysiological assessment). It predicts that 
the additional upcoming tasks the ATCO will need to take care of will increase their workload, 
exceeding the maximum an operator can handle. To avoid this, the system decides how to act, 
following an adaptation strategy: it may, for instance, increment the level of automation, enable 
additional AI-based tools, or request a sector splitting. 

ASTAIR and CODA do not share the same approach on Human Automation Teaming, especially in the 
use on neurophysiological measures, nevertheless some questions on delegation strategies may be 
addressed similarly. 

 

2.3.3 TRUSTY – TRUStworthy inTellingent sYstem for remote digital tower 

Remote digital towers (RDT) are taking place around the world to ensure efficiency and safety. TRUSTY 
harnesses the power of artificial intelligence (AI) to enhance resilience, capacity, and efficiency in 
making significant advancements in the deployment of digital towers. The overall goal of TRUSTY is to 
provide adaptation in the level of transparency and explanation to enhance the trustworthiness of AI-
powered decisions in the context of RDT. Through the video transmission data from RDT, TRUSTY 
considers the following major tasks:  

1. Taxiway monitoring (i.e., bird hazard, presence of a drone, autonomous vehicle monitoring, 
human intrusion, etc.). 

2. Runway monitoring (approach and landing) misalignment warning and the corresponding 
explanation. 
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To deliver trustworthiness in an AI-powered intelligent system several approaches are considered: 

• ‘Self-explainable and Self-learning’ system for critical decision-making 

• ‘Transparent ML’ models incorporating interpretability, fairness, and accountability 

• ‘Interactive data visualization and HMI dashboard’ for smart and efficient decision support 

• ‘Adaptive level of explanation’ regarding the user's cognitive state. 

• “Human-centric AI” enhances the trustworthiness of AI-powered systems. 

• “Human-AI teaming” to consider users’ feedback to insure some computation flexibility and 
the users’ acceptability. 

To achieve the goal, TRUSTY will rely on the SotA developments in interactive data visualization, and 
user-centric explanation and on recent technological improvements in accuracy, robustness, 
interpretability, fairness, and accountability. We will apply information visualization techniques like 
visual analytics, data-driven storytelling, and immersive analytics in human-machine interactions 
(HMI). Thus, this project is at the crossroad of trustworthy AI, multi-model machine learning, active 
learning, and UX for human and AI model interaction. 

TRUSTY and ASTAIR will most probably share some problematics concerning human centric AI and 
humain AI teaming, thus staying closely in touch will be fruitful for the project. 
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3 State of the art on Human-AI Interaction 

In this section, we describe the state-of-the-art regarding interactions in mixed initiatives automated 
systems. We start by reviewing the EASA’s artificial Intelligence Roadmap 2.0 report to clarify levels 
of automations and specific challenges identified for the ASTAIR project. We then define and discuss 
Human-Automation Teaming research. We then articulate related work relevant for understanding 
and controlling highly automated systems among several dimensions including studies of human 
behaviors when using automated systems, mixed-initiative interaction and AI-Explainability that we 
will build upon to design shared representations between human and AI to enable efficient 
collaboration. We conclude with a review of methodologies adequate for designing highly automated 
systems. 

3.1 EASA – Artificial Intelligence Roadmap 2.0 

The ARTIFICIAL INTELLIGENCE ROADMAP 2.0 report [1] from EASA defines three levels of Automation 
according to the roles of Humans and AI. Figure 4 describes the roles of Humans and AI for these three 
levels.  
 

 

Figure 4: EASA levels of automation defined in [1]. 

The levels 2A and 2B are different because of the two terms cooperation and collaboration that are 
defined as follows: 
 
Cooperation is a process in which the AI-based system works to help the end user accomplish their own 
objective and goal. The AI-based system will work according to a predefined task allocation pattern 
with informative feedback on the decision and/or action implementation. Cooperation does not imply 
a shared vision between the end user and the AI-based system. Communication is not a paramount 
capability for cooperation. 

Collaboration is a process in which the human and the AI-based system work together and jointly to 
achieve a common goal (or work individually on a defined goal) and solve a problem through co-
constructive approach. Collaboration implies the capability to share situational awareness and to 
readjust strategies and task allocation in real time. Communication is paramount to share valuable 
information needed to achieve the goal, to share ideas and expectations. 
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For the first two levels (1 and 2), EASA also proposed several guidelines regarding human-factors 
among several dimensions including AI operational explainability, Human-AI teaming, Modality of 
interaction and style of interface, Error management, Workload management, Failure management 
and alerting systems, Integration or Customization of Human-AI interface [2].  
 
The report also specifies that: “For Level 1A, existing guidelines and requirements for interface design 
should be used. For Level 1B, an initial set of design principles are proposed for the concept of 
operational explainability. For Level 2A and Level 2B, new objectives have been developed and others 
from existing human factors certification requirements and associated guidance have been adapted to 
account for the specific end-user needs linked to the introduction of AI-based systems.” 
 
The report from EASA also provides an impact assessment of different levels of automations on end-
users regarding Human-AI Interaction, Explainability and Guidance. Figure 5 and Figure 6 summarize 
the impact assessment. 

 
Figure 5: First part of the table from the EASA report [2] presenting the anticipated human factors guidance 
modulation. 
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Figure 6 : Second part of the table from the EASA report [2] presenting the anticipated human factors guidance 
modulation. 

The impact of levels 2B and 3A are important [2]. For level 2B, the impact on Human AI Interaction 
will require the “Development of design criteria for novel modality of interaction and style of 
interface as well as criteria for Human-Automation Teaming, and criteria to define roles and tasks 
allocation at design level.” For level 3A there are “expected change in the job design with evolution in 
HAII to support the end user being in a position to override the decision and action of the AI-based 
system when needed.”  
 
In summary, based on the data from the EASA report [2] we identified several research directions for 
the ASTAIR project. We will focus mostly on 2B and 3A automation levels according to this classification 
since the need for additional work is explicitly identified. For such levels of automation, we will need 
to investigate the roles and tasks allocation between AI and Humans as well as to identify relevant 
criteria to validate such allocation. We will also need to formulate guidelines that will serve not only 
as themes or concerns for designing for high level of automation (2B-3A) but also as practical tools that 
can be leveraged by designers of such systems. In particular, providing guidelines and 
recommendations on how to design interactions for overriding AI decisions and how to collaborate 
effectively with the AI needs to be explored in the project. 

3.2 Human-Automation Teaming  

Human Automating Teaming (HAT) can be defined as a group of human and autonomous agents, 
performing activities and achieving outcomes together towards a common goal [3]. In particular in 
HAT, the autonomous agents work alongside humans performing essential tasks and teamwork 



D1.1 STATE OF THE ART 
Edition 01.01 

	 	

	
 

Page | 23 
© –2023– SESAR 3 JU 

  
 

functions that a human would [4]. They now perform complex tasks with no or little intervention of 
humans, which require to engage with other teammates to achieve team objectives [5].   

Humans and machines have different capabilities. While autonomous agents are able to manage 
workload better, human operators can adapt to new situations better [6], thanks to the way human 
agents communicate to each other. For instance, machines are usually better than humans at solving 
problems involving a high number of variables but are almost unable to take into account new variables 
that were unknown during their design [7]. In addition, most of the safety-critical automated systems 
still rely on humans in a range of non-nominal or critical situations [8]. The unpredictable nature of 
airport ground traffic and operation makes full automation difficult, hence requiring human knowledge 
to assess situations and specify relevant strategies to the algorithm.  

Artificial intelligence agents are expected to perform in certain ways before they can be considered as 
teammates. In particular, research has found that humans expect AI teammates to have at least 
instrumental skills for completing collaborative tasks, shared understanding of human teammates, 
sophisticated communication abilities for information exchange and human-like performance [9]. 
Furthermore, humans expect agents to perform like humans while collaborating with them to 
complete tasks [9]. In other words, humans are more likely to collaborate and coordinate effectively 
with high-performance AI, which behaves like humans, which can be directed and whose actions can 
be anticipated.  

Although designing human substitutes is unrealistic, novel research can build upon computer-
supported cooperative work (CSCW) research to improve interactions with AI by identifying where AI 
can outperform human performance for relevant roles and tasks allocations and facilitate mutual 
understanding between AIs and humans. We have extensively covered CSCW fundamentals in AEON 
deliverable 1.3  and we redirect readers to the document for an understanding and an overview of 
CSCW [10]. We focus the remainder of the section on the relevant research that will support the design 
of optimal collaborations between human and AI teammates in ASTAIR. 

3.3 Understanding and controlling automated systems 

In this section, we describe previous work related to the design of Human-AI interaction. We start by 
reviewing work from organizational psychology and Human Computer Interaction (HCI) related to the 
design of interactive systems able to facilitate collaboration and delegation of tasks between human 
and AI. We also cover interaction styles and existing approaches for mixed initiative systems as well as 
present recent work in AI explainability related to automated airports. 

3.3.1 Delegation aspects from organizational psychology 

While there is little agreement on exactly what constitutes an intelligent agent, many definitions 
embody a user-interface model that differs from the traditional one where users perform tasks with 
the help of computer-based “tools”. In contrast, the “delegation” model associated with agents is 
based on entrusting tasks to an autonomous, sometimes anthropomorphized system, whose 
performance is monitored and evaluated. This change in user-interface model is a dramatic one since 
delegation can be a difficult and often-avoided behavior in humans. Agent-interface designs need to 
overcome well-established drawbacks in delegation. For this purpose, designers should find the 
management sciences and organizational psychology literatures to be as relevant as that of traditional 
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human factors. This section describes issues regarding task delegation between humans as they 
pertain to the design of intelligent-agent–user interfaces [11].  

Nearly all definitions of “agent” contain some combination of the following traits: Ability to work 
asynchronously and autonomously, Ability to change behavior according to accumulated knowledge, 
Ability to take initiative, Inferential capability (i.e. capable of abstracting), Prior knowledge of general 
goals and preferred methods, Natural language, Personality. 

“Delegation” is the process of passing on responsibility for a task to a subordinate by giving him/her 
authority to act on your behalf, but without giving up control, or ultimate accountability [12]. For many 
reasons, delegation is often an unnatural and taxing activity: Managers often feel that they can 
perform a task better than a subordinate; Managers often enjoy doing certain tasks even if it may be 
more efficient to delegate them; For urgent tasks, needing to be done immediately, managers often 
believe that explaining the task to a delegate will be a waste of time; Managers fear that the 
subordinate will fail at the task; not only may the task not be accomplished, but the subordinate may 
feel bad. 

For delegating to succeed, the following design guidelines should be followed [11]: 

• The benefits of delegation need to exceed the cost. Agents are more appropriate for some 
tasks than for others. Users must have the option of delegating vs. self-performing tasks. 

• Delegation requires sophisticated, interactive communication: Users should be encouraged to 
convey the intentions and goals of a task to the agent; Natural language interfaces can be used 
for tasks that are easy to describe.; For many complex task environments, interface dialogues 
could employ speech—act structure; Agents must be designed to indicate clearly when 
instructions are not understood; Anthropomorphizing agents with the use of facial displays 
and vocal intonation may be useful in conveying comprehension and lack of comprehension; 
For some tasks, it may be most efficient for the user to convey what is desired by 
demonstration. 

• Delegation requires trust: Build agents to be reliable and use them in stable environments; 
Create specialized agents capable of a small, circumscribed set of capabilities, and emphasize 
their expertise. Increase the observability of the agent’s behaviors; Provide the user with data 
about the predictability of the agent’s behaviors; Design the agent to evolve, with the user, 
through stages of trust; Train users to understand how the agent works; Use 
anthropomorphized agent interfaces. 

• Performance controls are key part of delegation: Designers need to emphasize sub-tasking, 
scheduling and deadlines; Users need to be able to solicit and receive status reports at any 
time; For some tasks, users need an independent way of checking on agents’ performance 
while the task is being carried out; Users need a way of evaluating agents’ performance in such 
a way that the agents’ subsequent performance will be improved or strengthened. 

• Delegation depends on personality and culture: Experience with delegation may make agent-
based interfaces easier to use; Managers who already are effective at delegating tasks to 
humans may prefer and excel at using intelligent agents, while ineffective delegators may be 
so with both human and computer-based delegates; Applications for international use need 
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to be designed with careful considerations for cultural differences in leadership and 
delegation. 

While these guidelines focus on human-to-human delegation, we will use these guidelines while 
designing interaction between human operators and AI within the ASTAIR project. 

 

3.3.2 Studies on human behavior with automation 

This section presents the latest results on various studies on human behavior with automation. Even 
if their application domains are unrelated to air traffic management and the subjects are not always 
experts of their domain, their results and design implications might prove useful for the ASTAIR project. 

3.3.2.1 Delegation with knowledge about AI 
When collaborating with artificial intelligence (AI), humans can often delegate tasks to leverage 
complementary AI competencies. However, humans may delegate inefficiently. Enabling humans with 
knowledge about AI can potentially improve inefficient AI delegation. A between-subjects experiment 
(two groups, n = 111) has examined how enabling humans with AI knowledge can improve AI 
delegation in human-AI collaboration [13]. The task consisted of classifying images. One group was 
informed of the capabilities of AI vs Humans at classifying (e.g. “Humans are superior with images 
which necessitate social intelligence or highly complex perception” or “AI is superior with images with 
distinctive patterns or objects”). The findings suggest that AI knowledge-enabled humans align their 
delegation decisions more closely with their assessment of how suitable a task is for humans or AI (i.e., 
task appraisal). Delegation decisions closely aligned with task appraisal increase task performance. 
However, AI knowledge lowers future intentions to use AI, suggesting that AI knowledge is not strictly 
positive for human-AI collaboration. 

The significance of human appraisal for AI delegation decisions indicates that we must consider human 
attributes in designing AI for human-AI collaboration. As a complement to the AI-attribute- focused 
principles, a new design principle might state, “Make clear what humans can do.” An AI could provide 
information on average (or even individualized) human performance to promote efficient delegation. 
On the other hand, AI might also state what humans cannot do. For example, it could make interacting 
humans aware of their biases (“Create awareness of human biases”). 

Besides including educational features in AI-based tools, practitioners must also invest in AI training 
and upskilling programs for humans that promote basic AI literacy, which might be difficult to learn 
while using an AI-based tool. 

The user’s intention to continue using AI is arguably one of the most critical metrics for HCI researchers 
and practitioners when designing AI for human-AI collaboration. A lack of human intention to use AI 
dooms human-AI collaboration from the outset. Information overload might be a potential reason for 
lowered AI usage continuance intention (AUCI) AUCI through AI knowledge and is worth exploring. HCI 
researchers need to better understand how to balance AI knowledge’s positive and negative effects, 
or which specific components of AI knowledge are decisive for the positive and negative effects of AI 
knowledge. 
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In summary AI knowledge-enabled humans align their delegation decisions more closely with their 
assessment of how suitable a task is for humans or AI.  

3.3.2.2 Human-machine interaction, environment, and performance factors 
In the manufacturing field, a semi-automated system that entails human intervention in the middle of 
the process is a representative collaborative system that requires active interaction between humans 
and machines. User behavior induced by the operator’s decision-making process greatly impacts 
system operation and performance in such an environment that requires human-machine 
collaboration. There has been room for utilizing machine-generated data for a fine-grained 
understanding of the relationship between the behavior and performance of operators in the industrial 
domain, while multiple streams of data have been collected from manufacturing machines. A study 
has been conducted with a large-scale data-analysis methodology that comprises data 
contextualization and performance modelling to understand the relationship between operator 
behavior and performance [14]. For a case study, machine-generated data were collected over 6-
months periods from a highly automated machine in a large tire manufacturing facility. The authors 
devised a set of metrics consisting of six human-machine interaction factors and four work 
environment factors as independent variables, and three performance factors as dependent variables. 
The modelling results reveal that the performance variations can be explained by the interaction and 
work environment factors. Even if conducted in a factory, the analyzed system shares some aspects 
with Air Traffic Control (the use of alarms, human intervention or proactiveness). This research may 
thus inform us on how to assess the performance of the whole system. 

3.3.2.3 Appropriate reliance on AI systems 
The promises of AI systems to augment humans in various tasks hinge on whether humans can 
appropriately rely on them. Recent research has shown that appropriate reliance is the key to 
achieving complementary team performance in AI-assisted decision making. The problem of whether 
the Dunning-Kruger Effect (DKE) among people can hinder their appropriate reliance on AI systems has 
been explored [15]. DKE is a metacognitive bias due to which less-competent individuals overestimate 
their own skill and performance. Through an empirical study (N = 249), the authors explored the impact 
of DKE on human reliance on an AI system, and whether such effects can be mitigated using a tutorial 
intervention that reveals the fallibility of AI advice and exploiting logic units-based explanations to 
improve user understanding of AI advice. The tasks consist of presenting a text and letting the subject 
choose another text among 4 others that would best match the semantics of the presented text. The 
AI condition would highlight those parts of the text that would best help the subjects choose the 
correct answer. The tutorial condition would provide more explanation on why the answer is correct 
or not. 

They found that participants who overestimate their performance tend to exhibit under-reliance on AI 
systems, which hinders optimal team performance. Logic unit-based explanations did not help users 
in either improving the calibration of their competence or facilitating appropriate reliance. While the 
tutorial intervention was highly effective in helping users calibrate their self-assessment and 
facilitating appropriate reliance among participants with overestimated self-assessment, the authors 
found that it can potentially hurt the appropriate reliance of participants with underestimated self-
assessment. 
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An implication for the design of tutorials designed for promoting appropriate reliance should not only 
reveal the shortcomings of users or AI systems (i.e., when they are less capable of making the right 
decision), but also their strengths (i.e., when they are capable or more capable).  

In summary, humans who overestimate their performance tend to exhibit under-reliance on AI 
systems, which hinders optimal team performance. 

3.3.2.4 Human attitude toward Human or Automation leadership 
It remains unclear how power functions in interactions with both humans and robots, especially when 
they directly compete for influence. An experiment where every participant was matched with one 
human and one robot to perform decision-making tasks has been conducted [16]. By manipulating 
who has power, the authors created three conditions: human as leader, robot as leader, and a no-
power-difference control. The results showed that the participants were significantly more influenced 
by the leader, regardless of whether the leader was a human or a robot. However, they generally held 
a more positive attitude toward the human than the robot, although they considered whichever was 
in power as more competent. 

The authors believe this suggests a new way that we can design for an agent’s influence by designing 
for its power. For example, if an AI agent is known to perform well yet users are reluctant to adopt its 
suggestions for reasons such as algorithm aversion, we might consider increasing its power by giving 
the AI an expert framing, a higher organizational position, or the power to reward users. By doing so, 
we might be able to increase its perceived competence and thus its influence on users. 

