
 

 

 

 

Abstract  

This deliverable presents support algorithms for automated tug assignment and multiagent path 
planning. These algorithms were designed on the basis of the algorithms for tug assignment and path 
planning developed in SESAR AEON project. The former algorithms were extended to take into account 
diverse and realistic spatiotemporal constraints related to airport surface movement operations (such 
as airport’s traffic rules) and the ASTAIR concept in particular. The developed algorithms dynamically 
adapt to changes in the environment (such as changes of runway mode of operation) and new 
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constraints provided by human operators by recalculating their solutions. To address scalability issues 
of the previously developed tug assignment algorithms and to make them suitable for real-time use, 
an efficient, meta-heuristics-based approach was developed using Ant Colony Optimisation. The 
multiagent path planning algorithm developed in AEON was further improved by taking into account 
more realistic details (such as shapes and improved kinematic models of the vehicles) and enhancing 
its computational efficiency. During the workshops and interviews conducted in ASTAIR (WP1), 
preferred interactions of human operators with automated systems and algorithms were identified 
and described in deliverable D1.2 in the context of eight use cases. In this deliverable, we describe how 
some of these interactions were modelled and implemented in the multiagent system based on the 
developed algorithms. The algorithms were integrated in the ASTAIR’s validation platform (D4.1) and 
will be evaluated during the project’s validation phase (WP5).  

 

Authoring & approval 

Author(s) of the document 
Organisation name Date 

TUD 5/3/2025 
 

Reviewed by 
Organisation name  Date 

ADP  20/3/2025 

ENAC  12/03/2025 
 

Approved for submission to the SESAR 3 JU by1 
Organisation name Date 

ADP 20/03/2025 

ENAC 21/03/2025 

TUD 20/03/2025 

ECTL 20/03/2025 

DBL 20/03/2025 
 

Rejected by2 

Organisation name Date 

 

1 Representatives of all the beneficiaries involved in the project 

2 Representatives of the beneficiaries involved in the project 



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 3 
© –2025– SESAR 3 JU 

  
 

 

 

 

Document history 

Edition Date Status Company Author Justification 

00.01 15/1/2025 Initial version TUD The table of content and 
the overall setup 

00.05 1/2/2025 Intermediate version TUD The initial description of 
the algorithms finished 

01.00 19/3/2025 Pre-final version  TUD The final version with all 
comments of the project 
participants addressed 

01.01 22/5/2025 Final version TUD The final version with all 
comments from SJU 
addressed 

  



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 4 
© –2025– SESAR 3 JU 

  
 

 

 

Copyright statement © (2025) – (ASTAIR Consortium). All rights reserved. Licensed to SESAR 3 
Joint Undertaking under conditions. 

 

ASTAIR 
AUTO-STEER TAXI AT AIRPORT 

 
This document is part of a project that has received funding from the SESAR 3 Joint Undertaking under grant agreement No 
101114684 under European Union’s Horizon Europe research and innovation programme. 

 

	 	



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 5 
© –2025– SESAR 3 JU 

  
 

 

 

Table	of	contents	
 

Abstract ....................................................................................................................................... 1 

Executive summary ............................................................................................................ 7 

1 Introduction ................................................................................................................ 8 

1.1 Purpose of the document ................................................................................................. 8 

1.2 Intended readership .............................................................................................................. 8 

1.3 Related documents ................................................................................................................ 8 

1.4 Structure of the document ..................................................................................................... 9 

2    Algorithms for tug fleet management ......................................................................... 10 

2.1 ETV assignment problem description ................................................................................... 10 

2.2 Ant Colony Approach for the ETV assignment problem ........................................................ 11 
2.2.1 Solution space ..................................................................................................................................... 12 
2.2.2 Constructing a Solution ....................................................................................................................... 13 
2.2.3 Task Node Selection ............................................................................................................................ 15 

3    Adaptive path planning algorithms for aircraft and tugs ............................................. 18 

3.1 Multiagent system model for path planning ........................................................................ 18 
3.1.1 Model specification ............................................................................................................................. 18 
3.1.2 Activity sequence of Aircraft Agents ................................................................................................... 20 
3.1.3 Routing algorithm ................................................................................................................................ 21 
3.1.4 Model calibration ................................................................................................................................ 22 