In summary, humans tend to be significantly more influenced by the leader, regardless of whether the 
leader was a human or a robot. However, they generally held a more positive attitude toward the 
human than the robot, although they considered whichever was in power as more competent. 

3.3.2.5 Performances and delegation in hybrid teams 
A study on how humans make decisions when they collaborate with an artificial intelligence (AI) in a 
setting where humans and the AI perform classification tasks has been performed [17]. The 
experimental results suggest that humans and AI who work together can outperform the AI that 
outperforms humans when it works on its own. However, the combined performance improves only 
when the AI delegates work to humans but not when humans delegate work to the AI. The AI’s 
delegation performance improved even when it delegated to low-performing subjects; by contrast, 
humans did not delegate well and did not benefit from delegation to the AI. This bad delegation 
performance cannot be explained with some kind of algorithm aversion. On the contrary, subjects 
acted rationally in an internally consistent manner by trying to follow a proven delegation strategy and 
appeared to appreciate the AI support. However, human performance suffered as a result of a lack of 
metaknowledge—that is, humans were not able to assess their own capabilities correctly, which in 
turn led to poor delegation decisions. Lacking metaknowledge, in contrast to reluctance to use AI, is 
an unconscious trait. It fundamentally limits how well human decision makers can collaborate with AI 
and other algorithms. 

With inversion, humans still contribute to the superior result; without them, the AI would not reach it. 
Inversion might also improve human work perspectives. Humans are more motivated when working 
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in a stimulating environment [18]. For example, classifying easily identifiable images is perhaps routine 
and boring, whereas the classification of difficult images could be an interesting challenge. Inversion 
might enable humans to spend less time on mundane tasks and more time on challenging tasks, 
thereby creating a more fulfilling workplace. Thus, receiving assignments from a machine could be 
interpreted not only as a delegation to humans but also as freeing humans from tedious tasks. The AI 
would not be the humans’ boss but rather an assistant who swipes away distractions from the real 
work. 

In summary, Humans and AI who work together can outperform the AI that outperforms humans when 
it works on its own. However, the combined performance improves only when the AI delegates work 
to humans but not when humans delegate work to the AI. 

3.3.2.6 Characteristics and dynamics of human-AI teams 
There are many unknowns regarding the characteristics and dynamics of human-AI teams, including a 
lack of understanding of how certain human-human teaming concepts may or may not apply to 
human-AI teams and how this composition affects team performance. An article outlines an 
experimental research study that investigates essential aspects of human-AI teaming such as team 
performance, team situation awareness, and perceived team cognition in various mixed composition 
teams (human-only, human-human-AI, human-AI-AI, and AI-only) through a simulated emergency 
response management scenario [19]. Results indicate dichotomous outcomes regarding perceived 
team cognition and performance metrics, as perceived team cognition was not predictive of 
performance. Performance metrics like team situational awareness and team score showed that teams 
composed of all human participants performed at a lower level than mixed human-AI teams, with the 
AI-only teams attaining the highest performance. Perceived team cognition was highest in human-only 
teams, with mixed composition teams reporting perceived team cognition 58% below the all-human 
teams. These results inform future mixed teams of the potential performance gains in utilizing mixed 
teams over human-only teams in certain applications, while also highlighting mixed teams' adverse 
effects on perceived team cognition.  

In summary, for such scenario, the results tend to show that teams composed of all human participants 
may perform at a lower level than mixed human-AI teams, with the AI-only teams attaining the highest 
performance. 

3.3.2.7 Human perception and acceptance of imperfect AI 
AI technologies have been incorporated into many end-user applications. However, expectations of 
the capabilities of such systems vary among people. Furthermore, bloated expectations have been 
identified as negatively affecting perception and acceptance of such systems. Although the 
intelligibility of ML algorithms has been well studied, there has been little work on methods for setting 
appropriate expectations before the initial use of an AI-based system. Some authors used a Scheduling 
Assistant - an AI system for automated meeting request detection in free-text email - to study the 
impact of several methods of expectation setting [20]. They explore two versions of this system with 
the same 50% level of accuracy of the AI component, but each designed with a different focus on the 
types of errors to avoid (avoiding False Positives vs. False Negatives). They show that such different 
focus can lead to vastly different subjective perceptions of accuracy and acceptance. They also design 
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an Accuracy Indicator (Figure 7) and an Example-based Explanation (Figure 8) to depict the expected 
level of performances of the AI to help prepare users at coping with imperfection, as well as a slider to 
control the performance of the AI (Figure 9). They show that user satisfaction and acceptance can be 
improved through these simple expectation adjustment techniques. They also show that focus on High 
Precision rather than High Recall of a system performing at the same level of accuracy can lead to much 
lower perceptions of accuracy and decreased acceptance.  

  

Figure 7: Accuracy Indicator  [20]. 

 

 
Figure 8: Example-based explanation  [20]. 

 

 
Figure 9: Performance control  [20]. 

In summary, different focus on the types of errors to avoid (avoiding False Positives vs. False Negatives) 
can lead to vastly different subjective perceptions of accuracy and acceptance. 
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3.3.2.8 Dealing with AI mishaps 
Many subfields of machine learning share a common stumbling block: evaluation.  Advances in 
machine learning often evaporate under closer scrutiny or turn out to be less widely applicable than 
originally hoped.  Some researchers conducted a meta-review of 107 survey papers from natural 
language processing, recommender systems, computer vision, reinforcement learning, computational 
biology, graph learning, and more, organizing the wide range of surprisingly consistent critique into a 
concrete taxonomy of observed failure modes [21]. Inspired by measurement and evaluation theory, 
they divided failure modes into two categories: internal and external validity (see Figure 10). Internal 
validity issues pertain to evaluation on a learning problem in isolation, such as improper comparisons 
to baselines or overfitting from test set re-use. External validity relies on relationships between 
different learning problems, for instance, whether progress on a learning problem translates to 
progress on seemingly related tasks. This work might help the way we assess the performance of our 
solutions. 

 

Figure 10: Framework for AI failure modes  [21]. 

Inappropriate design and deployment of machine learning (ML) systems lead to negative downstream 
social and ethical impacts – described here as social and ethical risks – for users, society, and the 
environment. Despite the growing need to regulate ML systems, current processes for assessing and 
mitigating risks are disjointed and inconsistent. A group of researchers interviewed 30 industry 
practitioners on their current social and ethical risk management practices and collected their first 
reactions on adapting safety engineering frameworks into their practice – namely, System Theoretic 
Process Analysis (STPA) and Failure Mode and Effects @Analysis (FMEA) [22]. Their findings suggest 
STPA/FMEA can provide an appropriate structure for social and ethical risk assessment and mitigation 
processes. However, they also find nontrivial challenges in integrating such frameworks in the fast-
paced culture of the ML industry. Even though our project does not primarily address social and ethical 
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Figure 1: Our framework for benchmark-based evaluations of machine learning algorithms and
associated validity concerns. In the benchmark paradigm, papers which propose a new algorithmic
idea demonstrate its effectiveness by comparing to results of prior work on a specific learning problem
(the benchmark). The underlying assumption is that the benchmark is representative for a broader
task and hence the performance improvements will transfer to real-world applications. This chain of
reasoning relies on multiple steps with various potential validity issues.

practices. For instance, most claimed advances from the past few years of recommender systems
research failed to improve over established baselines and evaporate under closer scrutiny [25, 125].
Given the key role benchmarking plays in machine learning, such evaluation flaws threaten to
undermine the perceived algorithmic gains in recent years.

In this paper, we provide a systematic taxonomy of failures in the benchmarking paradigm in order
to put current evaluation practices on solid foundations. Our taxonomy draws from 107 analysis
papers which study specific machine learning evaluations; we describe further how we arrived at
this taxonomy in Appendix 6. Despite the diversity of tasks and algorithms, we find that the same
evaluation failures repeat across diverse areas such as computer vision, natural language processing,
recommender systems, reinforcement learning, graph processing, metric learning, and more. Based
on lessons from evaluation theory [92], we divide the failure modes into two categories:

• Internal validity refers to issues that arise within the context of a single benchmark.
• External validity asks whether progress on a benchmark transfers to other problems.

Figure 1 illustrates our taxonomy of evaluation failures in machine learning. Our taxonomy can serve
as a resource for machine learning researchers and practitioners to check for evaluation issues in their
own disciplines. Since many failure modes occur in several fields, insights from one field will transfer
to others. Additionally, our paper contributes insights to the ongoing discussion around evaluation
practices in machine learning. Finally, our taxonomy of external validity criteria offers a starting
point for research in this area. The relationships between different datasets and learning problems are
not yet well understood; more work is needed to understand the scope of current benchmarks.

Next we introduce our framework for evaluation validity in machine learning, which organizes the
common failures modes described in Sections 3 and 4. Section 5 then discusses limitations of the
benchmarking paradigm itself before we conclude in Section 6. An overview of the papers that
inform this survey can be found in Appendices D and E.

2 A conceptual framework for machine learning evaluations
Empirical machine learning evaluations are ultimately tied to datasets. A key question is to what
extent the datasets used to measure algorithm performance (e.g., ImageNet [31, 131] or GLUE
[158]) represent the problem a paper claims to address (e.g., image classification or natural language
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risks, such analyses may inform on some related aspects such as balance between AI and humans as 
well as issues regarding responsibilities.  

Traditionally, AI research has been more concerned with improving accuracy rates of the algorithms 
than putting humans in the loop. However, recent work found that while accuracy is good, 
controllability may be better for specific tasks [23] and could prevent some risks due to 
misunderstanding of the AI. However, while this holds true for simple tasks as discussed in the study, 
for high level of automation the results might be different. 

 

3.3.2.9 Summary 
Most of the studies mentioned above rely on very specific experiments designed to be controllable 
and to lead to statistically significant results. Their concerns, results and implications are useful for 
ASTAIR as such. However, most of them admit that generalization is at stake. ASTAIR is meant to be a 
more complex ecosystem than simple image or text recognition applications. An important research 
question is thus the evaluation of the impact of ASTAIR interaction and automation on the ATC activity. 
The controllability of our future experiments will likely not reach the level of controllability of the 
above research. Still, we will have to design the experiments in such a way that they will inform us as 
well as the community on the usability of our approach and enable us to formulate new guidelines for 
designing Human-AI interaction. 

3.3.3 Styles of interaction with automation 

In a suggestive interface, the user gives hints about a desired operation to the system by highlighting 
related components in a graphical scene, thus improving the usability of gestural interfaces and 
augments typical command-based modelling systems [24]. Chateau is an instance of a suggestive 
interface for 3D drawings [24]. Chateau infers possible operations based on the hints and presents the 
results of these operations as small thumbnails. The user completes the editing operation simply by 
clicking on the desired thumbnail. The hinting mechanism lets the user specify geometric relations 
among graphical components in the scene, and the multiple thumbnail suggestions make it possible 
to define many operations with relatively few distinct hint patterns. The suggestive interface system is 
implemented as a set of suggestion engines working in parallel and is easily extended by adding 
customized engines. 

Schmidt & Herrmann [25] have proposed the concept of intervention interfaces to enable joint control 
“where the majority of decisions are automated but where users can intervene “. Given the expertise 
needed to supervise airport ground traffic and the uncertainty inherent to airport ground movements, 
full automation alone will not ensure an optimal operation of the system. Gradual control of the 
automation decision power by the end-users is therefore required. 

Calhoun et al. [26] surveyed the literature to compare adaptable and adaptive automation in 
application with different levels of automation. They define adaptable automation as user-initiated 
change in the level of automation and adaptive automation as system initiated. They found that 
adaptable automation (the human operator assigns how automation is applied) has been found to aid 
human’s situation awareness and provide more perceived control versus adaptive automation (the 
system assigns automation level) that may impose less workload and attentional demands by 
automatically adjusting levels in response to changes in one or more states of the human, task, or the 
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environment. In their survey, they found a very limited number of studies comparing the two 
conditions but for the one that did, their result show that adaptable automation was not only preferred 
over adaptive automation, but it also resulted in improved task performance and, notably, less 
perceived workload. 

In ASTAIR, we want to explore different levels of automation and possibly consider transition between 
such levels according to user preferences but also AI performances. This might prove successful in 
improving the overall system performance. 

 

 

3.3.4 Authoring and programming automation 

Interacting with automation can be seen as a way to control a program that automatically controls 
entities. As such, interacting may also be considered as a form of programming. Usable programming 
of usable automation is thus an important stake, especially if end-users are to be involved in the design 
process [27]. Few works exist that tackle this topic. Automated machine learning (AutoML) is 
envisioned to make ML techniques accessible to ordinary users [28]. 

For automation to be safe and usable, it needs to be suitable to the activity it supports, both when 
authoring it and when operating it. Vizir is a Domain-Specific Graphical Language and an Environment 
for authoring and operating airport automations [27]. Vizir combines visual interaction-oriented 
programming constructs with activity-related geographic areas and events. Vizir offers explicit human-
control constructs, graphical substrates and means to scale-up with multiple automations. 

The authors devised a set of guidelines for such programming tools: Foster a continuum of usage 
between authoring, controlling and supervising; Provide space-based and event-based constructs; 
Make current state and future behavior visible; Foster both seamless and “seamful” hybrid control; 
Foster interaction-oriented programming. 

Decision-making is a key software engineering skill. Developers constantly make choices throughout 
the software development process, from requirements to implementation. While prior work has 
studied developer decision-making, the choices made while choosing what solution to write in code 
remain understudied. In a mixed-methods study, researchers examine the phenomenon where 
developers select one specific way to implement a behavior in code, given many potential alternatives 
[29]. They call these decisions implementation design decisions. The mixed-methods study includes 46 
survey responses and 14 semi-structured interviews with professional developers about their decision 
types, considerations, processes, and expertise for implementation design decisions. They find that 
implementation design decisions, rather than being a natural outcome from higher levels of design, 
require constant monitoring of higher-level design choices, such as requirements and architecture. 
They also show that developers have a consistent general structure to their implementation decision-
making process, but no single process is exactly the same. They discuss the implications of their 
findings on research, education, and practice, including insights on teaching developers how to make 
implementation design decisions. This research might be related with the way automation is designed, 
especially if we consider real-time decisions by controllers to delegate a task to AI as a programming 
activity. 
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While this is not expected, if during the ASTAIR project using Machine Learning (ML) becomes a 
relevant approach for AI, providing usable means to program Machine Learning might be useful to 
adapt to particularities in each airport. Automated machine learning (AutoML), a novel concept for 
automating the whole ML pipeline without (or as little as possible) human intervention, is envisioned 
to make ML techniques accessible to ordinary users. Recent work has investigated the role of humans 
in enhancing AutoML functionality throughout a standard ML workflow. However, it is also critical to 
understand how users adopt existing AutoML solutions in complex, real-world settings from a holistic 
perspective. To fill this gap, a study has conducted semi-structured interviews of AutoML users (N = 
19) focusing on understanding (1) the limitations of AutoML encountered by users in their real-world 
practices, (2) the strategies users adopt to cope with such limitations, and (3) how the limitations and 
workarounds impact their use of AutoML [28]. The findings reveal that users actively exercise user 
agency to overcome three major challenges arising from customizability, transparency, and privacy. 
Furthermore, users make cautious decisions about whether and how to apply AutoML on a case-by-
case basis. The authors suggest to: Foster User Agency in Developing Workarounds, Foster User Agency 
in (Non-)Use of AutoML, Support Domain-Specific Customizability, Provide Multifaceted Transparency, 
Enhance Data Privacy, Support Collaborative Work behind AutoML. 

3.3.5 Initiative in Human Automation Teaming 

Mixed-initiative interaction is concerned with interaction strategies where each agent (human or 
machine) takes turn at the most appropriate time to contribute to a task where it performs best [30]. 
The goal of mixed initiative interaction is to create collaboration between humans and artificial 
intelligence, leveraging the strengths and capabilities of both parties. By combining human expertise, 
creativity, and contextual understanding with artificial intelligence’s analysis capacities and 
automation, mixed initiative systems can tackle complex tasks more effectively and efficiently than 
either humans or AI alone. Contrary to fixed initiative interaction where either a single human or 
system has always control of the interaction flow, in mixed-initiative interaction any agent can take 
the control of the interaction at any time.  

Mixed-initiative interaction raises many challenges. For instance, intelligent agents are not good at 
guessing about goals, needs and intents of users, at considering the costs and benefits of automated 
actions, at performing timely and to advise users when they can perform better using automation [31]. 
To address these issues, Horvitz has proposed factors to be considered when designing mixed-initiative 
interaction [31]. These factors emphasize the need of identifying the added value of automation, 
understanding and predicting user’s intents and goals, providing users with timely and non-invasive 
automation actions with means to control them, and appropriate communication between human and 
AI agents to clarify users’ intentions. The author also suggests that mixed-initiative systems should 
allow users to make “efficient references to object and services” by maintaining a memory of recent 
interactions with users. Furthermore, a mixed-initiative system should provide means to “gracefully 
degrade the precision of services” to offer potential solutions even in unpredictable situations where 
correcting automation mistakes would be too costly. 

With today’s AI advances, intelligent systems are now capable of making their own decisions without 
the need of human input. Collaboration between humans and autonomous intelligent systems poses 
newest challenges. For instance, defining roles and tasks is not trivial anymore. Linked to task design 
and interpersonal dynamics, several strategies to negotiate who will do what have been proposed. 
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These strategies include static division of labor, adjustable automation, mixed-initiative collaboration 
and adaptive automation [32]. Although mixed-initiative collaboration has been investigated 
significantly, static division of labor, adjustable automation and adaptive automation has received little 
attention [33]. In static division of labor, the allocation of tasks to humans and agents is permanent. 
While in adjustable automation, the level of autonomy can be regulated by humans, in adaptive 
automation, the agent can alter its level of automation in response to the performance and human 
behaviors.   

To fluidify the interaction between humans and intelligent agents, Luciani et al. have proposed fined 
grain interaction for continuous adjustment and immediate experienced results [34]. Not only 
designing fine-grained interaction enables the design for fast turn-taking and short response time, but 
also for closer and simultaneous interaction with a partially agentive system. This results in both 
parties being active and getting continuous feedback allowing adjustments to be made without 
interruption. Based on air traffic control activity observations and a co-design approach with air traffic 
controllers (ATCOs), Luciani et al. have built an assisted sketching tool that allows ATCOs to take better 
decision in guiding aircraft and managing the traffic [34]. Using visual cues and interaction techniques, 
the authors have managed to materialize uncertainty which encouraged participants to find 
alternative strategies to perform their tasks. In addition, they have found that sketching routes was a 
good way to feed the system, give directions to pilots, and share their intentions and plans between 
air traffic controllers for internal collaboration. Not only designing fine-grained interaction made the 
authors consider the whole interaction design rather than the interface alone, but it also allowed them 
to create displays with less visual clutter. Further research towards adaptability could be carried out 
to change the system behavior while it is being used. 