3.2 Modelling human-automation interactions using the developed multiagent system model for 
path planning ............................................................................................................................ 24 

3.2.1 Case ”Conformance to Taxiway Procedures of ATC” (related to UC4 “High level taxi strategy tuning” 
from D1.2) .................................................................................................................................................... 26 
3.2.2 Case ” Departing Aircraft is Delayed” (related to UC2 “Normal operations with re-scheduling” from 
D1.2) ............................................................................................................................................................. 28 
3.2.3 Case ”Non-standard Pushback Path” (related to UC4 “High level taxi strategy tuning” from D1.2) ... 28 
3.2.4 Case ” Unavailability of Stand” (related to UC3 “Arriving traffic without parking” from D1.2) .......... 29 
3.2.5 Case ”Emergency demands Aircraft to Return to Stand” (related to UC8 “Arriving flight with 
technical issue” from D1.2) .......................................................................................................................... 30 

References ....................................................................................................................... 32 

List of acronyms ............................................................................................................... 33 
 

List	of	figures	
 

Figure 1: Schematic of the ACO solution space with five tow tasks and three charge tasks. ............... 12 



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 6 
© –2025– SESAR 3 JU 

  
 

 

 

Figure 2: Single ant solution construction process for two ETVs. ......................................................... 15 

Figure 3: Overview of multi-agent system for autonomous airport surface movement operations .... 18 

Figure 4. Activity sequence for regular taxiing of arriving and departing aircraft as well as inbound and 
outbound holding. ................................................................................................................................ 20 

Figure 5. Calibration of longitudinal acceleration and deceleration values with historic track data. ... 23 

Figure 6. Calibration of curve speed with historic track data ............................................................... 24 

Figure 7. Examples of the fast-forward simulation with aircraft sizes. ................................................. 26 

Figure 8. Standard taxiway directions as part of ATC procedures at Amsterdam Airport Schiphol ..... 27 

Figure 9. The stand of an arriving aircraft is unavailable: SAMP paths of a) original route, b) rerouting 
to a different stand, c) holding at a remote holding point, d) detour with minimal speed, and e) holding 
at a non-standard holding point ........................................................................................................... 30 

Figure 10. The blue-circled aircraft declares an emergency: a) shows the original route to the runway, 
b)-d) its route back to the stand with the effects on other traffic shown by shadow-aircraft ............. 31 

 

List	of	tables	
 

Table 1: Kinematic and algorithm parameters that are used in the routing algorithm ........................ 24 

Table 2: List of acronyms ................................................................................................................ 33 

 



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 7 
© –2025– SESAR 3 JU 

  
 

 

 

Executive summary 

The goal of the ASTAIR project is to design a seamless partnership between Human and Artificial 
Intelligence (AI) to manage and perform engine-off and conventional airport surface movement 
operations at major European airports. ASTAIR original approach to automation is to consider an 
integrated airport system instead of many separate sub-systems, analyse the level of autonomy an AI 
system could take on tasks and to make the automation controllable by humans at different levels. 

With the introduction of high-level automation for airport surface movement operations, the role of 
operators and airport operation procedures will significantly change. The key to optimize the overall 
performance of the collaboration between humans and AI is to adapt intelligent systems to the 
operators’ modus operandi. This will ensure logical consistency across manual and automated control 
and reduce the cognitive distance between levels of automation by mapping system functions to goals 
and mental model of operators. In ASTAIR, we will propose interactive tools and adaptative AI 
algorithms that take advantage of operators’ expertise for controlling and engaging with the 
automation at diverse levels. 

This deliverable presents adaptive support algorithms for automated tug assignment and multiagent 
path planning. These algorithms were designed based on the algorithms for tug assignment and path 
planning developed previously in SESAR AEON project. The former algorithms were extended to take 
into account diverse and realistic spatiotemporal constraints related to airport surface movement 
operations (such as airport’s traffic rules and specific constraints of ground traffic controllers identified 
during interviews) and to the ASTAIR’s concept of engine-off taxiing.  

The developed algorithms dynamically adapt to changes in the environment (such as changes of 
runway mode of operation) and new constraints provided by human operators by recalculating their 
solutions. To address scalability issues of the previously developed tug assignment algorithms and to 
make them suitable for real-time use, an efficient, meta-heuristics-based approach was developed 
using Ant Colony Optimisation.  

The multiagent path planning algorithm developed in AEON was further improved by taking into 
account more realistic details (such as shapes and improved kinematic models of the vehicles) and 
enhancing its computational efficiency.  

During the workshops and interviews conducted in ASTAIR (WP1), preferred interactions of human 
operators with automated systems and algorithms were identified and described in deliverable D1.2 
in the context of eight use cases. In this deliverable, we describe how some of these interactions were 
modelled and implemented in the multiagent system based on the developed algorithms. The 
algorithms were integrated in the ASTAIR’s validation platform (D4.1) and will be evaluated during the 
project’s validation phase (WP5).  
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1 Introduction 

1.1 Purpose of the document 

In this deliverable we describe algorithms for the automated assignment of towing vehicles and 
multiagent path planning, which form the basis for the ASTAIR concept. The developed algorithms are 
based on the corresponding algorithms developed in SESAR AEON project, described in the AEON’s 
deliverables D2.1 ‘Multiagent System for Routing’ and D2.2 ‘Model for optimal allocation of towing 
vehicles’. In this deliverable we describe the developed extensions, in particular which allow taking 
into account a range of operational constraints relevant to engine-off taxiing and which enable real-
time use of the algorithms and adaptation to changes. Furthermore, we describe how some of the 
interactions with human operators relevant to the ASTAIR concept could be modelled and 
implemented algorithmically. 

1.2 Intended readership 

The intended readership also includes: 

• researchers developing computational models for sustainable airport operations; 

• the key stakeholders targeted by the ASTAIR solution, in particular ground handlers, airport 
management, airlines, ATC operators and the industry providing green taxiing solutions;  

• the overall aviation community interested in the document, as it will be publicly available. 

 

1.3 Related documents 

This deliverable builds upon or relates to the following documents: 

• AEON project deliverable D2.1 Multiagent System for Routing, edition 00.00.03, edition date 
16/9/2022, outlining the routing algorithm used as the basis for the ASTAIR project. 

• AEON project deliverable D2.2 Model for Optimal Allocation of Towing Vehicles, edition 00.00.03, 
edition date 19/9/2022, outlining the algorithm used for the tug allocation used as the basis for 
the ASTAIR project. 

• D1.1 State-of-the-Art, edition 01.00, edition date 26/2/2024, as basis for the algorithms that are 
described in this document. 

• D1.2 Workshops Report, edition 01.00, edition date 27/6/2024, describing operational working 
practices, constraints and interactions relevant for the algorithms described in this deliverable. 

• D4.1 Description of the validation platform, edition 01.00, edition date 27/1/2025, in which the 
algorithms presented in this deliverable will be integrated and evaluated as a part of the final 
validation session. 
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• D5.1 Exploratory Research Plan, which describes the objectives and criteria for the validation of 
the ASTAIR concept 

1.4 Structure of the document 

In Section 2 the algorithms for tug fleet management are described. The algorithms for adaptive path 
planning for aircraft and tugs are detailed in Section 3. In both Sections 2 and 3 we focus on the 
extensions of the AEON’s base algorithms developed specifically for ASTAIR. In Section 3, a special 
attention is given to the modelling and algorithmic implementation of interactions with human 
operators in the context of several use cases considered in the ASTAIR’s workshops. 
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2    Algorithms for tug fleet management 

Effective deployment of towing vehicles entails assigning them to carry out tow tasks in order to 
minimize the total amount of fuel burned by taxiing aircraft and ensure that aircraft operate according 
to schedules, avoiding delays. Furthermore, more temporal constraints related to the assignment of 
towing vehicles could be provided by human operators (tug fleet managers). These constraints will be 
taken into account in the model similarly to how flight schedules are considered. Adding to the 
complexity is the fact that we assume that towing vehicles are electric (electric towing vehicles (ETVs)), 
requiring charging times to be integrated into their operational schedules. Together, these aspects 
define the tug scheduling problem that is considered in ASTAIR. 