When autonomous systems cannot regulate their own behavior appropriately, external bounding of 
autonomous behavior is required to assure their ongoing safety and effectiveness. Bradshaw et al. 
have proposed policies to support the implementation of adjustable autonomy in mixed-initiative 
interaction [35]. Their approach consists in constraining the autonomy of the system rather than 
generating plans for what an agent should do. They argue that human coordination mechanisms are 
required to assure effective teamwork among humans and agents. As an example of such mechanisms, 
they introduce agreements, a set of policies and information required for coordination, that can be 
represented within the system to govern specific aspects of joint activity among the parties.  The 
policies can affect different aspects of coordination such as initiative, delegation, notifications, 
supervision, or human action constraints. This also allows for artificial agents to be adaptive and self-
adjust their autonomy consistently with the policies, providing hands-off control among team 
members at any time, and renegotiation of roles and tasks when new opportunities arise or when 
breakdown occurs. Moreover, the policies can also support agents to anticipate adjustments. 

Intelligent systems can support humans take decisions under risks. Risky decisions can be defined as 
taking a decision without knowing the exact consequences. Although intelligent systems are not 
affected by cognitive biases, fatigue, recent experience and environmental factors, humans still 
outperform AI in unknown and complex situations. This highlights the need for humans and intelligent 
systems to partnership. Xiong et al. argue that when the decision task is associated with higher 
uncertainty, human-centered research should be carried out [36]. When uncertainty is high, research 
on transparent AI, explainable AI and trustable AI can support human decision-makers valuing their 
own output. In complex systems with high automation such as aviation, a proper level of transparency 
is required to enable operators to understand the system strategy and the internal working conditions. 
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Representing the machine intent, the perception of the environment, and system status can help build 
a mental model of the system and reduce decision-making conflicts [36]. In addition, the authors 
suggest that human-machine collaboration for making decisions under risk should allow dynamic task 
allocation based on task requirements and the capability and characteristics of humans and machines. 
Furthermore, the machine should be able to adapt to human’s cognitive limitations and rapid 
behavioral changes. Finally, both humans and machines as a team should be able to identify, 
understand and align with each other’s goals, values, and intention to take timely and unintrusive 
initiatives.  

In ASTAIR, we envision an environment where humans and artificial intelligence collaborate as a team. 
In our vision, some of the intelligent systems can be autonomous and make decisions on their own. To 
ensure the safety of passengers on the airport ground, uncertainty in risky decisions must be limited. 
Therefore, transparency is key. Human operators should be able to understand the intent, the 
knowledge and the status of intelligent systems to build a mental model of their operating and 
anticipate their and teammates' actions. Literature shows that maintaining a memory of recent actions 
should help build a mental representation of the AI teammates' operating. Human operators should 
also be provided with fine-grained interaction for closer and simultaneous interaction with AI and 
encouraging fast adjustments without interruption. Finally, operators should be able to constrain the 
AI with appropriate interactive tools by either limiting its autonomy so the operators can engage 
themselves into the task or degrade the AI performance with a simpler model that human operators 
can understand and manipulate easily. 

Finally, the ethics guidelines for trustworthy AI delivered by High-Level Expert Group on Artificial 
Intelligence (setup by the European commission)3 would be useful during ASTAIR project 
implementation with the guidelines to  realise a trustworthy AI. In particular, we will build upon the 
assessment list for trustworthy artificial Intelligence [37] to provide inputs for the validation of the 
solution. 

3.3.6 Explainable AI (XAI): definition and application to ATM and aviation 

As for any interactive system, the adoption rate of AI algorithms is not only dependent on the 
performance of the algorithms, but also on the way the algorithms are perceived and understood by 
the users.  Moreover, laws are enforcing the “Right to Explanation” [38].  

While early AI systems were quite easy to understand for humans, the recent rise of Deep Learning 
(DL) models, including Deep Neural Networks (DNNs), has increased complexity of the algorithms [39]. 
DNNs are even described as “black boxes”. Especially in critical domains, the ability to explain the 
model is now considered crucial for building trust and deployment of artificial intelligence systems 
[40]. The danger lies in using decisions that are not justifiable, or that miss detailed explanations of 
their behavior [39].  

A concrete example of critical incidents related to misunderstanding AI systems is the occurrence of 
mode confusion. Mode confusion is defined as the user’s incorrect understanding of the current and 
future status and behavior of the automation [41]. On the other hand, mode awareness is the person's 

 

3 https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai 



D1.1 STATE OF THE ART 
Edition 01.01 

	 	

	
 

Page | 36 
© –2023– SESAR 3 JU 

  
 

awareness of the current automation mode [42]. The automotive industry has explored a variety of 
mode awareness interfaces and interface elements designed to enhance the driver's awareness of 
current automation modes or overall automation capabilities [43]. The industry of commercial aircraft 
is more resistant to changing user interfaces due to the high financial costs, the need for pilot retraining 
and the complex certification procedures. This comes with an increased safety risk, as several critical 
incidents in aviation have been linked with misunderstanding autopilot modes [44], [45], [46]. 

The field of explainable artificial intelligence (XAI) aims at enabling users to understand the inner 
workings of AI systems and to get insights into the results of the algorithms [40]. The goal of XAI is to 
create machine learning techniques that 1) produce more explainable models while maintaining a high 
level of learning performance, and 2) enable users to understand, trust, and manage the emerging 
generation of AI systems [39]. Zhu et al. defined explainability in the context of XAI as “as being clear 
of obscurity and understandable in all aspects” and being able “to answer why questions” [47]. 
Kaadoud et al. defined explanation as “information in a semantically complete format, which is self-
sufficient and chosen according to the target audience regarding its knowledge, its expectations and 
the context” [48]. Degas et al. [49] differentiate between “Understandability / Intelligibility” and 
“Comprehensibility”, where the first explain the functioning of the model without explaining the 
internal algorithm, and the latter include the explanation of learned knowledge. Moreover, XAI is 
distinguished from “Observable AI”, which allows to understand black-box systems from observation 
of all potential combinations of input and their related outputs [47].  

Current XAI systems exhibit a diverse set of dimensions and functionalities for simple exploratory data 
analysis to understanding complex AI models [40]. Two main XAI techniques exist: (i) Ante-hoc 
techniques aim at optimizing an already transparent AI model by adding constraints or features to 
increase transparency through metrics, data visualization, etc. Explanation is considered from the very 
beginning of the training. (ii) Post-hoc techniques aim at explaining black-box AI models (e.g., DNNs). 
An external model mimics a base model’s behavior to generate an explanation to the user [48], [49]. 

XAI systems have been applied in a variety of domains, including machine learning, robotics, multi-
agent systems, computer vision, Knowledge Representation and Reasoning, etc. [48]. It is important 
to take the context (users, goals, environmental context) into account in XAI, although this is 
challenging [48]. 

In the context of air traffic management (ATM), Degas et al. [49] proposed a Design Space on XAI use 
in ATM, including “explanation” as one dimension. They observed that mainly four types of 
explanations have been used (numeric, rules, textual and visual explanations) or a combination of 
those explanation types. Their analysis also shows that most existing solutions are post-hoc solutions. 
Most of the methods aimed at improving explainability of prediction tasks (e.g. landing time 
prediction), while modelling / simulation were explored least. The authors suggest that optimization / 
automation would present an important use case, but which has so far rarely been studied in the 
literature. They argue that “fully understanding the underlining reasons of conflict avoidance 
procedures (e.g., explaining why one aircraft is moved away from its planned trajectory and not 
another), sequencing, or any other optimization result, is more than required to be accepted and used 
by human operators such as ATCO” (p.19). Finally, based on their findings, the authors propose to 
distinguish three types of XAI (see Figure 11): (1) Descriptive XAI which describes an AI model or output 
and is the basis for the following steps; (2) Predictive XAI which predicts the behavior of an AI model 
to a specific input or modification and allows to ask “what if” and “why not” questions; and (3) 
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Prescriptive XAI which detects errors or unwanted behavior of an AI model, suggests solutions to 
overcome these and allows to ask “how to” questions.  

 

Figure 11: Synthesis of XAI framework for ATM  [49] 

Prior work in the cockpit demonstrated that bi-directional communication with a shared language 
between the autonomous agents and the pilot could enhance the teaming efficiency [50]. Such a 
language between automation of surface movements and airport ground operation stakeholders is 
required. We believe that a human-centric approach is necessary to maximize the capacity of humans 
to share their knowledge with the system using constructs that they are familiar with. However, we 
are still lacking knowledge on shared representations between human and AI agents to create an 
effective partnership for airport ground operations. Furthermore, interaction is necessary to ensure 
that each agent has an adequate situation awareness on its tasks and the behaviors of other agents 
[51].    

The AI tools that will be used in the ASTAIR project are optimization based. This implies that we will 
have to investigate what inputs and outputs the AI is using to model and compute solutions to solve 
users’ problems. Based on the identification of such parameters, we will need to align end-users' goals 
and expectations so that we can create shared representations for humans and AI to work efficiently 
together. As demonstrated by Degas et al. [49] few prior works have explored optimization as a use 
case for XAI. The Astair project will allow contributing to this field of research. 

3.4 Designing Human-AI systems with high levels of automation 
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The promises of advances in AI created opportunities for creating new interactions and new user 
experiences that would otherwise not be possible. This trend has led to the idea of AI as a design 
material in the research community, with the hope that HCI researchers and designers can effectively 
envision and refine new uses for AI that have yet to be imagined [52]. 

From the Human-Computer Interaction (HCI) community, researchers have proposed principles, 
frameworks, and guidelines to help understand the characteristics of such interaction for over decades 
[20], [31], [53], [54], [55]. For example, Amershi et al. [53] proposed 18 applicable guidelines for 
human-AI interaction in mass market products as text editors or calendars, which are categorized into 
four groups, including initially, during interaction, when wrong, and over time. Cimolino and Graham 
[55] reviewed prior work about human-AI shared controls and contributed a four-dimensional 
framework as an analysis tool, including AI role, supervision, influence, and mediation.  Unfortunately, 
most of these guidelines are either very generic or focusing on mass-market products and not 
necessarily adequate for critical systems such as airports’ ground operations. 

In ASTAIR we will focus on designing interactions between humans and AI systems for automation 
levels categorized as 2B and 3A according to EASA’s classification. Recent work suggests that in order 
to do so, designers need to understand both how the system-side AI works, but also how people think 
about, understand, and use AI tools and systems [56]. Conducting user-centered design activities such 
as interviews and stakeholders' workshops to understand the contexts, needs and goals of our end-
users remains important [57]. It is particularly important to conduct activities ensuring that both users’ 
and AI goals and constraints are well aligned together. As identified by Xu et al., it is very important to 
clarify the envisioned roles of humans and AI [58]. This is a main challenge in the ASTAIR project and 
part of our work will be dedicated to the identification of automation opportunities and then to the 
exploration of several alternative alternatives that corresponds to the level 2B and 3A of the EASA 
classification. 

Another important aspect identified by Feng et al. [59] is related to the use of prototypes to 
communicate with end-users and technical teams. They conducted a study with 27 user experience 
practitioners in which they prototyped and created a design presentation for an AI-enabled interface 
while having access to a simple AI model training tool. Their results suggest that communicating AI 
concepts to end-users could be very challenging but that iteratively using prototypes was very helpful. 
The authors suggest that starting with even incomplete and not very efficient AI models could help 
elicit new requirements and improve both the interaction design and the AI for the task.  

Designing for highly automated systems is also more difficult and more challenging than designing 
from traditional systems [56], [60], [61], [62]. HCI researchers have discussed challenges that persist 
in designing human-AI interaction encountered by designers [56] such as failing to recognize the 
appropriate situations where AI might help or envisioning novel features that exceed AI’s current 
capabilities. Yang et al. [61], proposed a mapping of the challenges faced by designers according to 
several phases of a typical user centered design process [63]. Fortunately, the type of AI that will be 
used in ASTAIR is based on optimization techniques and not Machine Learning approaches which poses 
many of the identified challenges. Moreover, using ML algorithms would have required additional 
user-centered work to collect relevant data, validate that both the training and the results are 
adequate to end-users [64] as well as to cope with AI outcome uncertainty [61]. 
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Figure 12: Mapping the human-AI interaction design onto a user-centered design process  [61] 

In ASTAIR we will face several design challenges induced by the use of AI. To overcome these challenges 
and mitigate the risks, we will follow recommendations from the literature and use a user-centered 
approach to carefully identify needs and requirements from the user perspective. We will also involve 
the AI team so that we get a mutual understanding of AI possibilities and be able to align users and AI 
constraints and goals. 
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4 State of the art on support algorithms for fleet management and 
path planning 

To manage and perform engine-off and conventional airport surface movement operations in ASTAIR, 
the support algorithms previously developed in AEON will be further elaborated and extended.  

These algorithms address two broad categories of tasks: (1) algorithms for tug fleet management; (2) 
algorithms for conflict-free and efficient path planning of all aircraft, tugs, and other ground vehicles. 

This section reviews literature on both to identify research directions for algorithmic extensions 
related to ASTAIR goals and requirements to be further elaborated in WP2. 

In particular, algorithms for tug fleet management should be able to adapt the assignment of tugs in 
real time during operation based on changes of schedules, as well as be able to take diverse temporal 
constraints into account. 

Algorithms for path planning should be computationally efficient, should consider spatiotemporal 
constraints reflecting the airport’s traffic rules. Furthermore, these algorithms should be able to 
dynamically adapt motion trajectories of aircraft and other ground vehicles, taking into account spatial 
and temporal constraints provided by ATCos, change of runway mode of operation, weather 
conditions, wake turbulence categories of aircraft. Furthermore, motion trajectories of aircraft and 
tugs should be optimized taking into account energy use and manoeuvrability. 

The related literature was reviewed taking these considerations into account. 

 

4.1 Algorithms for fleet management 

Airport congestion is a major cause for the large delays that affect the air transport industry. Flight 
scheduling and fleet assignment are fundamental stages of the airline planning process. The problems 
faced by airlines when making their flight scheduling and fleet assignment decisions are highly 
complex, particularly when the airlines operate in congested, slot-constrained airports. In many 
airports, particularly in Europe, airlines are limited in the number of slots they can use because the 
declared capacity of airports is insufficient to accommodate peak period demand, constraining the 
choices of airlines in terms of time and frequency of flights [65]. A vast amount of previous research 
has focused on aircraft fleet management for assigning fleet types to flights.  

An average of 4%–7% of fuel is burnt during ground activities at airports (taxing, waiting, and extra fuel 
carried to complete the journey at the destination airport). The greenhouse gas emissions released by 
airports is not only contributing to global warming, but also impacting the health of local communities 
living next to airports [66]. Thus, recent studies include electrification of taxiing operations to reduce 
emissions and create a positive environmental impact. Tug fleet management plays a critical role in 
improving the efficiency of taxiing operations. 

In addition to aircraft fleet assignment and tug fleet allocation, fleet management is also required for 
allocating and routing autonomous vehicles to complete ground handling operations at the airport. 
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We present an overview of existing research on fleet management for the assignment of aircraft fleet 
to flight legs in Section 4.1.1, allocation of tug fleet to aircraft in Section 4.1.2, and assignment and 
routing of ground handling vehicles to complete ground handling tasks in Section 4.1.3. 

4.1.1 Fleet assignment: aircraft fleet to flight legs 

Flight scheduling determines the set of legs that the airline flies. A station is an airport serviced by the 
airline. A leg consists of an origin station, a destination station, a departure time, and an arrival time. 
After airline planners determine the flight schedule, each leg must be assigned a type of aircraft, or 
fleet type, which is called fleet assignment [67]. 

The fleet assignments must satisfy certain operational constraints, such as coverage, maximum 
overnight stays, and airport compatibility. Fleet assignments are tactical decisions, and changes in 
demand and maintenance requirements require an intermediate decision-making process to capture 
these changes before a flight’s day of departure [68]. The factors considered in assigning a fleet to a 
flight leg are passenger demand, revenue, seating capacity, fuel costs, crew size, availability of 
maintenance at arrival and departure stations, gate availability, and aircraft noise [69]. 

[70] formulate and solve the fleet assignment problem as an integer linear programming model, 
permitting assignment of two or more fleets to a flight schedule simultaneously. The objective function 
can take a variety of forms including profit maximization, cost minimization, and the optimal utilization 
of a particular fleet type.  

[65] propose a mixed-integer linear optimization model for integrated flight scheduling and fleet 
assignment. The objective is to maximize the expected profits of an airline that operates in congested, 
slot-constrained airports. Both airline competition and airline cooperation are dealt with in the model, 
though in a simplified manner. The model was applied to a case study involving the main network of 
TAP Portugal, which comprises 31 airports and 100 daily flight legs. [71] develop a modeling and 
optimization environment to identify the optimum fleet composition and the network of routes that 
best serve the predicted demand and demonstrate the ability of this environment to solve large fleet 
assignment and scheduling problems to near optimality by applying it to the United States Northeast 
Corridor using a fleet of electric and hybrid-electric regional aircraft.  

[72] present a time-space network model and mixed integer programming formulations for the 
integrated flight scheduling and fleet assignment problem. A time–space network for a single aircraft 
type consists of a set of activity nodes and arcs. An activity node represents the occurrence of certain 
event. In the context of flight scheduling and fleet assignment, there are two types of events, departure 
event and arrival event. Each event uniquely corresponds to one activity node. The time and location 
of the node is exactly the time and location of its correlated event. Two events with the same time and 
location generate only one node in the network. Based on this definition, each flight corresponds to 
one departure event and one arrival event.  An arc in the time–space network is a directed arc 
connecting two activity nodes. There are three types of arcs in this network, which are flight arc, 
ground arc and wrap-around arc. Each flight corresponds to one flight arc starting from its departure 
event and ending at its arrival event. Each ground arc connects two subsequent nodes at the same 
airport. Wrap-around arc is a special type of ground arc. It connects the last node and the first node at 
certain airport. The wrap-around arc represents circulation of aircrafts between two consecutive days. 
To keep the flow balance in the network, there is a need to guarantee the flow balance at each activity 
node. Each activity node has input flows (along input flight arcs, input ground arcs and input wrap-
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around arcs) and output flows (along output flight arcs, output ground arcs and output holding arcs). 
The proposed mixed integer programming models are based on the well-known multi-commodity flow 
problem which generates relatively small optimality gaps and multi-commodity flow problem with side 
constraints which is NP-hard. The main constraints ensure that exactly one aircraft type is assigned to 
the mandatory flight legs (1), at most one aircraft type is assigned to the optional flight legs (2), the 
flow balance is maintained at each node in the network (3), maximum number of the available aircrafts 
is not exceeded for each aircraft type (4), flow values of the beginning wrap-around arc and ending 
wrap-around arc at the same airport are the same which guarantees that the schedule is repeated 
daily (5), the number of passengers choosing one flight leg is smaller than passenger capacity assigned 
to it (6), the market share of each itinerary follows the trend that they are proportional to utility value 
(7), the number of the flight leg copies assigned to each airport resource slot must be smaller than 
capacity of the slot (8).  