The approach that was followed in the AEON project to model the ETV assignment problem as a 
general fleet scheduling problem, extending the classic Vehicle Routing Problem (VRP). Such models 
effectively incorporate charging requirements and can produce optimal schedules for ETVs. However, 
their applicability in real-world operations is limited by two key aspects. The first is that these models 
rely on Mixed Integer Linear Programming (MILP) formulations, which are known to suffer from poor 
scalability. Especially when considering the dynamic nature of airport operations and frequent 
changes, which may prompt frequent rescheduling of ETVs, this can be undesirable. The second 
limiting aspect is that these models often follow a two-staged approach, where conflict-free paths are 
planned for aircraft first, and ETVs are scheduled after. This approach implicitly assumes that paths for 
aircraft will not change depending on the ETV schedule. In actual operations, however, the ETV 
schedule determines which aircraft are towed. Due to the kinematic differences between towed and 
regular taxiing aircraft, the paths found in the path planning stage of the model may no longer be valid. 

An alternative approach followed in ASTAIR that effectively addresses the interdependency between 
aircraft paths and ETV schedules, while also capable of handling dynamic environments, is modeling 
the problem as a Multi-Agent Pickup and Delivery (MAPD) problem. In MAPD, a group of agents must 
tend to an incoming stream of pickup and delivery tasks. Tasks must be efficiently allocated to agents, 
and agents must carry out these tasks without colliding with one another. Typically, a MAPD solution 
method consists of a task assignment and a path planning module, which solve the problem either 
jointly (coupled) or through some iterative process (decoupled).  

To address the scalability limitations of the tug scheduling algorithm used in AEON, in ASTAIR we used 
a bio-inspired method called Ant Colony Optimization (ACO), which has proven to be able to generate 
high quality solutions for VRP-type problems in a relatively short time. This algorithm is described in 
this section. 

2.1 ETV assignment problem description 

We consider the problem of dispatching a limited fleet of ETVs to maximize the fuel savings derived 
from ETV operations. Since the ETVs are electric, they need to recharge during operations. 
Consequently, the task assignment method must allocate both towing and charging tasks to ETVs. A 
towing task corresponds to an ETV towing one aircraft to its designated decoupling location. A charging 
task corresponds to an ETV to charging its battery at the ETV depot for a specified time interval. 
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Tasks must be allocated efficiently to account for the dynamic nature of airport operations. Specifically, 
the task assignment method is required to be fast to allow for rapid rescheduling, with a maximum 
runtime of one minute assumed to be sufficiently low. Additionally, the method should scale well with 
increasing problem complexity to accommodate variations in operational conditions. 

The execution of a tow task is defined as follows. At the start of a tow task, an ETV couples to the 
aircraft at the stand. It then tows the aircraft along the airport’s taxiways to the predefined decoupling 
point. After decoupling, the aircraft taxis to the runway using its engines. Meanwhile, the ETV enters 
the service road network via a service road entry point, either to pick up its next assigned aircraft or 
to return to the ETV depot for charging.  

Tow tasks are executed by towing aircraft over the layout of an airport, which is represented as a graph 
G = (N, E). The edges in E denote the taxiways and service roads. The nodes in N represent stands, 
decoupling points, service road entry points, the ETV depot, runway entries, and intersections between 
taxiways and service roads.  

Aircraft that are available are prescribed by the flight schedule F. Each aircraft can either be towed to 
multiple decoupling points. The end-point of the tow task determines a number of factors, including 
the achieved fuel savings, the discharge of the ETV, and which next tow tasks can be reached on time. 
Therefore, the task assignment method must select which towing end-point will be used. To represent 
this choice of where to tow the aircraft, we consider multiple potential tow tasks associated with flight 
f ∈ F, one for each possible towing end-point. All tasks that tow flight f are grouped in 𝐴!alt  and the 
total set of tow tasks is defined as 𝐴 = ⋃  !∈# 𝐴!alt . All aircraft in F are categorized into regional, narrow-
body, and wide-body. The category mass used for the battery modelling of ETVs. 

Each tow task a ∈ A has a pickup node 𝑛$
% ∈ 𝑁 and drop-off node 𝑛$& ∈ 𝑁. The pickup node is the 

aircraft stand from the flight schedule and the drop-off node is a decoupling point near its scheduled 
runway entry or on any of the TRPs. The pickup time of task a is denoted 𝑡$

% as and is equal to the 
Actual Off-Block Time (AOBT) in the flight schedule. To optimize the assignment of tow tasks to ETVs, 
it is important to consider three aspects. First, it is necessary to compute paths over G to find the 
duration of tow tasks and the time it takes ETVs to transition between tasks. Second, a method to 
evaluate the fuel savings that follow from executing a tow task must be defined. Last, the properties 
of ETVs should be considered, including the battery discharge process that determines how many tow 
tasks an ETV can execute before requiring charging. These three aspects were considered in D2.2 
‘Model for optimal allocation of towing vehicles’. 

In the following section we present our model and the related algorithms for ETV assignment based 
on Ant Colony Optimization. 

2.2 Ant Colony Approach for the ETV assignment problem 

Ant Colony Optimization (ACO) was originally introduced by Dorigo and Gambardella [1] to solve the 
Travelling Salesman Problem (TSP). ACO is a probabilistic optimization technique inspired by the 
foraging behaviour of ants. It is a population-based meta-heuristic that simulates the ants’ pheromone-
laying and following behaviour to explore and exploit a solution space. By iteratively updating 
pheromone trails based on the quality of discovered solutions, ACO guides the search toward 
promising regions of the solution space. 
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ACO is well-suited for combinatorial optimization problems, including the TSP-related Vehicle Routing 
Problem (VRP), general Multi Robot Task Allocation (MRTA) problems, and airport gate assignment. 
The ETV assignment problem is essentially about finding an optimal chain of tow tasks for each ETV. 
This is analogous to the TSP or VRP, where the goal is to determine an optimal sequence of cities or 
delivery points. Because of these similarities, and the proven effectiveness of ACO solution methods, 
we developed an ACO-based approach for task assignment of ETVs. 

In the ACO method, ants traverse a solution space composed of task nodes to construct a task 
assignment. The design of this solution space is detailed in Section 2.2.1, while the solution 
construction process is explained in Section 2.2.2. While traversing the solution space, ants must 
repeatedly choose which next task node to visit. This task node selection process is detailed in Section 
2.2.3.  

2.2.1 Solution space 

Ants must be able to traverse a solution space in such a way that an optimal task chain can be found. 
A temporal network is used to construct a solution space that facilitates the exploration of different 
task chains while adhering to the temporal constraints of the problem. 

A schematic overview of the ACO solution space is shown in Figure 1. This example shows a temporal 
network with five towing tasks, with the start and end node of task i denoted by Si and Fi respectively. 
The start nodes are positioned along the time axis in correspondence with the task start time and the 
end node position follows from the task duration. The positioning of nodes along the vertical axis has 
no meaning in this figure. In addition to the tow task nodes, three charge nodes (C1, C2, C3) are shown. 
Charge nodes are placed at fixed intervals along the time axis and their associated charge task has a 
fixed duration. Compared to the mathematical formulation, this approach poses additional constraints 
as charging ETV must now adhere to these predefined intervals. However, during testing and 
development, the effect of these predefined intervals on the solution quality was found to be 
negligible. 

 

Figure 1: Schematic of the ACO solution space with five tow tasks and three charge tasks.  

When exploring the solution space, ants can only travel in the positive time direction, i.e. from left to 
right. Dashed lines are the edges between nodes and indicate feasible transitions between tasks. For 
example, from node F3, node S5 and C3 are feasible next tasks. From each node, only the first available 
charging node is considered as a feasible transition. Only feasible task transitions are included in the 
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solution space, ensuring that each ant always yields a feasible task assignment. The next section details 
the process of deriving a task assignment from the explored solution space. 

2.2.2 Constructing a Solution 

The ACO algorithm constructs task assignments iteratively, with ants exploring the temporal network 
by stochastically selecting task transitions based on heuristics and pheromones. High-quality solutions 
are reinforced through pheromone updates, guiding convergence to an optimized assignment. This 
section outlines the overall procedure for generating a task assignment with ACO, while Section 2.2.3 
details the stochastic selection of task transitions and the heuristics and pheromones that influence 
this process. 