Similarly, [69] solve the large-scale integer program of the basic daily fleet assignment problem. The 
mathematical model of the problem is a large multi-commodity flow problem with side constraints 
defined on a time-expanded network. These problems are often severely degenerate, which leads to 
poor performance of standard linear programming techniques. The large number of integer variables 
can make finding optimal integer solutions difficult and time-consuming. The methods used to attack 
this problem include an interior-point algorithm, dual steepest edge simplex, cost perturbation, model 
aggregation, branching on set-partitioning constraints and prioritizing the order of branching. The 
algorithm finds solutions with a maximum optimality gap of 0.02% and faster than using default 
options of a standard LP-based branch-and-bound code.  The integer programming formulation of the 
basic fleet assignment does not consider the maintenance and crew planning constraints. 

Let F is the set of available fleets, Sf is the number of aircraft in each fleet 𝑓 ∈ 𝐹, C is the set of cities in 
the schedule. The set of flights in the schedule is denoted by L. Each flight 𝑖 ∈ 𝐿 is alternatively 
represented by the elements (o, d, t) where 𝑜, 𝑑 ∈ 𝐶 are respectively the origin and destination and t 
is the time. t_ and t+ denote the times preceding and following the time t. The set of nodes N include 
the elements (f, o, t) where 𝑓 ∈ 𝐹, 𝑜 ∈ 𝐶, and t is the takeoff or landing time at o.  The mathematical 
model of the basic fleet assignment problem [69] is given in the equations (𝑖), (𝑖𝑖),…, (𝑣𝑖𝑖). 
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where  𝑐!" 	denotes the cost of assigning fleet type f to flight I and  𝑥!"  is the binary decision variable 
which takes 1 when fleet type f is assigned to flight i and 0 otherwise. The objective (𝑖) is to minimize 
the sum of all assignments. 𝑥!"  variables are alternatively represented as 𝑥!'&( where (𝑜, 𝑑, 𝑡) 
corresponds to the flight 𝑖 ∈ 𝐿, 𝑜, 𝑑 ∈ 𝐶 and t are respectively the cities and time in the schedule.	The 
constraint set (𝑖𝑖) ensures that each flight leg is flown by exactly one fleet. The constraint set (𝑖𝑖𝑖) 
include balance constraints. The fleet assignment solution must satisfy balance constraints that force 
the aircraft to circulate through the network of flights. The decision variable 𝑥!'&( which is also written 
as 𝑥!"  is equal to 1 if fleet f flies the flight leg from o to d departing at time t, and 0 otherwise. 𝑌!'(("   
where 𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶, and	[𝑡, 𝑡.]	is a time interval, are called ground arc variables that count the 
number of aircraft on the ground at each station at every point in time for each fleet. The balance 
constraints are enforced by modeling the activity at each station with a timeline for each fleet. This 
timeline has entries designating the arrivals and departures from the station for each fleet. Each 
departure (arrival) from the station splits an edge and adds a node to the timeline at the departure 
(arrival + refueling/baggage handling) time. In constraint set (𝑖𝑣) the flight legs of each required 
through are enforced to be flown by aircraft of the same fleet. Certain pairs of flights are required to 
be connected. These connections are called required throughs, and the set of required throughs is 
denoted by H, with elements (i, j),  𝑖, 𝑗 ∈ 𝐿. The schedule may need to violate the minimum ready times 
for some flights because of fleet size restrictions. These special short ready times are also modeled as 
required throughs. The constraints in set (𝑣) are the fleet	size	constraints	which	count	the	number	
of	aircraft	of	each	fleet	used	in	the	solution.	Each	fleet	network	is	sliced	at	3am	EST	and	the	flow	
across	this	cut	set	is	counted.	The set of O(f) denotes the flight arcs whose time span contains 3am 
EST. (f, o,	𝑡/) is the last node in a timeline which is the node that precedes 3am EST. The successor of 
the node (f, o,	𝑡/) is the node (𝑓, 𝑜, 𝑡0). (𝑣𝑖) and (𝑣𝑖𝑖) show the continuous and binary decision 
variables. 

The scale of the flight legs, the equipment types, complex operational constraints, maintenance 
requirements, and other complex criteria specified by the route planners necessitates the 
development of a sophisticated optimization suite to generate swaps of flight legs among the different 
equipment types for the allotted fleet assignments. [68] propose a swapper optimization suite (SOS) 
which uses optimization models to generate the optimal swaps, for one of the largest airlines in Japan. 

Even though the assignment of aircraft fleet to flight legs is less relevant regarding the application 
areas of ASTAIR, the mathematical models for assigning the aircraft to timeslots can be used as a 
guideline in ASTAIR for assigning taxibots to aircraft within specific time windows. 

4.1.2 Tug fleet management 

The introduction of towing techniques involves a considerable increase in the number of vehicles 
running on taxiways and service roads. The safe and efficient use of these vehicles implicitly requests 
the redefinition of the procedures previously in force and, when needed, the introduction of new ones. 
The AEON project [73] designed and assessed interconnected solutions to enable an optimized 
allocation of a fleet of tugs to aircraft, predefined routing providing speed profiles to avoid conflicts, 
dedicated HMI for Air Traffic Controllers as well as a new role, the Tug Fleet Manager. In the 
long/medium planning phase, the AEON fleet management algorithm supports the operator in the 
estimation of the adequate number of tugs, considering the needs of a given airport (and its 
stakeholders) in each period considering its specific traffic conditions. In addition, considering the 



D1.1 STATE OF THE ART 
Edition 01.01 

	 	

	
 

Page | 44 
© –2023– SESAR 3 JU 

  
 

arrival and departure sequences and the operational constraints of the tugs fleet, this algorithm sizes 
the fleet of tugs needed and at the executory level can reallocate the fleet if needed.  

The AEON tug scheduling algorithm takes the following as input: (1) the airport road networks, their 
types and the time it takes to traverse the airport using the different networks, (2) flights schedule 
during a day of operation to estimate the drop-off time and corresponding energy based on a single-
agent version of the path planning algorithm, (3) the list of tugs present at the airport that has to start 
and end their day of operations at the depot with a full battery. Using these input parameters, the tug 
fleet management algorithm creates a tug schedule. This schedule includes the town aircrafts, the 
associated tugs, and when (and where) the tugs are going to recharge.  

The literature also includes methods for optimal allocation of tug fleet considering collision free taxiing 
and finding the optimal tug fleet size. 

[66] propose a mixed Integer linear programming (MILP) model which aims at assigning electric 
powered tow-tractors for airplanes to complete taxiing operations with minimum jet-fuel usage. The 
flight schedule which includes aircraft type, arrival time, departure time and the gate number, is known 
in advance. Each aircraft completes its taxiing operations by following physical lines which are available 
in most airports as taxiways. A mesh network is generated to enable surface movements. Each 
intersection is a node, and nodes are connected to each other by arcs (links). Airplanes can follow each 
other on the same link by respecting the minimum allowed safety distance. No two airplanes can travel 
from opposite directions on the same link at the same time. All parallel links are assumed to be 
separated from each other by a sufficient distance to ensure collision free taxiing. Travelling times 
between two nodes is bounded by a fastest travelling time. Fuel consumption rate is assumed to be 
constant per minute of operation, although fuel consumption rate changes when aircraft speed is 
changed. When they are not serving an aircraft, tow-tractors would not conflict with other moving 
aircraft. The objectives are to minimize airport ground operations cost, fuel cost and delay cost. The 
performance of the proposed model is shown for a case at Montreal’s Pierre Elliott Trudeau 
International Airport (YUL) that has three runways which can be used in both directions and handles 
an average of 730 flights daily through its 89 gates. The network of the YUL taxiways includes 125 
nodes and 282 arcs. An airplane may enter (or exit) the network through gate or runway nodes. In the 
case study, 60 gates, 16 entry/exit points on runways, and 49 intersections between taxiways were 
considered. In addition to the tow-tractor assignments, minimizing taxiing collisions and determining 
the optimum number of tow-tractors were also the part of the proposed model.  

[74] propose an end-to-end optimization framework for electric towing vehicles (ETVs) dispatchment 
at large airports. They integrate the routing of the ETVs in the taxiway system where minimum 
separation distances are ensured, with the assignment of these ETVs to aircraft towing tasks and 
scheduling ETV battery recharging. The results show that the 913 arriving and departing flights can be 
towed with 38 ETVs, with battery charging distributed throughout the day. The fleet size is shown to 
increase approximately linear with the number of flights in the schedule.  

[75] propose strategic and disrupted models to create an adaptive vehicle-to-aircraft assignment, using 
Mixed Integer Linear Programming. The objectives are to maximize the number of towed aircraft and 
minimize the schedule changes for vehicle operators. Vehicle and aircraft routing, conflict avoidance, 
and energy usage are also considered in the models. Authors investigate also the impact of fleet size 
and general on-time performance on the assignments. [76] and [77] also study the vehicle-to-aircraft 
assignments for ETVs. They propose a Linear Programming model for selecting the aircraft to be towed, 
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to maximize fuel reduction. [76] perform sensitivity analysis on ETV fleet size. [77] include also the 
collision avoidance in the model. [78] combine vehicle-to-aircraft assignment with the vehicle and 
aircraft routing, by simulating all ground movement.  

[79] present a receding horizon genetic algorithm (RHGA) for dynamic resource allocation. They 
consider a fleet of tugs operating along a coastline with the purpose of preventing oil tankers from 
drift grounding. The main role of these tugs is that if an oil tanker loses manoeuvrability through 
steering or propulsion failure, there will be a tug sufficiently close that it can intercept the drifting oil 
tanker before it runs ashore. The tugs must dynamically be assigned moving target positions for 
tracking such that the overall risk of any oil tankers drifting aground is minimised. A simulated case 
study on optimal positioning of a fleet of tugs along the northern Norwegian coast serves as a means 
of evaluating the algorithm. The proposed algorithm plans iteratively the movement trajectories for 
each individual tug such that the net collective behaviour of the tugs outperforms that of stand-by tugs 
stationed at bases located uniformly along the coast. An improved version of this algorithm is later 
presented by [80] to solve the same tug fleet optimization problem. A receding horizon mixed integer 
programming (RHMIP) model for optimal dynamic allocation of tug vessels to oil tankers was proposed 
by [81]. 

Despite being the most relevant concept for ASTAIR, fleet assignment models focusing on tug 
allocation to aircraft is rather new and existing research on this area is comparatively less. The main 
contributions are the outcomes of the projects such as AEON and the recent research on assigning 
electric towing vehicles to aircraft. The remaining research focus on tug allocation in maritime. The 
innovative solutions we aim to design and develop for assigning taxibots to aircraft in ASTAIR will 
provide a significant contribution to state-of-the-art in this area. 

4.1.3 Fleet management for ground handling  

The aircraft Ground Handling (GH) operations represent the airside activities at airports in charge of 
processing passengers, cargo, facilities, and supplies at and around parked aircraft. Most of these 
operations are performed by different service providers, using specialized vehicles and equipment 
known as Ground Support Equipment (GSE) whose management is core to GH [81].  

Automation of ground handling processes using electric vehicles plays an important role in improving 
efficiency and reducing carbon emissions. Automation of tasks requires strategic allocation and 
scheduling of tasks given a limited size of heterogeneous GSE fleet, as well as creating the conflict free 
routes for the GSE vehicles traveling on aircraft stands.  

Assignment of GSE fleet to a heterogeneous set of ground handling tasks and generating task 
sequences that minimize both the turnaround time between consecutive flights and the makespan for 
all vehicles becomes a challenging problem when the available GSE fleet is limited, and the flights are 
frequent. 

[82] present a framework that combines task allocation and path planning for automation of ground 
handling operations, using a multi-agent perspective. In this study, the task allocation problem is 
handled using an integrated solver that combines an auction algorithm with a mixed integer 
programming model which is used to generate bids at each round of the auction. For each candidate 
task, possible assignment to a potential position of existing schedule of each GSE vehicle is evaluated 
by reoptimizing the schedule of the vehicle including the candidate. The candidate is assigned to a 
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vehicle if only that vehicle is the winner of the auction in that round. By this way, partial schedules are 
created by taking the interests of different agents into account at each decision phase until all tasks 
are allocated. To develop the mixed integer programming model, the task scheduling problem for a 
single vehicle is converted into a single vehicle pick-up and delivery problem with time windows, which 
also considers the movements of GSE vehicles on the paths in addition to processing times of tasks. 
The considered GSE fleet includes refuelling, catering, baggage handling, water and lavatory service 
vehicles.  

To lower the ramp risk and improve the aircraft ground handling efficiency, [83] propose solutions for 
accurate tracking, collision detection, and optimal scheduling of airport Ground Support Equipment 
which includes vehicles with one carriage, such as tractors and shutters, as well as the baggage transit 
trains that contain one tug plus multiple dollies. For optimal scheduling of GSE, a mixed-integer linear 
programming model that aims to minimize the total rental cost and travel time of the equipment while 
respecting the constraints that include flight timetables, speed limits, size of available GSE fleet, 
maximum number of dollies that can be attached to baggage transit trains. An efficient heuristic 
algorithm is proposed to solve the model.  

[84] develop a mathematical model for determining the number of airport equipment dedicated for 
the baggage loading and unloading. The demand for the carts and loaders is predicted and based on 
the prediction, the optimal number of equipment that can handle all flights is obtained. [85] design a 
model for scheduling aircraft ground handling operations with uncertain durations which might be due 
to breakdowns, weather conditions, cargo loading and unloading incidents. Critical Path Analysis and 
Monte Carlo Simulation are used to improve the aircraft ground handling operations during the 
turnaround. 

[86] study the GSE scheduling problem with mixed fleet of fuel vehicles and electric vehicles with time 
windows and the objective of minimizing the sum of time, energy and emission costs and propose an 
optimal fleet configuration model. Scenarios with different characteristics of road network scale, 
terminal configuration and flight are tested and results show that scenario characteristics affect the 
optimal fleet allocation strategy. 

[87] consider the problem of scheduling de-icing vehicles. The objective is to minimise the delay of 
flights due to de-icing, and the travel distance of the de-icing vehicles. They propose a greedy 
randomised adaptive search algorithm. A case study of real-life data from Stockholm Arlanda Airport 
shows that proposed method performs significantly better compared to simple scheduling strategies.   

[88] propose a ground handling management structure which allows the automation of operations to 
face the growing demand for this service. It is shown how at operations level, information exchange 
with the airport collaborative decision-making system turns possible on-line fleet assignment to 
ground handling tasks. This is done by designing different heuristics for assignment of fully automated 
or semi-automated vehicles to ground handling tasks. Numerical results for an actual airport are 
presented to illustrate the potential performance of automated ground handling operations. 

4.2 Algorithms for path and motion planning 

Algorithms for path and motion planning are explained in four subsections. Section 4.2.1 focus path 
and motion planning algorithms for airport surface movement, Section 4.2.2 explains the state-of-the-
art path and motion planning algorithms that are used in various environments, Section 4.2.3 
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summarizes the recent research directions heading towards the solution of path planning combined 
with target assignment, Section 4.2.4 presents a comparison of solvers in terms of complexity and 
solution quality, and Section 4.2.5 provides with a brief summary of explainable AI methods for path 
and motion planning. 

4.2.1 Path and motion planning for airport surface movement 

Research in airport ground movement include the path and motion planning of aircraft taxiing on 
airport surface layouts. 

[89] develop a mixed-integer linear programming formulation to optimize the timed taxiing routes of 
all aircraft on an airport surface. The constraints of the model include boundary constraints which 
enforce initial location, initial time based on pushback ready time, runway exit time, routing 
constraints, timing constraints, conflict constraints, and time windows constraints. The objective is 
weighted function of emissions, taxiing times, deviations from intended departure times. A minimum 
and a maximum taxiing speed exist for each aircraft type. The taxiway grid is represented by a directed 
graph.  The aircraft can hold at any node of the graph. Only the conflicts between taxiing aircraft are 
resolved, Deviations from departure times are allowed only if they do not affect the departure slot of 
other flights. Amsterdam Schiphol Airport is used as a case study. 

[90] integrate speed profiles into conventional routing and scheduling problem. Speed profile 
optimization problem is defined as a multi-objective optimization problem where the objectives are to 
minimize total taxi time and fuel consumption. The routing and scheduling problem is to route aircraft 
from source to destination locations in a time and fuel-efficient manner, respecting routes and 
schedules of other aircraft while preventing conflicts between them. The airport surface is represented 
as a directed graph, where the edges represent the taxiways and the vertices represent the taxiway 
crossings, intermediate points and sources/destinations such as gates, stands and runway exit points. 
All edges of taxiway network are assumed to be bidirectional. Only one aircraft can travel along one 
edge at a time so that a minimum safety distance from all other aircraft is ensured. The period when 
the edge is not used by any other aircraft is called a time window. The k-Quickest Path Problem with 
Time Windows (k-QPPTW) is used to solve the routing and scheduling problem. The k-QPPTW 
algorithm, which was proposed by [91], sequentially routes aircraft considering their pushback/landing 
time, while respecting time windows corresponding to edges, and generates a set of k-best solutions 
regarding minimum taxi time and maximum allowed speed. These potential routes are used as input 
for the speed profile optimization problem.  A major European hub, Zurich Airport (ZRH), is used as 
case study. A similar case was analyzed for Manchester Airport in the study of [92], where the Pareto 
front for taxiing time and fuel consumption is found by applying an immune inspired multi objective 
optimization algorithm (PAIA). 
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Figure 13 : Layout of ZRH with taxiways [54] 

[93] minimize the taxiing time considering the runway exit availability and modeling realistic flight 
holding patterns at intersections. The presented integer programming model includes flow 
conservation constraints, taxi-out constraints, taxi safety constraints, runway occupancy constraints, 
taxiway occupancy constraints, re-taxiing avoidance constraints, parking position and runway taxiing 
avoidance constraints, route uniqueness constraints, boundary constraints, runway exit availability 
constraints and existing plan constraints. 

[94] present a mixed-integer linear programming optimization method for the coupled problems of 
airport taxiway routing and runway scheduling, that is validated at Heathrow Airport. The 
mathematical model involves taxi timing constraints for speed and conflicts. Heathrow layout is 
represented by the 126-node graph structure. The setup included 240 aircraft, 122 of which were 
arrivals. 

[95] propose optimization-based solution approaches for simultaneous aircraft scheduling and routing 
in terminal area, to minimize delays. The disturbed traffic situations are generated by simulating 
multiple delayed arriving/departing aircraft and a temporarily disrupted runway. Timing and routing 
decisions are proposed for Milan Malpensa Airport (MXP). 