The high-level loop for the ACO algorithm is shown in Algorithm 1. This is the original ACO algorithm 
[1], which remains unchanged in our application. Lines 1-3 initialize the pheromones, heuristics, the 
best solution xbest, and the best objective fbest. Then, the algorithm performs a number of Nit iterations. 
In each iteration, a total of Nant ant solutions are constructed (line 6). The objective function value fk is 
evaluated for each ant solution xk. The value of the objective function is the total fuel savings resulting 
from executing the tow tasks in the solution. If this value is higher than the current best, the best 
solution and objective value are updated (lines 9 and 10). At the end of each iteration, the pheromones 
are updated (line 13) according to the process described in Section 4.3. After the maximum number of 
iterations has been reached, xbest and fbest are returned (line 16). 

 

To tailor the original ACO algorithm to our specific problem and solution space, we modify the process 
of constructing a single ant solution. The pseudo-code for this process is provided in Algorithm 2. First, 
a set with available tow tasks A, a set with charge tasks C, and an empty solution xk are initialized (lines 
1-3). Then, each single ant constructs a task chain for the available ETVs. For each ETV, a route rj is 
initialized and the initial conditions for the ETV battery bj and previous task node nprev are set (lines 5 - 
7). When the ETV starts its operations, bj

0 is set to the maximum battery capacity and the ETV starts 
from the depot. In the case of replanning or a rolling horizon approach, the initial conditions bj

0 and nj
0 

are set accordingly. 
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By using the edges originating from the previous task node, the set with reachable task nodes Areach is 
constructed (line 9). From those reachable nodes, only the task nodes that are still available in set A 
are retained (line 10). By taking the intersection with the union between set A and C, it is ensured that 
the charge nodes are not lost. When battery bj is at maximum capacity, the set Areach does not contain 
any charge nodes. If no available tasks remain, the loop terminates (line 12), and the route for ETV j is 
appended to the ant solution (line 24). The ant then resets to the start of the solution space to 
construct a task chain for the next ETV. 

From the available tasks, only those for which the ETV has sufficient battery are considered feasible. 
This requires its current state of charge bj to cover the sum of reaching the task from the previous node 
qS(nprev, a), executing the task qX(a), and returning to the depot ql

S(a) (line 14). Note that for charge 
tasks, qX(a) is negative in this formulation. From the set of feasible tasks, the next task node nnext is 
selected based on a probabilistic selection process (line 15) as described in Section 2.2.3. 

If the selected task node is a tow task, all the alternative tow tasks Af
alt that tow the same flight f are 

removed from the available set A (lines 16-19). This ensures that each aircraft is assigned to at most 
one ETV. Charge nodes, if selected, are not removed as multiple ETVs can utilize these concurrently. 
Lastly, the ETV battery is updated, the selected task is appended to the ETV route rj, and the previous 
task node is updated (lines 20 - 22). When the ant has constructed a task chain for all ETVs, the single 
ant solution xk is returned (line 27). 
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Figure 2 visualizes the construction of a single ant solution for two ETVs in the example solution space 
from Figure 3. First, the ant constructs a task chain for ETV 1 in Figure 2(a), starting with task node S1. 
From F1, task node S4 is selected as the next task. As no task nodes are available from F4, the task chain 
for ETV 1 is complete. The ant then resets to the start of the solution space to construct the task chain 
for ETV 2 in Figure 2(b). As indicated by the grayed-out nodes and edges, the tow nodes already visited 
by the ant are no longer available. For the second task chain, S2 is selected as the first task node. The 
ant then visits two charge nodes and concludes by executing tow task 5. 

When constructing the task chain for ETV 2 in Figure 2(a), selecting node S3 (and subsequently S5) from 
F2 yields a higher objective value than the current solution. This is because executing more tow tasks 
increases the total fuel savings. However, since task node selection follows a stochastic process, this 
outcome represents one possible solution generated by an individual ant. Additionally, if the initial 
battery condition of ETV 2 (i.e., b2

0) was already low, task node S3 could be omitted from Afeas (line 14 
in Algorithm 2), forcing the ant to travel over the charge nodes. The next section further details task 
node selection, including the pheromone levels and heuristic values that guide this process. 

 

(a)	 Task	chain	for	ETV	1	 (b)	 Task	chain	for	ETV	2	

Figure 2: Single ant solution construction process for two ETVs. 