[96] proposed ground taxiing route optimization model that avoids hotspots on the surface and 
minimizes total taxiing time. Hotspots are the areas where taxi conflicts are most likely to occur. 

In the study of [97] the Airport Surface Petri Nets (ASPN) is modeled with Colored Timed Petri nets 
(CTPN). Optimal paths are obtained based on the evolving states of Petri nets. The path finding 
problem for several aircraft is solved by finding the optimal path of each aircraft separately considering 
dynamic obstacles. The use of petri nets in modeling airport surface movement is also observed in the 
research of [98], [99], [100], [101], [102]. [100] propose a colored taxiway-oriented Petri net model. 
Access priorities of aircraft for a road section are adjusted by decreasing the priority of delayed aircraft. 
Sun and Hua [101] use fuzzy Petri net for aircraft trajectory segment sequencing, 

[103] present an autonomous dispatch motion control framework for multiple carrier aircraft taxiing 
on the deck. The problem of finding the optimal coordinated taxiing trajectory is defined as a 
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centralized optimal control problem, where the constraints are based on safety limit for taxiing 
velocity, physical limit on maximum aircraft front wheel steering angle, acceleration limit, collision-
free conditions between aircraft and other obstacles, and boundary conditions (parking position, 
heading angle, …, etc.). Feasible taxiing trajectories for several active aircraft and corresponding 
control inputs are found by solving the optimal control problem. Optimal control technique is also used 
by [104] to consider motion and control constraints in path planning for unmanned ground systems 
including vehicles and robots, which are widely used in aerospace, military, civil and other fields. 

[105] use genetic algorithm to solve the taxiing problem on a complex taxiway network at Chengdu 
Shuangliu airport, considering the taxiway operation rules and conflict avoidance. The results are 
compared to the results of Dijikstra algorithm. 

[106] model the collaborative path planning for multiple carrier-based aircraft as a multi-agent 
reinforcement learning problem. 

[107] simulate aircraft ground movements at Lisbon International Airport, to predict taxi times for 
TaxiBots, semi-robotic towbarless tractors suitable for dispatch towing at medium to large airports. 

Path and motion planning algorithms focusing on airport surface area usually requires defining the 
environment as complex graphs including intersections of taxiways and edges. Thus, they are highly 
adaptable for solving the problems in ASTAIR, in which case the layouts of different airports are stored 
in the databases in the form of graphs. 

4.2.2 State-of-the-art algorithms for path and motion planning 

The problem of path planning for multiple robots ranks among the most challenging problems of 
artificial intelligence and particularly of theoretical robotics ([108], [109], [110]). A group of robots in 
a certain environment need to move from their initial positions to the given goal positions. The robots 
are required to avoid obstacles and must not collide with each other during their movements. Thus, 
the task is to find spatial-temporal paths from the initial to the goal position for each robot such that 
these paths do not intersect at the same time point ([111]). Application domains of Multi Agent Path 
Finding (MAPF) include robotics, robotics, video games and logistics ([112], [113]). MAPF is also applied 
for autonomous aircraft towing vehicles ([114]). 

Motion planning is the extension of path planning. Motion planning aims at generating interactive 
trajectories in workspace when robots interact with dynamic environment, therefore motion planning 
needs to consider kinetics features, velocities and poses of robots and dynamic objects nearby [115]. 

MAPF solvers include optimal and bounded sub-optimal solvers ([116], [117], [118], [112], [119], 
[120]), fast prioritized planners without any completeness/optimality guarantees ([121], [122]), and 
complete, non-optimal algorithms ([123], [124], [111]). 

[111] defines the environment of robots as bi-connected graphs with at least two unoccupied vertices, 
where robots are placed in its vertices, which is equivalent to the problem of pebble motion on graphs. 
To solve this class of the MAPF, [111] proposes a polynomial time algorithm, BIBOX, which scales well 
in highly connected 2D and 3D spaces. Another complete, non-optimal algorithm for solving the 
cooperative multi-agent path planning algorithm is PUSH AND ROTATE ([123], [124]). The algorithm is 
complete for the class of instances with two unoccupied locations in a connected graph.   
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A group of optimal and sub-optimal MAPF solvers are based on conflict-based search. Conflict Based 
Search (CBS) is an optimal multi-agent pathfinding algorithm, which is presented by [113]. At the high 
level, a search is performed on a Conflict Tree (CT) which is a tree based on conflicts between individual 
agents. Each node in the CT represents a set of constraints on the motion of the agents. At the low 
level, fast single-agent searches are performed to satisfy the constraints imposed by the high-level CT 
node. In many cases the two-level formulation enables CBS to examine fewer states than A*. The 
classical A* algorithm ([125]) can route a single agent to its destination. In a coupled approach, a simple 
MAPF solver can be implemented by concatenating all the single agent states into a joint state and 
then using a generic search algorithm like A* for traversing the joint space to find the joint state 
solution. Coupled approaches tend to provide stronger guarantees on feasible paths and minimum 
cost by exploring the joint space. However, they have a high computational cost as the dimensionality 
of the joint space increases with the number of robots ([126]).  

[119] formalize the problem of optimal pathfinding for multiple agents using a search tree called the 
increasing cost tree (ICT) and present a search algorithm, called the increasing cost tree search (ICTS) 
that finds optimal solutions. ICTS is a two-level search algorithm. The high-level phase of ICTS searches 
the increasing cost tree for a set of costs (cost per agent). The low-level phase of ICTS searches for a 
valid path for every agent that is constrained to have the same cost as given by the high-level phase. 
The search strategy of the proposed algorithm is compared to A* search and outline the benefits and 
limitations. It is also claimed that the proposed formalization allows further pruning of state space and 
the pruning techniques for ICTS are studied further by [127]. 

Meta-agent CBS (MA-CBS) ([120]) generalizes CBS by merging groups of agents into meta-agents when 
beneficial. Improved CBS (ICBS) ([117], [118]) improves MA-CBS. ICBS guarantees finding optimal 
solutions for cooperative pathfinding problems ([128]). Enhanced CBS (ECBS) ([116]) is the 
modification of CBS which trades off optimality for speed. [116] develop several suboptimal variants 
of CBS, relaxing the high- and low-level searches to allow them to return suboptimal solutions. These 
are Greedy-CBS (GCBS), a fast suboptimal solver, Bounded CBS (BCBS) that uses a focal-list in low- and 
high-levels and ensures that the returned solution is within a given suboptimality bound, and Enhanced 
CBS (ECBS) in which the high- and low-levels share a joint suboptimality bound. Nested ECBS (NECBS), 
which is proposed by [127] is a nested architecture based on ECBS, where collisions within meta-agents 
are resolved with ECBS. The merging technique from CBS is extended to ECBS, which results in Meta-
Agent ECBS (MA-ECBS) and using ECBS to resolve the collisions between agents within the same meta-
agent, results in Nested ECBS (NECBS). NECBS preserves the completeness and bounded-suboptimality 
of ECBC and has a higher success rate than ECBS and its state-of-the-art variants for a runtime limit of 
5 minutes. 

[130] proposes a set of efficient decoupled approaches that break down the multi-agent path finding 
problem into a series of single-agent searches, which are named as Cooperative A* (CA*), Hierarchical 
Cooperative A* (HCA*), and Windowed Hierarchical Cooperative A* (WHCA*). The algorithms are 
performed on maze-like environments and compared to Local Repair A*.  Local Repair A* (LRA*) (Stout 
[131]) describes a family of algorithms widely used in the video-games industry. Each agent searches 
for a route to the destination using the A*, ignoring all other agents except for its current neighbours. 
The agents follow their routes, until a collision is imminent, and the remaining route is replanned. In 
Cooperative A*(CA*) the task is decoupled into a series of single agent searches. The individual 
searches are performed in three-dimensional space-time and consider the planned routes of other 
agents. A wait move is included in the agent’s action set.  After each agent’s route is calculated, the 
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states along the route are marked into a reservation table. Entries in the reservation table are avoided 
during searches by subsequent agents. The reservation table represents the agents’ shared knowledge 
about each other’s planned routes.  Agents may be different in speed or size, however the reservation 
table must be capable of marking off any occupied region. The order of agents might affect the solution 
quality, which might be dealt using Prioritized Planning. Hierarchical Cooperative A* (HCA*) improves 
performance using a heuristic, which ignores both the time dimension and the reservation table. 
Abstract distances are perfect estimations of the distance on a 2-dimensional map ignoring the agents’ 
interactions. Windowed Hierarchical Cooperative A* (WHCA*) limits the space-time search depth to a 
dynamic window, spreading computation over the duration of the route. M* ([132]) is an A*-based 
algorithm that dynamically changes the branching factor based on conflicts. 

[133] propose safe interval path planning (SIPP) and compare SIPP against HCA* ([130]). Safe intervals 
represent time using the indices of contiguous periods, instead of using timesteps. This idea greatly 
decreases the number of states that need to be searched, without sacrificing the theoretical 
guarantees on optimality. The maximum number of safe intervals for any given configuration is at most 
the number of dynamic obstacles whose trajectories intersect in that configuration. SIPP allows for 
very fast planning in dynamic environments when planning time-minimal trajectories. Generalized Safe 
Interval Path Planning (GSIPP) ([134]) extends the results from planning with safe intervals to derive a 
state dominance relationship for dynamic environments that can be applied to continuous cost 
domains. To deal with the uncertainty in the predicted trajectories of moving obstacles, they propose 
Generalized Probabilistic Planning with Clear Preferences (PPCP) ([128]). 

Bounded suboptimal SIPP algorithms include weighted SIPP (WSIPP), Weighted SIPP with Duplicate 
States (WSIPPd ), Weighted SIPP with Re-expansions (WSIPPr ), Focal SIPP (FocalSIPP) ([135]).  

[128] develop Any Angle Pathfinding Algorithm based on SIPP for multiple agents (AA-SIPP(m)). This is 
a decoupled prioritized planner that applies Any Angle SIPP to multiple agents. Typically, in 2D grid 
pathfinding an agent is presumed to move from one traversable (unblocked) cell to one of its eight 
adjacent neighbours. Sometimes diagonal moves are prohibited, restricting an agent’s moves to the 
four cardinal directions only. The limitations of 8 (or 4) connected grids increased the popularity of 
any-angle pathfinding. In any-angle pathfinding, an agent is allowed to move into arbitrary directions 
and a valid move is represented by a line segment, whose endpoints are tied to the distinct grid 
elements (either the center or the corner of the cells) and which does not intersect any blocked cell. 
Single agent any-angle pathfinding algorithms, Theta* ([136], [137]), optimal any-angle path finder 
Anya ([138]),  fast near-optimal any-angle path finder with 2k neighbourhoods ([139]), find shorter and 
realistic paths. When multiple agents follow any-angle paths the conflicts can occur at any point. Using 
AA-SIPP(m), cooperative pathfinding problems are solved under any angle assumption. The proposed 
multi-agent planner AA-SIPP(m) is compared with the grid-based planners including SIPP for multiple 
agents (SIPP(m)) and coupled CBS based solvers ICBS and ECBS. The proposed method is complete 
under well-defined conditions, as well as highly efficient in practice. The success rate of AA-SIPP(m) is 
extremely high (>97%) and the average solution cost is significantly better (up to 20%) than the one 
achieved by both coupled and decoupled planners, that rely on cardinal-only moves ([128]). 

[140] extend SIPP by developing Any Time SIPP (ASIPP) planner, which works well in dynamic 
environments, since any time planners find an initial solution quickly. They demonstrate the real-time 
capabilities of the Any Time SIPP planner in UAV domain, planning paths on large maps with 50 
dynamic obstacles in a short time. Each obstacle is treated as a sphere with a radius and a trajectory. 
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A trajectory is a list of points, where each point has state variables, specifying its configuration and 
time. The points in the trajectory list are ordered from earliest time to latest time. Thus, the trajectory 
shows how the obstacle is predicted to move. The proposed algorithm extends SIPP to anytime 
planning by combining it with ARA* (Anytime Repairing A*). ARA* performs anytime planning by 
running a series of weighted A* searches with decreasing values of ε ([141]). Weighted A* does not 
guarantee optimality, however it has been shown that the obtained solution is not larger than the 
optimal solution times ε.  ARA* initiates a weighted A* search with a high ε, to find an initial solution 
quickly and decreases the value of ε. Given enough time, ARA* will reach ε = 1 and return the optimal 
solution. The results of ASIPP and SIPP are compared. 

[142] combine SIPP and Constrained Path Following Control. First, they plan the reference trajectory 
by the safe interval path planning algorithm that is capable of handling any-angle translation and 
rotations. Second, the path following problem is treated as the constrained control problem.  They use 
an extension of Any Angle Safe Interval Path Planning Algorithm (AA-SIPP). AA-SIPP allows following 
not only edges that were initially present in the graph but also the newly build ones that represent the 
shortcuts. AA-SIPP is extended to AAt-SIPP to handle not only the translation moves but also the 
rotation (turn-in place) moves. In the studied problem, the robot is modelled as an open disk of radius 
r =0.5l, where l is the size of the grid cell, and the robot’s action space includes wait in place, rotate in 
place, translate from one un-blocked cell to the other. Trajectory of a robot is a sequence of such 
actions. The dynamic obstacles are translating-and-rotating open disks of radii r and move in the same 
way as the robot, and the static obstacles are a set of blocked cells. The path planning problem is to 
find a collision free trajectory that is at each moment of time robot is at least r units away from the 
closest static obstacle(s) and at least 2r units away from the closest dynamic obstacle(s). For path 
planning, it is assumed that the robot accelerates/decelerates instantaneously. After the trajectory is 
planned, a path following problem is solved, constructing a control that will follow the prescribed 
trajectory. Supposing that a robot model is differentially flat, authors use a model based on Brunovsky 
normal form, which has constraints on maximum linear velocity and acceleration although these 
constraints were ignored at the path planning stage. Thus, the trajectory is refined considering these 
constraints. To make the refined trajectory close to the original one, it is assumed that the spatial 
movement on each segment of occurs in three stages: highest possible acceleration to required 
velocity, a uniform motion with constant speed and highest possible deceleration to a full stop. A 46 × 
70 grid representing a warehouse-like environment was used in experiments. The size of each cell was 
1m2 and the size of the robot and the dynamic obstacles was 0.5. Translation speed and rotation speed 
were 1 m/s and 180 degrees per second, respectively. 128 dynamic obstacles were moving on a grid. 
100 different path finding instances were generated randomly. For the path-following algorithm the 
parameters such as the maximum velocity and maximum acceleration were set.  Maximum velocity 
was set to 1 m/s as the same value was used for the path -planning algorithm. For the acceleration 
rate, three different values were tested. 

Existing research also includes reduction-based solvers where multi-robot path finding problems are 
reduced to network flow models and combinatorial optimization problems and solved using the 
network flow algorithms from graph theory, mixed integer linear programming (MILP), answer set 
programming (ASP) and boolean satisfiability problem (SAT) solvers.  

[143], [144], and [145] study the optimal multirobot path planning on graphs, using a special type of 
multi-flow network and integer linear programming. In these studies, they show how the problem of 
multi-agent path planning on collision-free unit-distance graphs (CUGs) can be reduced to network 
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flow problems and exploit the results from graph theory. They focus on a specific case of multi-agent 
path planning problem where the goals of agents are not pre-determined and obtain the paths while 
assigning each agent to a different goal, using an adapted version of maximum flow algorithm. Yu and 
LaValle [146] present near optimal solutions to multi-robot path planning problem on graphs.  

[147] uses a time-space network (TSN) and mixed integer linear programming (MILP) to model the 
problem of dispatching and routing automated guided vehicles (AGVs) with vehicle and machine buffer 
capacities while avoiding conflicts. 

[148] exploits the SAT solver to optimize the makespan of a sub-optimal solution for relatively small 
instances. [149] use Answer Set Programming (ASP) approach to solve multi agent path finding 
problems. 

[149] present a study on improving the performance of reduction-based solvers for the problem of 
multi-agent pathfinding, using graph pruning strategies. 

LA-MAPF generalizes MAPF to agents with different shapes and sizes. Each agent has a fixed shape 
around a reference point and can occupy multiple vertices at the same time. A vertex conflict happens 
when the shapes of two agents overlap at some timestep, and an edge conflict happens when the 
shapes of two agents overlap at some time when they move to their respective next vertices. Multi 
constraint CBS (MC-CBS) ([150]) is a state-of-the-art optimal solver for LA-MAPF. Multi-Constraint CBS 
(MC-CBS) adds multiple constraints (instead of one constraint) for an agent when it generates a high-
level search node. [151] improves both the success rate and runtime of MC-CBS by generalizing the 
mutex based symmetry breaking techniques to LA-MAPF and proposing a new a mutex-based conflict 
selection strategy (MC-CBS-MS). [150] embed a procedure to the well-known MAPF algorithm PUSH 
and ROTATE enabling it to solve MAPF considering large ages, which is able to find solutions for non-
trivial instances. The proposed procedure is called P&R-LA. [152] show how the problem of MAPF for 
large agents can be reduced to pebble motion on (general) graph. The procedure moves away the 
agents away from the edge which is needed to perform a move action of the current agent. More 
MAPF instances with large agents on arbitrary non-planar graphs (roadmaps) were solved compared 
to the state-of-the-art MAPF solver–Continuous Conflict-Based Search (CCBS) [153]. 

A metaheuristic that has wide applications for path and motion planning is particle swarm optimization 
(PSO). Particle swarm optimization (PSO) is used by [154], for robot path planning in dynamic 
environments. Obstacles of different shapes (convex, concave and curved) with varying velocities are 
considered. [155] combine Particle Swarm Optimization with Tabu Search for autonomous mobile 
robot path planning. Other studies include path planning of mobile robots based on specialized genetic 
algorithm and improved particle swarm optimization ([156]), hybrid multi-objective bare bones 
particle swarm optimization for solving the three-objective robot path optimization model where the 
objectives are path length, smoothness and safety of path ([157]), second-order oscillating particle 
swarm optimization algorithm for mobile robot path planning with complex constraints ([158]), motion 
planners inspired by particle swarm optimization to generate conflict free paths ([159]), local and 
global path planner using particle swarm optimization to find conflict-free paths ([160]), path planning 
using PSO based on grid network ([161]). [162] use particle swarm optimization for path planning of 
UAVs in three-dimensional space, where UAV flight must consider multiple factors such as altitude, 
terrain, and obstacles. 
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Multi-Agent Motion Planning (MAMP) is the task of finding conflict-free kino-dynamically feasible 
plans for agents from start to goal states. 

Robots use motion planning algorithms to plan their trajectories both at global and local level. One of 
the widely used robot architectures for autonomous robots is the hybrid deliberative/reactive 
architecture ([163], [164]), which uses the deliberative layer and the reactive layer to realize high-level 
long-term planning and local reactive planning, respectively. A typical example is where the maps of 
the environment are constructed using information from sensors like the light detection and ranging 
(LIDAR), high-level paths are planned by using the algorithms such as A*, and reactive strategies for 
speed control or local planning are used to cope with dynamic and uncertain scenarios. High-level 
planning, local planning or instant reactions are evaluated by the behaviour manager to generate a 
better combined planning ([115]). 

[165] define the problem of multi-agent cooperative motion planning using Signal Temporal Logic (STL) 
specifications, where robots can have nonlinear and nonholonomic dynamics. Authors claim that 
existing methods that are based on discrete abstractions and model predictive control (MPC) for 
motion planning are not scalable. [165] suggest timed waypoints to abstract nonlinear behaviours of 
the system as safety envelopes around the reference path defined by those waypoints. They encode 
the search for the waypoints which satisfy the STL requirements as a mixed integer linear program 
(MILP). The automatic task and motion planning according to high-level specifications is expected in 
an intelligent and autonomous robotic system. It is not straightforward to directly derive a specific 
sequence of locations to visit for each agent from these high-level specifications. Temporal Logic (TL), 
especially Signal Temporal Logic (STL) provides a mathematically precise language for specifying tasks 
and rules over continuous signals with explicit time semantics. Two approaches for motion planning 
from TL specifications are discrete abstractions and MPC. Abstraction-based methods discretize the 
state space and generate an abstract graph to perform the motion planning. MPC methods discretize 
the trajectory with a fixed timestep, and the states at each timestep are viewed as the decision 
variables of an optimization problem. The disadvantage of abstraction methods is that the number of 
abstracted states can grow exponentially. Also, the graph generation requires domain knowledge. 
Similarly, for MPC-based methods, the number of required timesteps might be too large for long-
horizon planning. [165] use piece-wise linear (PWL) reference paths, which are sequences of 
timestamped waypoints, to handle more expressive STL specifications. The constraints are recursively 
encoded over the timestamped waypoints. Also, to determine the tasks that are to be completed by a 
group of cooperative agents, the multi-agent STL is defined, and subtasks are automatically assigned 
to each agent such that they cooperate without colliding. The encoded constraints are linear because 
of the PWL structure. Thus, optimal solutions can be found using MILP. 

[166] present a scalable and effective multi-agent safe motion planner (S2M2) that enables a group of 
agents to move to their desired locations while avoiding collisions with obstacles and other agents, 
with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation 
limits, and disturbances. They address this problem by finding a piecewise linear path for each agent 
such that the actual trajectories following these paths are guaranteed to satisfy the reach-and-avoid 
requirement. The spatial tracking error of the actual trajectories of the controlled agents can be 
precomputed for any qualified path that considers the minimum duration of each path segment due 
to actuation limits. Using these bounds, a collision-free path for each agent is found by solving Mixed 
Integer-Linear Programs and agents are coordinated using the priority-based search. They 
demonstrate the method by benchmarking in 2D and 3D scenarios with ground vehicles and 
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quadrotors, respectively, and show improvements over the solving time and the solution quality 
compared to two state-of-the-art multi-agent motion planners, ECBS-CT ([167]) and MAPF/C+POST 
([168]).  

ECBS-CT is a generalization of ECBS for the MAMP problem. In the high-level search, it takes a problem 
instance and a suboptimality bound w ≥ 1 as input and it generates a solution with a cost which is not 
higher than w times the optimal cost. Thus, it generates optimal or bounded suboptimal solutions. The 
low-level search uses SCIPP, which is developed by [167] and is a generalization of SIPP that is suitable 
for focal search. ECBS-CT solve the MAMP problem in the state lattice world representation. State 
lattices ([169]) are extensions of grids that are able to model motion constraints and suitable for 
planning non-holonomic and highly constrained agents with limited manoeuvrability. A state lattice is 
constructed by discretizing the configuration space into a high-dimensional grid and connecting the 
cells of grid with motion primitives. A motion primitive models kino-dynamically feasible actions of the 
agent. A state in a lattice is a tuple of the form (x, y, z, q, v, …), where x, y, z are the coordinates of the 
agent’s centre, q is the orientation, v is the velocity, … etc. An edge in a state lattice is associated with 
the duration and a list of cells swept by the agent to execute a motion ([167]).  

MAPF/C+POST is a method which is used by ([168]) for multirobot trajectory planning in known, 
obstacle-rich environments. They perform this solution approach on a quadrotor swarm navigating in 
a warehouse setting. First a roadmap generation procedure, which generates sparse roadmaps 
annotated with possible interrobot collisions, is used. Later, valid execution schedules are found in 
discrete time and space, using discrete planning. Finally, smooth trajectories are created using 
continuous refinement. Safe and smooth trajectories for a high number of quadrotors in dense 
environments with obstacles are computed in a short time. 

Multi-Agent Motion Planning (MAMP) is the problem of computing feasible paths for a set of agents 
each with individual start and goal states within a continuous state space. By extending the optimal 
MAPF technique, Conflict-Based Search (CBS), to continuous state spaces, [126] propose an efficient 
and scalable MAMP solver, CBS-MP. They compare the suggested solver with standard coupled and 
decoupled Probabilistic Roadmap (PRM) variants and ECBS-MP, another CBS extension to solve MAMP 
problems.  

Multi-agent motion planning (MAMP) is a critical challenge in applications such as connected 
autonomous vehicles and multi-robot systems. [170] model the problem of coordination of connected 
self-driving vehicles as MAMP and formulate the problem using a novel, flexible sphere-based 
discretization for trajectories and propose a space-time conflict resolution approach adhering to 
kinematic constraints. They use a depth-first conflict search strategy to improve scalability and 
compare the results with state-of-the-art solvers. 

[126] presents an overview of some of the state-of-the-art MAPF and MAMP solvers in Table 1. MAMP 
is a superset of MAPF. in coupled approaches, all agent paths are computed in unison. These 
approaches work in the joint space of all agent states. They tend to provide stronger guarantees on 
feasible paths and minimum cost by exploring the joint space. However, they have a high 
computational cost. Decoupled approaches work in single-agent spaces allowing to rapidly compute 
feasible paths for problems with many agents. However, individual agent state spaces are explored in 
isolation, and later solutions are combined. This prevents ensuring completeness and optimality. Due 
to the trade-off between faster computation times and finding optimal cost solutions, hybrid 
approaches are used to leverage the strengths of both coupled and decoupled techniques.  For 
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example, a hybrid MAPF method, M*, solves the MAPF problem by initially planning a set of individual 
policies in a fully decoupled manner. These policies are then used to guide a coupled search over the 
joint state space. When an inter-agent conflict arises, the coupled search is backtracked until the last 
collision-free joint state, and the conflicting agents are merged into a coupled meta-agent. New 
collision-free paths are computed using a coupled planner for the meta-agent. If all agents are in 
collision at the same place and time, M* may become a fully coupled planner as long as the inter-robot 
conflict remains unresolved. In motion planning, the state space is the set of all possible agent 
configurations known as the configuration space. In response to the complexity of motion planning, 
sampling-based motion planners were developed as an efficient means of discovering valid paths in 
the configuration space. These methods, such as the Probabilistic Roadmap Method (PRM) attempt to 
create a roadmap, or graph, approximating the configuration space. Paths are found by querying this 
roadmap. RRT is another sampling-based motion planning algorithm and MRdRRT is an RRT-based 
technique. ECBS-CT aims to solve the MAMP problem in the state lattice world representation, where 
the workspace is discretized into a grid, and then grid cells are connected using a predefined set of 
single agent motion primitives. It leverages using a state-lattice representation to map the agents’ 
motions to a common workspace discretization. Thus, all the agents’ motions can be incorporated into 
the same state-space representation. 

Table 1 : An overview of the state-of-the-art MAPF and MAMP solvers ([126]) 

Algorithm MAPF/MAMP Coordination Optimal State representation 

Composite-A* [125] MAPF Coupled Yes Grid 

Decoupled-A* [171] MAPF Decoupled  Roadmap 

CBS [112] MAPF Hybrid Yes Grid 

MA – CBS [81] MAPF Hybrid Yes Grid 

ECBS [116]  MAPF Hybrid Yes Grid 

M* [132] MAPF Hybrid Yes Grid 

MRdRRT [172] MAMP Coupled Yes composite roadmap 

Composite-PRM [173] MAMP Coupled Yes composite roadmap 

Decoupled-PRM [173] MAMP Decoupled  roadmap 

MRP-IC [174] MAMP Decoupled  composite roadmap 

ECBS-CT [167] MAMP Hybrid Yes state-lattice 

CBS-MP [126] MAMP Hybrid Yes roadmap 

 

4.2.3 Recent advances in path and motion planning 

Recent applications of A* include minimum dose path planning based on navigation mash ([175]), to 
avoid radiation in large and complex radiation environments. [176] solve the path planning problem 
of the automatic guided vehicle (AGV) sorting system on a mash topology map, using a two-stage 
algorithm. [177] apply several recently developed MAPF solution approach to the 3D Pipe Routing (PR) 
problem, which aims at placing collision free pipes from given start locations to given goal locations in 
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a known 3D environment. Accordingly, a solution to a MAPF instance is a set of blocked cells in x-y-t 
space, while a solution to the corresponding PR instance is a set of blocked cells in x-y-z space. 

A considerable amount of the recent literature includes the solvers dedicated to handling the 
combined problem of path finding and target or task assignment for the agents, or the problems where 
single agents have multiple goal locations and a sequencing of these is also needed. These are 
summarized in the following paragraphs. 

[178] solve the combined Target-Assignment and Path-Finding problem (TAPF) which requires 
simultaneously assigning targets to agents and planning collision-free paths for agents from their start 
locations to their assigned targets. Instead of the Conflict-Based Search with Target Assignment (CBS-
TA) which uses K-best target assignments to create multiple search trees and Conflict-Based Search 
(CBS) to resolve collisions in each search tree, [178] propose Incremental Target Assignment CBS (ITA-
CBS) to avoid duplicated collision resolution in multiple trees and the expensive computation of K-best 
assignments. ITA-CBS generates only a single search tree and incrementally computes best 
assignments during search. Other variants of TAPF are presented by [179], [180], [181], [182], [183], 
[184], [185], and [186]. 

[179] adapt the Hungarian algorithm for solving the assignment problem with changing costs. [180]  
propose a novel approach called conflict-based Steiner search (CBSS) for solving MAPF in combination 
with Target-Sequencing which requires not only assigning targets to agents but also specifying the 
visiting order of targets. [181] deal with the problem of optimal target assignment and path finding for 
teams of agents by presenting the CBM (Conflict-Based Min-Cost-Flow) algorithm. On the low level, 
CBM uses a min-cost max-flow algorithm on a time-expanded network to assign all agents in a single 
team to targets and plan their paths. On the high level, CBM uses conflict-based search to resolve 
collisions among agents in different teams. [182] propose Task Conflict-Based Search (TCBS) algorithm 
to solve the combined delivery task allocation and path planning problem to optimality, which is to be 
used as a baseline for sub-optimal solvers. [185]  introduces multi-goal multi agent path finding (MG-
MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting 
vertices to one individual goal vertex per agent, MG-MAPF assigns each agent multiple goal vertices 
and the task is to visit each of them at least once. To solve MG-MAPF, [185] suggests two novel 
algorithms: a heuristic search-based algorithm called Hamiltonian-CBS (HCBS) and a compilation-based 
algorithm built using the satisfiability modulo theories (SMT), called SMT-Hamiltonian-CBS (SMT-
HCBS). [183]  study the multi-goal task assignment and path finding (MG-TAPF) problem whereas many 
tasks as agents are given, and each task consists of a sequence of goal locations. Tasks have to be 
assigned to agents and each agent must follow the sequence of goal locations of the assigned task. The 
aim is to find collision-free paths to minimize flow time. Authors prove that the problem is NP-hard 
using a reduction from a specialized version of the Boolean satisfiability problem to the MG-TAPF 
problem and propose the Conflict-Based Search with Task Assignment with Multi-Label A* algorithm 
(CBS-TA-MLA) that solves the problem to optimality. The algorithm uses the best first search CBS-TA 
on the high level to assign tasks and resolve conflicts, and multi-label A*, MLA ([187]), on the low level 
to find the time-optimal path of each agent that visits a sequence of goal locations of its assigned task. 
They also extend CBS-TA-MLA to a bounded-suboptimal version, called ECBS-TA-MLA, using ideas from 
the bounded suboptimal version of CBS. [184] use Answer Set Programming for generalized target 
assignment and path planning problem. [186] analyze the problem of allocating and sequencing goals 
for each agent while simultaneously producing conflict-free paths for the agents. They introduce an 
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exact algorithm called MS* which computes an optimal solution by fusing and advancing state of the 
art solvers for multi-agent path finding (MAPF) and multiple travelling salesman problem (mTSP). 

4.2.4 Comparison of solvers  

In this section, the state-of-the-art solvers are classified as (i) optimal and complete, (ii) bounded 
suboptimal and complete, (iii) unbounded suboptimal with no completeness guarantee, (iv) complete 
and non-optimal, and (v) SIPP variants which might contain the characteristics of any of the former 
groups, and evaluated in terms of performance, solution quality and completeness.  

Optimal MAPF solvers can be divided into four categories: A*-based, increasing cost tree search (ICTS) 
based, conflict-based search (CBS)-based, and reduction-based. The optimal solver also satisfies 
completeness.  

The reduction-based solvers are optimal and complete. For small-scale MAPF problems with dense 
obstacles and agents, the reduction-based solver can solve the problem quickly. The difficulty for a 
reduction-based solver is proof of the correctness of the reduction process, which usually requires 
complex mathematical reasoning. 

Optimal A* based solvers perform search in the k-agent state space. The drawback is that as the map 
size and the number of agents increases, the state space grows. All successor nodes are added to the 
OPEN list, regardless of whether they will be expanded. Both the joint state space and the joint 
branching factor grow exponentially as the number of agents increases. Thus, computational cost is 
high, and scalability is limited. M* is an improved version of optimal A* based solver which scales 
better than A* since joint branching factors are established only between conflicting agents. Unlike A*, 
M* does not need to add every neighbour to the OPEN list. M* initially uses decoupled planning to generate 
a low-dimensional search space. As robot-robot collision are found in the search space, the local 
dimensionality of the space is locally increased. When there is no conflict between agents, the state space 
is expanded to only one node every timestep, which contains the optimal actions of all single agents. For 
agents in conflict, the state space will generate all action combinations for them and combine them with 
the optimal actions of other agents. M* is proven to be complete and optimal. The worst-case 
computational cost of M* grows exponentially with the number of robots, however M* requires less time 
than A* to find paths for multirobot systems. 

In the two-level search framework of ICTS, the high-level searches a tree with the exact path cost for each 
agent, while the low-level verifies to see whether there is a solution on each ICT node. If there exists a 
subset of m agents for which no valid solution exists, the low-level can immediately terminate. Although 
ICTS is faster than A*-based approach, it still works on the 𝑘-agent state space, which grows exponentially 
with the number of ICT levels. It is not efficient if the instance contains dense obstacles or agents. 

When the agent density is relatively sparse, CBS can solve large-scale problems to optimality.  In most of 
the instances, CBS performs better than ICTS and A*. However, in some instances with many path 
conflicts, it is worse than A∗-based solvers. As the number of agents increases, path conflicts increase 
rapidly, and solution efficiency decreases.  

MA-CBS reduces the number of nodes in the constraint tree, by merging the agents into meta-agents when 
number of conflicts between them exceeds a given value and uses the A*-based MAPF solver to plan the 
path for the meta-agent at the low level, to speed up the search. ICBS applies Merge & Restart (MR) strategy 
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that suggests re-establishing a root node to start searching after merging agents unlike the MA-CBS, which 
keeps expanding the constraint tree nodes. MR can save a significant amount of computing cost. 

Optimal and complete MAPF solvers are given in Table 2 : 

Table 2 : Optimal and complete MAPF solvers 

Solver Description Search strategy Computational 
time 

Scalability 

A* 
(coupled) 

A* based  Search in joint state space of all 
agents 

Exponential Limited 

M* A* based State space is reduced compared 
to A* 

Exponential Better than A* 

ICTS Two-level Search in joint state space of all 
agents 

Exponential Significantly better 
than A* 

CBS Two-level Binary tree search based on 
conflicts on the high level, fast 
single agent planner on the low 
level 

Exponential Significantly better 
than A* and ICTS for 
most of the instances.  

MA-CBS CBS based Agents are merged into meta-
agents, thus, the number of 
nodes in the search tree is 
reduced compared to CBS. 

Exponential Better than CBS 

ICBS CBS based Prioritization of conflicts and 
Merge & Restart strategy speed 
up search 

Exponential Better than CBS and 
MA-CBS 

MILP, SAT, 
ASP 

Reduction 
based 

Reduction to MILP, SAT, ASP  Exponential Small scale problems 
with dense obstacles 
and agents  

 

Bounded sub-optimal solvers can give some guarantee of the quality of the solution. Bounded sub-optimal 
solvers are generally derived from optimal MAPF solvers. Bounded sub-optimal A* based solvers trade-off 
between optimality and search efficiency using inflated heuristics. Optimal A* based solvers can all be 
transformed into bounded sub-optimal solvers by introducing a sub-optimality factor (inflation rate).   
The dynamic potential search (DPS), which is a special case of focal search, is also an A*based bounded 
sub-optimal solver. All Agent Costs (AAC), which is a bounded sub-optimal variant of ICTS, increases 
the cost of all agents by one at each subsequent node in the search tree, while ICTS only increments 
the cost of a single agent from a parent to a child in the increasing cost tree. CBS-based bounded sub-
optimal solvers include BCBS and ECBS, which use focal search in both levels of CBS, reducing the 
number of collisions to be solved. ECBS guarantees bounded sub-optimal costs for each path in each 
node of the constraint tree. MA-ECBS reduces the search space of ECBS, using meta-agents. However, 
a joint-state-space MAPF solver makes resolving collisions within meta-agents inefficient. NECBS 
overcomes this resolving the collisions within meta-agents with ECBS. NECBS is also a complete and 
bounded suboptimal solver. 
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Table 3 presents a brief comparison of bounded sub-optimal and complete solvers: 

Table 3 : Bounded sub-optimal and complete MAPF of solvers 

Solver Description Search strategy Computational time Scalability 

Inflated 
M* 

A* based.  Heuristic search where 
deviation from optimality is 
bounded 

Lower than M*. Higher when sub-
optimality bound is 
larger, in which case 
solution quality is 
lower 

DPS A* based A special case of focal search 
where the nodes in the OPEN 
list are expanded based on 
dynamic potential value 
function that includes a sub-
optimality factor. 