2.2.3 Task Node Selection 

As indicated by line 15 in Algorithm 2, an ant selects its next task node from the set Afeas. This happens 
according to the typical node selection process in ACO, where the probability for an ant to move from 
node i to node j is defined as pij in the Equation below: 

𝑝'( =
*𝜏'(,

)
*𝜂'(,

*

∑  +∈,feas (𝜏'+))(𝜂'+)*
 

Here, τij is the pheromone level and ηij is a heuristic value for edge (i, j). The set Afeas contains all nodes 
an ant can travel to from node i. Lastly, α and β are weighing parameters, determining the importance 
of the pheromones and heuristics respectively. Defining appropriate values for τij and ηij is crucial to 
the ACO solution quality as they largely determine how the algorithm searches through the solution 
space. 

Heuristics 

The heuristics are defined by 
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where ηij is the heuristic value for moving from node i to node j. If j is a tow task node, the heuristic 
value is computed as the immediate reward of executing task j, expressed by the associated fuel 
savings FSj, divided by the time until the ETV becomes available for its next task. This division promotes 
tightly planned schedules with less idle time for ETVs. If node j is a charging task node, the heuristic 
value is determined by the ETV’s current state of charge qi relative to its maximum battery capacity Q. 
As a result, the ant is less likely to select a charging node when the ETV’s battery level is high. 

From these definitions, it is clear that the heuristic values may vary in scale, which can negatively 
impact the node selection process. For this reason, when constructing the heuristics matrix, we 
perform a row-wise scaling for all task nodes to ensure that ηij ∈ [0, 1] for all j ∈ A∪C. Performing these 
scaling operations allows for a fair comparison between heuristic values of different type nodes. 

Pheromones 

Next, the pheromone update process is described. At the start of the algorithm (line 1 in Algorithm 1), 
the pheromone matrix is initialized by setting all entries to a small constant value τ0 = 0.1. Then, during 
the update pheromone step (line 13) the pheromones are updated using the formula: 

 

∣ 𝜏'( = (1 − 𝜌)𝜏'( + B  
-ants 

+./

Δ𝜏'(+  

 Here, ρ is the evaporation rate, and ∆τk
ij is the pheromone deposit of ant k on edge (i, j). The 

pheromone deposit on edge (i, j) is equal to the individual pheromone deposit of ant k, i.e. ∆τk, if edge 
(i, j) is present in ant solution xk.  

Δ𝜏'(+ = DΔ𝜏
+ 				 if (𝑖, 𝑗) ∈ 𝐱+

0				  else 
 

This means the ant only deposits its pheromone on the edges it has visited when constructing its 
solution. 

During testing, the ranked-ant pheromone update scheme was found to produce more stable results. 
The reason for this is the relatively small difference in objective values between high- and low-quality 
solutions. When pheromone deposits from all ants were considered equally, the pheromone matrix 
quickly became saturated with deposits from suboptimal solutions, resulting in slow convergence. The 
ranked-ant scheme mitigates this issue by weighing the pheromone deposits with the ant’s relative 
solution quality, and only considering the solutions of the top Nrank ants. In the ranked-ant scheme, the 
individual deposit by ant k is determined using the equation: 

Δ𝜏+ = 𝑚𝑎𝑥*1 + 𝑁rank − rank+ , 0,𝑐01𝑓+norm  
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Here, rankk refers to the ranking of ant k’s solution when all solutions are sorted by objective value in 
descending order. Additionally, fknorm refers to the objective value of the solution of ant k, normalized 
between 0 and 1. Normalizing the objective values produces more predictable pheromone deposits 
making the algorithm more consistent across different problem instances. Finally, c∆τ is a constant, 
determined through the parameter tuning process. 