Lower than A* Higher than A* 

AAC ICTS based Increases the cost of all 
agents by one at each 
subsequent node in the 
search tree. 

Lower than ICTS Higher than ICTS 

BCBS CBS based Focal search is applied in 
both levels of CBS.  
Suboptimlity bound is the 
product of the bounds of the 
two levels. 

Lower than CBS Higher than CBS 

ECBS CBS based Focal search is applied in 
both levels of CBS. High and 
low levels share a joint 
suboptimality bound. 

Lower than CBS Higher than CBS. More 
than 50% of the 
instances on DAO 
maps with 250 agents 
were solved with 1% 
optimality gap, while 
CBS can perform well 
up to 50 agents. 

NECBS CBS based Meta-agents applied to ECBS 
(MA-ECBS). ECBS is also used 
to resolve collisions in the 
joint state space within 
meta-agents to speed up 
MA-ECBS 

Lower than ECBS Higher success rate 
than ECBS and its 
variants 

 

Unbounded sub-optimal MAPF solvers can get solutions faster and generally have a higher success 
rate, which include search-based, sampling-based, rule-based solvers. Search based solvers include 
priority-based decoupled search solvers, where the priorities are used to resolve conflicts between the 
agents’ independent paths. Sampling-based algorithms randomly sample a fixed workspace to 
generate sub-optimal paths. Rule-based algorithms have agent-specific rules in place for different 
scenarios. They usually do not include a massive search like search-based algorithms. Rule-based 
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solvers usually guarantee to find a solution very fast, but those solutions are in most cases far from 
optimal. 

The search strategy, scalability and performance of unbounded sub-optimal MAPF solvers with no 
completeness guarantee are summarized and compared in Table 4: 

Table 4 : Unbounded sub-optimal MAPF solvers without completeness guarantee 

Solver Description Search strategy Computational time Scalabillity 

LRA* A* based 
local repair  

Each agent searches 
for a route using the 
A* algorithm, 
ignoring all other 
agents except for its 
current neighbours. 
Agents follow their 
routes until a 
collision is imminent 
and replan the 
remainder of the 
route. 

Faster than optimal and bounded 
suboptimal solvers. 

Higher than 
optimal and 
bounded 
suboptimal 
solvers. Path 
lengths are more 
than twice the 
optimal lower 
bound for 100 
agents. 

CA* A* based 
(decoupled)  
 

For each agent the 
search is performed 
in 3D space that 
includes a wait 
move, while the 
planned routes of 
other agents that are 
stored in a 
reservation table are 
avoided. 

Faster than optimal and bounded 
suboptimal solvers. Slower to 
initialize compared to LRA*. 

Higher than 
optimal and 
bounded 
suboptimal 
solvers. Solution 
quality is better 
than LRA* with 
20% deviation 
from optimal 
lower bound.  The 
order of agents 
might affect the 
solution quality, 
which might be 
dealt using 
Prioritized 
Planning. 

HCA* A* based 
(decoupled)  
 

Improves 
performance using a 
heuristic 

Faster than optimal and bounded 
suboptimal solvers. Slower to 
initialize compared to LRA*. 
Slightly faster than CA*. 

Higher than 
optimal and 
bounded 
suboptimal 
solvers. Solution 
quality is better 
than LRA* with 
20% deviation 
from optimal 
lower bound.   
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WHCA* A* based 
MAPF solver. 
Priority 
based 
search. 
 

Dynamic windows 
that limit the space-
time search to a 
fixed depth. 

Lower than 0.6ms per agent. 
Faster than CA* and HCA*. 
Performance depends on window 
size. With large window, 
initialization time increase and 
behaves like HCA*. With small 
window size, behaves like LRA* 
with lower solution quality. 

Suitable for real-
time use. 

CBSw/P An 
adaptation 
of CBS. 
Priority 
based 
search. 

The whole 
prioritization space 
is explored using 
best-first search. 

More efficient than CBS, better 
solution quality compared to 
CA*, HCA*, WHCA*. Obtains 
optimal and near optimal 
solutions. 

Higher than the 
optimal solver CBS 
and usually finds 
optimal or near-
optimal solutions.  

PBS Priority 
based search 

The whole 
prioritization space 
is explored using 
depth-first search. 

More efficient than CBSw/P. 
Solves well-formed Instances 
with six hundred agents in less 
than a minute. Finds solutions for 
many instances where standard 
prioritized algorithms cannot. 

Remains near 
optimal and 
efficient for more 
than one hundred 
agents.   

Sampling-
based 
solvers 

A* based 
search is 
replaced 
with 
sampling  

The joint state space 
is searched using 
sampling methods 

More efficient than A* based 
search. Exploring the joint state 
space is not efficient for large 
scale instances. 

Small scale 
instances. 

Rule 
based 
solvers 

Agent-
specific rules 

Based on specific 
rules with no 
extensive search 

Very fast High scalability 
with low solution 
quality 

 

BIBOX and PUSH AND ROTATE in Table 5 are reduction-based and rule-based solvers for which 
completeness is guaranteed for the class of instances with two unoccupied locations in biconnected 
graphs. Solutions are generated in polynomial time and non-optimal. 

Table 5 : Complete non-optimal solvers 

Solver Description Search strategy Computational time Scalability 

PUSH AND 
ROTATE 

Rule based 
solver.  

Special movement 
rules are used in 
search  

Fast and complete 
with large deviation 
from optimality. 

Solves large-
scale instances 
with low solution 
quality. 

BIBOX Reduction to 
pebble motion 

The problem is 
reduced to pebble 
motion problem and 
solved using a 
polynomial algorithm. 

Fast and complete for 
bi-connected graphs 
with two unoccupied 
vertices. 

Scales well in 
highly connected 
2D and 3D space. 
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We compare SIPP variants in Table 6, even though they belong to different classes in terms of 
optimality and completeness. 

Table 6 : SIPP variants 

Solver Description Optimality and 
completeness 

Computational time and scalability 

SIPP Single agent path 
planner with dynamic 
obstacles.  

Optimal complete. Outperforms HCA* in terms of 
computational time and success rate. 
The search space is reduced compared 
to A* since continuous time intervals 
are used rather than discrete 
timesteps. 

WSIPP  Weighted SIPP speeds 
up SIPP by sacrificing 
solution quality 

Bounded suboptimal, 
complete 

Outperforms SIPP in terms of 
computational time and scalability. 
Solution quality is lower than SIPP. 

 WSIPPd   Improves the search 
strategy of Weighted 
SIPP 

Bounded suboptimal, 
complete 

Outperforms SIPP 

WSIPPr  Improves the search 
strategy of WSIPPd   

Bounded suboptimal, 
complete 

Outperforms SIPP 

Focal SIPP Applies focal search Bounded suboptimal, 
complete 

Outperforms SIPP 

ASIPP Any time SIPP. Each 
obstacle is treated as a 
sphere with a radius and 
a trajectory. 

Bounded suboptimal, 
complete 

Large maps with 50 dynamic obstacles 
are solved in short time. Finds an initial 
solution quickly. Works well in dynamic 
environments. 

AA-SIPP(m) Decoupled prioritized 
planner that applies Any 
Angle SIPP to multiple 
agents. 

Complete under well-
defined conditions. No 
optimality guarantee 

Significantly better than decoupled 
SIPP(m) (SIPP for multiple agents) and 
the coupled CBS based solvers ICBS and 
ECBS. Success rate is higher than 97%. 

AAt-SIPP + 
Constraint 
path 
following 
control 

Path and motion 
planning. Handles not 
only the translation 
moves but also the 
rotation (turn-in place) 
moves. The robot is 
modelled as an open 
disk of radius r =0.5l, 
where l is the size of the 
grid cell. Translation and 
rotation velocities are 
also considered. 

Obtained trajectories 
are not always collision-
free  

Performed on 46 × 70 grid with 128 
dynamic obstacles. 

 

Motion planning is the extension of path planning. Path planning aims at finding the path between the 
origin and destination in workspace by strategies like shortest distance or shortest time, therefore path 
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is planned from the global metric or topological level. Motion planning, however, aims at generating 
interactive trajectories in workspace when robots interact with dynamic environment, therefore 
motion planning needs to consider kinetics features, velocities and poses of robots and dynamic 
objects nearby when robots move towards the goal. On one hand, motion planning must consider 
short-term optimal or suboptimal reactive strategies to make instant or reactive response. This is 
achieved by rotary or linear control in hardware from the perspective of robotic and control 
engineering. On the other hand, motion planning should achieve long-term optimal planning goals as 
path planning when robots interact with the environment [115]. 

[115] classify the traditional motion planning algorithms as graph search algorithms, sampling-based 
algorithms, interpolating curve algorithms, and reaction-based algorithms. Graph search algorithms 
include the algorithms based on depth first search, best first search, breadth first search, such as 
Dijkstra, A*. Sampling based algorithms, the RRT and the probabilistic roadmap method (PRM), are 
two algorithms that are commonly utilized in motion planning. The RRT constructs a tree that attempts 
to explore the workspace rapidly and uniformly via a random search. The RRT algorithm can consider 
non-holonomic constraints, such as the maximum turning radius and momentum of the vehicle. The 
PRM algorithm is normally used in a static scenario. It is divided into two phases: learning phase and 
query phase. In the learning phase, a collision-free probabilistic roadmap is constructed and stored as 
a graph. In query phase, a path that connects original and targeted nodes is searched from the 
probabilistic roadmap. Interpolating curve algorithms use a set of mathematical rules to draw 
trajectories. Mathematical rules are used for path smoothing and curve generation. Typical path 
smoothing and curve generation rules include line and circle, clothoid curves, polynomial curves, 
Bezier curves and spline curves. Reaction-based algorithms are about making reactions or doing local 
path planning quickly and intuitively, rather than searching global solutions. Examples of reaction-
based algorithms are potential field method (PFM) which uses vectors to represent behaviours and 
combine vectors to produce an emergent behaviour, velocity obstacle method (VOM) which relies on 
current positions and velocities of robots and obstacles to compute a reachable avoidance velocity 
space (RAV), and selecting a proper avoidance maneuverer (velocity) to avoid static and moving 
obstacles, and DWA which is about is about choosing a proper translational and rotational velocity (v, 
w) that will maximize an objective function that includes forward velocity of the robot, distance to the 
next obstacle on the trajectory and a measure of progress towards a goal location. Disadvantages of 
PFM include oscillation of motion when robots navigate among very close obstacles at high speed, 
impossibility to go through small openings. Collisions with obstacles still exist when using velocity 
obstacle method in complex scenarios like dense and dynamic cases. In addition to traditional motion 
planning algorithms, classical machine learning algorithms that are used for motion planning are listed 
by [115] as three supervised learning algorithms, SVM, LSTM, CNN, and a reinforcement learning 
algorithm, Monte-Carlo tree search (MCTS). [115] present the key characteristics of traditional and 
learning based motion planning algorithms in Table 7 and Table 8. 

Table 7 : Traditional motion planning algorithms 

Classification Example Input Key features Output 

Graph search 
alg. 

Dijkstra (1) 

Graph or map. 
 

Best-first search (1) 
Heuristic function for cost 
estimation (2) 

Trajectory 
 

A* (1), (2) 

PRM (1) Random search (1) 
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Sampling 
based alg. RRT (1), (2) 

Non-holonomic constraint 
(2) 

Interpolating 
curve alg. 

Line and circle 

Mathematical rules 
Path smoothing 

Clothoid curves 

Polynomial curves 

Bezier curves 

Spline curves 

Reaction 
based alg. 

PFM Robot configurations i.e. 
position 

Different potential field 
functions U for different 
targets, i.e. goal, obstacle 

Moving 
directions 

VOM 
Positions and velocities 
(robot and obstacles) 

Exhaustive/global, 
heuristic search w.r.t. U Selected 

velocity 
 DWA 

Robot’s position, distances 
to goals/obstacles and 
kinematics of robot 

Velocity selection 
according to objective U 

 

Table 8 : ML algorithms 

Algorithm  Input Key features Output 

MSVM Vector Maximum margin classifier None-sequential actions  

LSTM Vector Cell (stack structure) Time-sequential actions 

MCTS Vector Monte-Carlo method/Tree structure Time-sequential actions 

CNN Image Convolutional layers/ Weight matrix None-sequential actions 

 

Analytical comparison of traditional and learning based path and motion planning algorithms are 
presented by [115] in Table 9. Accordingly, graph search algorithms plan their path globally by search 
methods (e.g., depth-first search, best-first search) to obtain a collision-free trajectory on the graph or 
map. Sampling-based algorithms samples local or global workspace by sampling methods (e.g., random 
tree) to find collision-free trajectories.  Interpolating curve algorithms draw fixed and short trajectories 
by mathematical rules to avoid local obstacles.  Reaction based algorithms plan local paths or reactive 
actions according to their objective functions. MSVM and CNN make one-step prediction by trained 
classifiers to decide their local motions. LSTM and MCTS can make time-sequential motion planning 
from the start to destination by performing their trained models. Velocity criterion denotes the ability 
to tune the velocity when algorithms plan the paths, and safe distance criterion denotes the ability to 
keep a safe distance to obstacles. 

Table 9 : Analytical comparison of traditional and ML algorithms for motion planning 

Algorithm Local/global 
planning 

Path length Velocity Reaction 
speed 

Safe distance Time 
seq. 
path 
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Graph search  Global Optimal - Slow Fixed distance/high 
collision rate 

No 

Sampling based  Local/Global Suboptimal - Slow Fixed distance/high 
collision rate 

No 

Interpolating 
curve 

Local Fixed - Medium Fixed distance No 

Reaction based Local  Optimal Optimal Medium Suboptimal distance No 

MSVM Local Suboptimal Suboptimal Fast  Suboptimal distance No 

LSTM Local/Global Suboptimal Suboptimal Fast  Suboptimal distance Yes 

MCTS Local/Global Optimal  Fast Optimal distance Yes 

CNN Local Suboptimal Suboptimal Fast  Suboptimal distance No 

 

All things considered, for path planning, compared to optimal solvers, bounded sub-optimal solvers 
perform better in terms of computational time, while slightly decreasing the solution quality. On the 
other hand, unbounded suboptimal solvers generate solutions much faster than optimal and sub-
optimal solvers, however the completeness of the obtained solutions are not always guaranteed even 
though a feasible solution exists. Thus, the trade-offs between solution quality, completeness and 
computational complexity should be considered while selecting the best solver. An interesting fact is 
that despite being optimal and complete, the single agent path planning solver, SIPP, is faster than 
some of the unbounded sub-optimal solvers with no completeness guarantees. For multi-agent path 
planning, when priority-based search is combined with the solvers such as CBS, larger scale instances 
can be solved with better solution quality compared to other unbounded sub-optimal solvers such as 
CA*, HCA*, WHCA*. One example is CBSw/P which usually finds optimal or near-optimal solutions, 
even though it is classified as an unbounded sub-optimal solver. A similar and improved solver is PBS, 
which solves well-formed Instances with six hundred agents in less than a minute, finds solutions for 
many instances where standard prioritized algorithms cannot, and remains near optimal and efficient 
for more than a hundred agents.   

The state-of-the-art multi-agent motion planner, ECBS-CT, generates optimal or bounded suboptimal 
solutions. In the high-level search, it takes a problem instance and a suboptimality bound as input. The 
low-level search uses SCIPP, which is a generalization of SIPP that is suitable for focal search. A scalable 
and effective multi-agent safe motion planner is S2M that enables a group of agents to move to their 
desired locations while avoiding collisions with obstacles and other agents, with the presence of rich 
obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation limits, and disturbances.  A 
piecewise linear path is obtained for each agent such that the actual trajectories following these paths 
are guaranteed to satisfy the reach-and-avoid requirement. a collision-free path for each agent is 
found by solving Mixed Integer-Linear Programs and agents are coordinated using the priority-based 
search. S2M shows improvements over the solving time and the solution quality compared to two 
state-of-the-art multi-agent motion planners, ECBS-CT, in 2D and 3D scenarios with ground vehicles 
and quadrotors. 

In ASTAIR, the goal is to generate realistic solutions in short computational time so that disruptions or 
changes in environmental conditions are addressed on time. Thus, rather than optimal and complex 
solvers, both high quality and efficient solvers are aimed to be integrated with human-machine 
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interface to aid the planning and execution of instant changes. The problems are to be solved on 
complex airport surface layouts that are to be converted into graphs including nodes, edges, 
intersections. Thus, application of fast solution procedures becomes crucial for airport surface 
operations.  

For path and motion planning, considering its efficiency and high-quality solutions in many of the 
instances, priority-based search, PBS, will be one of the tools that will be integrated with other 
approaches. One example of priority-based modelling for airport surface movements exists in the 
literature where access priorities of aircraft for a road section are adjusted by decreasing the priority 
of delayed aircraft. In combination with PBS, safe interval path planning solver, SIPP, is worth 
considering due to its computational efficiency, optimality and completeness. In addition to path 
finding, SIPP has also been combined with path tracking or following algorithms for motion planning 
or adapted to deal with agents with different shapes and sizes. Thus, combining SIPP with PBS and 
local level motion planning approaches to find trajectories by considering the speed profiles and other 
kino-dynamic constraints is a promising approach for dealing with path and motion planning problems 
in ASTAIR. The multi-agent safe motion planner, S2M, which combines mixed integer programming 
with priority-based search is also worth considering due to its scalability and some of its procedures 
could be integrated into the path and motion planning solutions of ASTAIR. Apart from these, the 
recent trend of combining path planning with task allocation or simultaneous target assignment and 
sequencing fits well to the scope of ASTAIR, where finding a tug allocation solution or dynamic 
assignment of tugs to aircraft while handling the path and motion planning at the same time is among 
the main interests.  

4.2.5 Explainable AI for path and motion planning  

In many of the safety critical applications (e.g., air traffic control, hazardous materials), planning is not 
fully automatic, and the plan is only suggested to a human supervisor, who may act upon it. In such 
settings, the plan has to be presented to the supervisor in a humanly understandable manner. In 
particular, the presentation should enable the supervisor to understand the paths taken by the agents, 
and to easily verify that the agents do not collide, as otherwise the supervisor would not necessarily 
trust the plan. Such a representation is called an explanation of the plan [188]. 

[188] propose an explanation scheme, vertex-disjoint decompositions, for MAPF, which bases 
explanations on simplicity of visual verification by human’s cognitive process. The scheme decomposes 
a plan into segments such that within each segment, the paths of the agents are disjoint. The simplicity 
of a plan is measured by the number of segments required for the decomposition. Authors present a 
formal definition of the explanation scheme as follows: “An explanation scheme for a decision problem 
P is a mechanism that outputs, for a given input I, some information called an explanation, or outputs 
that no explanation is found”. Accordingly, the following statements define the three properties of the 
explanation scheme: (i) If an explanation exists, then I is a yes-instance, i.e. I ∈ P (Soundness), (ii) If I is 
a yes-instance, then an explanation exists (Completeness), (iii) An explanation is easy to find and to 
verify if it exists (Simplicity). The simplicity requirement is context-dependent and not formal. The 
soundness and the completeness are the key requirements for the proof. The complexity of the 
problems that arise by the explanation scheme are studied and it is shown that finding optimal 
explanations for existing plans can be done efficiently, whereas planning for MAPF problems with 
simple explanations is NP-Complete. Additionally, the tradeoff between time-optimal plans and plans 
with simple explanations is analyzed. Experiments are performed in both continuous and discrete 
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settings. Furthermore, the practical difficulties that arise in implementing a search-based algorithm for 
planning with explanations are demonstrated. 

Another study that addresses the Explainable Multi-Robot Motion Planning via disjoint decomposition 
is presented by [189]. They show that standard notions of optimality may create conflict with short 
explanations, and propose meta-algorithms, namely multi-agent plan segmenting-X (MAPS-X) and its 
lazy variant, that can be plugged on existing centralized sampling-based tree planners, represented by 
X, to produce plans with good explanations using a desirable number of images. We demonstrate the 
efficiency of the explanation scheme and evaluate the performance of MAPS-X and its lazy variant in 
various environments and agent dynamics. The study focuses on explanations for realistic robotic 
systems in the continuous space with kino-dynamical constraints. Explainability is treated as an 
additional concept on top of the multi-robot motion planning and incorporated into existing sampling-
based algorithms. Due to the fact that there is often a trade-off between planning for short 
explanations and short paths, explainability might conflict with the state-of-the-art heuristics. To deal 
with this, generic meta-algorithms that search for optimally explainable plans using any centralized 
sampling-based algorithm are proposed. The performance of the proposed meta-algorithms is 
demonstrated by plugging them with classical motion planners such as rapidly exploring random trees 
(RRT). 

[190] propose methods that generate explanations for the optimality of paths, focusing on the case of 
path planning on navigation meshes, which are heavily used in the computer game industry and 
robotics. The proposed methods are based on single inverse-shortest-paths optimization, and 
incrementally solving complex optimization problems.  [190] show that scalability and performance of 
these methods are better than domain independent search-based methods. Although the domain-
independent methods for Explainable AI such AS Model Reconciliation are also applicable to path 
planning, they lack the domain knowledge that would allow them to deal with large-scale path 
planning problems. Computation speed is a requirement for interactive interfaces such as human-in-
the-loop designs, for safety-critical robots in dynamic environments, or when a speedy investigation 
of planner behaviour is desirable. [190] focus on explaining why a specific path is optimal rather than 
another path, unlike other studies for explainable multi-agent path finding which focus on explaining 
why the paths are not colliding or failures in motion planning. Inverse shortest path problem looks for 
a minimal change graph weights so that a desired path becomes optimal. Thus, it is a relevant problem 
to explanations of optimality of paths.   

[191] investigate the explainability for multi-modal multi-agent path finding problem with resources 
(mMAPF), considering queries about the (in)feasibility and the optimality of solutions, as well as 
queries about the observations about these solutions. In real-world automated warehouses, the 
robots’ battery levels change as they move around, and, in some parts of these warehouses, due to 
presence of humans or tight passages, the robots may need to move slowly to ensure safety. mMAPF 
is a general version of MAPF proposed by [191] to handle more realistic autonomous warehouse 
scenarios, considering multi-modal transportation, multiple objectives, resource constraints and 
waypoints. A flexible framework is proposed to solve the problem, using Answer Set Programming. 
Given a solution for mMAPF, the explainable framework is able to explain infeasibility or nonoptimality 
of the solution, confirm its feasibility and suggest alternatives, and provide explanations for queries. If 
a modified solution is found infeasible, then, an explanation regarding infeasibility of this modified 
solution can be “due to collisions with obstacles or other robots” or “due to low battery-level”. An 
explanation regarding non-optimality can be “more time is needed to complete tasks” or “more 



D1.1 STATE OF THE ART 
Edition 01.01 

	 	

	
 

Page | 69 
© –2023– SESAR 3 JU 

  
 

charging is required”. If the modified solution is found feasible, alternative feasible solutions with 
better solution quality are obtained and returned to the engineer. Other queries may include why an 
agent is waiting too long at a location in which case the response can be “to avoid collision with another 
robot”. The explainable framework is implemented using Python and the Answer Set Programming 
solver Clingo. 

[192] provide a comprehensive outline of the different threads of work in Explainable AI Planning 
(XAIP). They present definitions and clarifications of the decision-making problem, explanation 
process, explanation artifacts, properties of explanations, algorithm-based explanations, model-based 
explanations such as Inference Reconciliation and Model Reconciliation, and plan-based explanations, 
as main concepts in XAI. They focus on automated planning as a subfield of decision-making problems. 
More specifically, [193] provide a taxonomy of concepts in the area of Interpretable Agent Behaviour. 
There has been significant interest in the robotics and planning community lately in developing 
algorithms that can generate behaviour of agents that is interpretable to the human (observer) in the 
loop. This notion of interpretability can be in terms of goals, plans or even rewards that the observer 
is able to ascribe to the agent based on observations of the latter. Interpretability remains a significant 
challenge in the design of human-aware AI agents. Authors introduce a general framework for 
describing problems in the space of “plan interpretability” and outline how existing works have 
addressed different aspects of this problems in cooperative settings. The planning problem, plan, 
computational model, completion function, observation model are formally defined and the concepts 
in cooperative settings which are relevant to motion planning are outlined and formulated based on 
the literature. These concepts are explicability, predictability, legibility and transparency. The concepts 
in adversarial setting which include privacy, plan-obfuscation, and security are also evaluated. 

[194] introduce plan explicability and predictability for robot task planning so that intelligent robots 
can synthesize plans that are more comprehensible to humans. To achieve this, they must consider 
not only their own models but also the human’s interpretation of their models. Humans understand 
agent plans by associating abstract tasks with agent actions (labelling). To compute the measures of 
explicability and predictability, [194] propose a model that learns the labelling scheme of humans for 
agent plans from training examples using conditional random fields (CRFs) and use the learned model 
to label a new plan. The measures of explicability and predictability are used by agents to proactively 
choose or directly synthesize plans that are more explicable and predictable to humans. The tests are 
performed on a synthetic domain with a physical robot.  

[195] also focus on providing explanations for robot motion planning. Motion planners are traditionally 
not self-explanatory about their output. The result of running a motion planner is typically either a 
trajectory or a failure notice, so users may have problems understanding why a planner failed or why 
a trajectory is different from what was expected. However, notions of explanation in the existing 
motion planning literature are narrow. Thus, [195] introduce a new taxonomy of explanations in the 
context of motion planning and extend the concept to contrastive explanations and clarifications; 
propose methods for generating explanations and evaluate them on a user study; and elaborate on a 
comprehensive research agenda for explainable motion planning. Contrastive explanations explain 
why a trajectory A was returned by a planner, instead of a different trajectory B expected by the user. 
Optimization based and sampling based explainable motion planners which are capable of answering 
failure and contrastive questions are developed. 
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Explainable AI solutions for path and motion planning can be used in ASTAIR for explaining the 
motivations behind selecting certain paths over others to the users as part of human machine 
interactions and contributes to the concept of human-in-the-loop process in automation. 
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5 Conclusion and research directions 

This deliverable presents the results of a comprehensive study on the state-of-the-art methodologies 
for Human-AI interaction, fleet management and path planning algorithms for operating a highly 
digitalised and automated airport that could be relevant to the ASTAIR project. 

Based on this state-of-the-art, some research directions have been identified to be explored during 
the ASTAIR project that integrate the different aspects discussed in this document.  

Regarding the Human-AI Interaction in ASTAIR, we will be targeting high levels of automation (Levels 
2B and 3A according to the EASA’s classification). Previous work on how to design efficient interactions 
for such high levels of automation is scarce and often studied within very narrow and controlled 
settings. According to previous literature, this specific context of AI-based system presents specific 
challenges related that we will have to consider during the project.  

First, we will need to investigate the roles and tasks allocation between AI and Humans as well as to 
identify relevant criterions to validate such allocation. We need to identify requirements for humans 
and AI so that they can share similar goals and constraints. As recommended by the literature review, 
we will use user centered design methods but also involve Ai researchers in the process to avoid over 
confidence in AI possibilities. This will enable us to invent new shared representations between 
humans and AI so that we can create successful conditions for Human-Automation Teaming. 

Another important aspect that remains understudied in the identified related work concerns the 
transition between several levels of automation, either human initiated or system initiated. In ASTAIR, 
we want to explore how to transition between levels of automations according to user preferences or 
AI performances. 

 

For path planning, compared to optimal solvers, bounded sub-optimal solvers perform better in terms 
of computational time, while slightly decreasing the solution quality. On the other hand, unbounded 
suboptimal solvers generate solutions much faster than optimal and sub-optimal solvers, however the 
completeness of the obtained solutions are not always guaranteed even though a feasible solution 
exists. Thus, the trade-offs between solution quality, completeness and computational complexity 
should be considered while selecting the best solver. An interesting fact is that despite being optimal 
and complete, the single agent path planning solver, SIPP, is faster than some of the unbounded sub-
optimal solvers with no completeness guarantees. For multi-agent path planning, when priority-based 
search is combined with the solvers such as CBS, larger scale instances can be solved with better 
solution quality compared to other unbounded sub-optimal solvers such as CA*, HCA*, WHCA*. One 
example is CBSw/P which usually finds optimal or near-optimal solutions, even though it is classified 
as an unbounded sub-optimal solver. A similar and improved solver is PBS, which solves well-formed 
Instances with six hundred agents in less than a minute, finds solutions for many instances where 
standard prioritized algorithms cannot, and remains near optimal and efficient for more than a 
hundred agents. The state-of-the-art multi-agent motion planner, ECBS-CT, generates optimal or 
bounded suboptimal solutions. In the high-level search, it takes a problem instance and a suboptimality 
bound as input. The low-level search uses SCIPP, which is a generalization of SIPP that is suitable for 
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focal search. A scalable and effective multi-agent safe motion planner is S2M that enables a group of 
agents to move to their desired locations while avoiding collisions with obstacles and other agents, 
with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation 
limits, and disturbances.  A piecewise linear path is obtained for each agent such that the actual 
trajectories following these paths are guaranteed to satisfy the reach-and-avoid requirement. a 
collision-free path for each agent is found by solving Mixed Integer-Linear Programs and agents are 
coordinated using the priority-based search. S2M shows improvements over the solving time and the 
solution quality compared to two state-of-the-art multi-agent motion planners, ECBS-CT, in 2D and 3D 
scenarios with ground vehicles and quadrotors.  

In ASTAIR, the goal is to generate realistic solutions in short computational time so that disruptions or 
changes in environmental conditions are addressed on time. Thus, rather than optimal and complex 
solvers, both high quality and efficient solvers are aimed to be integrated with human-machine 
interface to aid the planning and execution of instant changes. The problems are to be solved on 
complex airport surface layouts that are to be converted into graphs including nodes, edges, 
intersections. Thus, application of fast solution procedures becomes crucial for airport surface 
operations. For path and motion planning, considering its efficiency and high-quality solutions in many 
of the instances, priority-based search, PBS, will be one of the tools that will be integrated with other 
approaches. One example of priority-based modelling for airport surface movements exists in the 
literature where access priorities of aircraft for a road section are adjusted by decreasing the priority 
of delayed aircraft. In combination with PBS, safe interval path planning solver, SIPP, is worth 
considering due to its computational efficiency, optimality and completeness. In addition to path 
finding, SIPP has also been combined with path tracking or following algorithms for motion planning 
or adapted to deal with agents with different shapes and sizes. Thus, combining SIPP with PBS and 
local level motion planning approaches to find trajectories by considering the speed profiles and other 
kino-dynamic constraints is a promising approach for dealing with path and motion planning problems 
in ASTAIR. The multi-agent safe motion planner, S2M, which combines mixed integer programming 
with priority-based search is also worth considering due to its scalability and some of its procedures 
could be integrated into the path and motion planning solutions of ASTAIR. Apart from these, the 
recent trend of combining path planning with task allocation or simultaneous target assignment and 
sequencing fits well to the scope of ASTAIR, where finding a tug allocation solution or dynamic 
assignment of tugs to aircraft while handling the path and motion planning at the same time is among 
the main interests. 
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7 List of acronyms  

The following table reports the acronyms used in this deliverable. 

Term Definition 

A* A - star 

AAC All Agent Costs  

AA-SIPP Any Angle Safe Interval Path Planning 

AA-SIPP(m) Any Angle Safe Interval Path Planning (Multi-agent) 

AAt-SIPP Any Angle Safe Interval Path Planning with Turn-in-place (rotation) 

AEON Advanced Engine Off Navigation 

AGV Automated Guided Vehicle 

AI Artificial Intelligence 

ARA* Anytime Repairing A* 

ASIPP Any Time Safe Interval Path Planning 

ASP answer set programming  

ASPN  Airport Surface Petri Nets 

ASTAIR Auto Steer Taxi at Airport 

ATCO Air traffic Controller 

ATM Air Traffic Management 

AUCI AI Usage Continuance Intention 

BCBS Bounded Conflict Based Search 

BIBOX Reduction Based Solver (Reduction to Pebble Motion) 

CA* Cooperative A* 

CBM Conflict Based Min Cost Flow 

CBS Conflict Based Search  

CBS-MP Conflict Based Search for Motion Planning with Continuous State Spaces 

CBSS Conflict Based Steiner Search 

CBS-TA Conflict Based Search with Target Assignment 

CBS-TA-MLA Conflict-Based Search with Task Assignment with Multi-Label A* 

CBSw/P Conflict-Based Search with Priority Based Search 

CCBS Continuous Conflict-Based Search  

CNN Convolutional Neural Network 
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CRF Conditional Random Field 

CSCW Computer Supported Collaborative Work 

CT Conflict Tree 

CTPN Colored Timed Petri nets 

CUG Collision-free Unit-distance Graph 

DKE Dunning-Kruger Effect 

DL Deep Learning 

DNN Deep Neural Networks 

DPS Dynamic Potential Search  

DWA Translational and Rotational Velocity Selection Algorithm 

EASA European Aviation Safety Agency  

ECBS Enhanced Conflict Based Search 

ECBS-CT Enhanced Conflict Based Search for Motion Planning with State Lattice Representation 

ECBS-MP Enhanced Conflict Based Search for Motion Planning 

ECBS-TA-MLA Enhanced Conflict Based Search with Task Assignment with Multi-Label A* 

ETV Electric Towing Vehicle 

FMEA Failure Mode and Effects Analysis 

FSIPP Focal Safe Interval Path Planning 

GCBS Greedy Conflict Based Search 

GH Ground Handling 

GSE Ground Support Equipment 

GSIPP Generalized Safe Interval Path Planning  

HAT Human Automation Teaming 

HCA* Hierarchical Cooperative A*  

HCBS Hamiltonian Conflict Based Search 

HCI Human Computer Interaction 

HMI Human Machine Interface 

ICBS Improved Conflict Based Search 

ICT Increasing Cost Tree 

ICTS Increasing Cost Tree Search 

IOT Internet Of Things 

IPA Intelligent Personal Assistants 

ITA-CBS Incremental Target Assignment Conflict Based Search 
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k-QPPTW k-Quickest Path Problem with Time Windows  

LA-MAPF Multi Agent Path Finding for Large Agents 

LIDAR Light Detection and Ranging 

LLM Large Language Model 

LP Linear Programming 

LRA* Local Repair A* 

LSTM Long Short Term Memory 

MA-CBS Meta Agent Conflict Based Search 

MA-ECBS Meta Agent Enhanced Conflict Based Search 

MAMP Multi Agent Motion Planning 

MAPF Multi Agent Path Finding 

MAPF/C+POST Multirobot Trajectory Planning with Continuous Refinement for Path Smoothing 

MAPS-X Multi Agent Plan Segmenting - X 

MC-CBS Multi Constraint Conflict Based Search 

MC-CBS-MS Multi Constraint Conflict Based Search with Mutex-based Symmetry-breaking 

MCTS Monte-Carlo tree search  

MG-MAPF Multi Goal Multi Agent Path Finding  

MG-TAPF Multi Goal Task Assignment and Path Finding 

MILP Mixed Integer Linear Programming 

ML Machine Learning 

MLA Multi-Label A* 

mMAPF Multi Modal Multi Agent Path Finding 

MPC Model Predictive Control  

MR Merge & Restart 

MRdRRT RRT based Motion Planning Technique 

MS* Exact Algorithm based on MAPF and mTSP  

MSVM Multi-class Support Vector Machine 

mTSP Multiple Travelling Salesman Problem 

MXP Milan Malpensa Airport 

NECBS Nested Enhanced Conflict Based Search 

NN Neural Network 

NP Non-deterministic Polynomial 

PAIA Immune Inspired Multi Objective Optimization Algorithm 
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PBS Priority based search 

PFM Potential Field Method 

PPCP Probabilistic Planning with Clear Preferences 

PR Pipe Routing 

P&R-LA Push and Rotate for Large Agents 

PRM Probabilistic Roadmap 

PSO Particle Swarm Optimization  

PWL Piece-wise Linear 

RAV Reachable Avoidance Velocity 

RHGA Receding Horizon Genetic Algorithm  

RRT Rapidly-exploring Random Trees 

SAT Boolean Satisfiability Problem 

SCIPP Safe Interval Path Planning with Focal Search 

SIPP Safe Interval Path Planning 

SMT Satisfiability Modulo Theory 

SMT-HCBS Satisfiability Modulo Theory – Hamiltonian Conflict Based Search 

SOS Swapper Optimization Suite 

STL Signal Temporal Logic  

S2M2 Multi-agent Safe Motion Planner 

STPA System Theoretic Process Analysis 

SVM Support Vector Machine 

TAP Transportes Aéreos Portugueses 

TAPF Target Assignment and Path Finding 

TCBS Task Conflict Based Search 

Theta* Theta - star 

TL Temporal Logic 

TSN Time Space Network 

U Potential Field Function 

UAV Unmanned Aerial Vehicle 

VOM Velocity Obstacle Method  

WHCA* Windowed Hierarchical Cooperative A*  

WSIPP Weighted Safe Interval Path Planning 

WSIPPd Weighted Safe Interval Path Planning with Duplicate States 
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WSIPPr Weighted Safe Interval Path Planning with Re-expansions 

XAI Explainable Artificial Intelligence 

XAIP Explainable Artificial Intelligence Planning 

YUL Pierre Elliott Trudeau International Airport 

ZRH  Zurich Airport 

 