Charge Node Insertion 

To minimize unnecessary idle time and ensure sufficient battery levels for completing future tasks, 
charge nodes are inserted into the ant’s path whenever possible. After the ant selects a tow task node, 
the algorithm checks for a valid path through charge nodes to reach the selected node. If such a path 
exists, the charge nodes are added to the ant’s path. In the example of Figure 4(b), selecting node S5 
from F2 causes nodes C1 and C2 to be inserted into the ant’s solution. 
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3    Adaptive path planning algorithms for aircraft and tugs 

The path planning model developed in ASTAIR is an extension of the model presented in deliverable 
D2.1 ‘Multiagent System for Routing’ of SESAR AEON project. In this section we describe the developed 
extensions. In particular, in section 3.1 we present an overview of the multiagent system model for 
path planning used in ASTAIR.  During the workshops and interviews conducted in ASTAIR (WP1), 
preferred interactions of human operators with automated systems and algorithms were identified 
and described in deliverable D1.2 in the context of eight use cases. In Section 3.2 we describe how 
some of these interactions were modelled and implemented in the multiagent system based on the 
developed algorithms. In particular, we describe how the level of conformance to the standard taxiway 
directions could be adjusted in the developed algorithms. 

3.1 Multiagent system model for path planning 

The developed multi-agent system (MAS) model for autonomous aircraft taxiing operations has a 
distributed-hierarchical structure of both centralized and distributed agents, which is illustrated in 
Figure 3. The centralized Airport Operations Agent defines and updates the flight schedule and runway 
configuration, the centralized Routing Agent plans conflict-free trajectories for all Aircraft Agents and 
Towing vehicle Agents which are instructed and monitored by distributed Guidance Agents while 
executing their planned routes.  

 

Figure 3: Overview of multi-agent system for autonomous airport surface movement operations 

3.1.1 Model specification 

The airport taxiing infrastructure is represented by a graph G = (V, E) comprising vertices V and 
directional edges E. Each bidirectional taxiway segment between two vertices is constructed from two 
unidirectional edges that connect the vertices. Taxiway edges are constructed using Bezier-curves that 
closely match the taxiway centrelines from a satellite image of an airport. 

The Airport Operations Agent schedules all flights, and updates them whenever new predictions of the 
underlying A-CDM milestones are available. When the allocated stand of an arriving flight is still 
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occupied by a departing aircraft, or Eurocontrol issued a Calculated Take-Off Time (CTOT) for a 
departing aircraft, the agent marks the corresponding flight. Such flights are subject to special routes 
assigned by the Routing Agent to account for the necessary holding, detour, or prioritization during 
taxiing. Furthermore, the Airport Operations Agent defines the runways in use, i.e. the runway mode 
of operation (RMO). Active runways and the resulting flight path of arriving or departing flights must 
not be crossed. Thus, the Airport Operations Agent blocks such taxiway segments by setting layout 
constraints on them. This mechanism is also applicable for taxiway segments that are temporarily 
unavailable. 

Both the flight schedule and constraints are shared with the Routing Agent that computes conflict-free 
routes for all taxiing aircraft within the upcoming planning window 𝑤%234. It re-computes the routing 
plans when it receives updates from the Airport Operations Agent, or latest after the replanning period 
ℎ%234 has passed. We use motion planning to account for vehicle kinematics and shapes in planning. 
To ensure conflict-free paths, we deploy a two-level search based on Priority-Based Search (PBS) [2] 
with an augmented version of the Safe Interval Path Planning (SIPP) algorithm [3].  

The resulting trajectories are sent to the Guidance Agents which are positioned at every intersection 
in the taxiway system. Each Guidance Agent controls those Aircraft Agents that are moving towards its 
location. It instructs them to execute the next part of the planned trajectories, and monitors that the 
instructions are carried out accordingly. To do so, the Guidance Agents use the airport radar, which 
reports the position, speed, and heading of all Aircraft Agents while they move over the airport surface. 
In case the executed movements deviate from the planned routes, the Guidance Agents locally adjust 
the trajectories to minimize these deviations. However, when the impact becomes too extensive, they 
request central replanning from the Routing Agent. Once one of the Aircraft Agents has passed the 
location of a Guidance Agent, it passes the guidance responsibility for that aircraft to the next Guidance 
Agent along the aircraft’s route. 

Aircraft Agents represent the aircraft (auto-)pilots and are modelled to be fully cooperative: they thus 
carry out the instructions as accurately as possible. To account for the different sizes of aircraft, all 
flights are categorized as one of the 6 aircraft types from the ICAO aerodrome reference codes. They 
are assumed to have a circular shape with a pre-defined radius according to the type.  

When planning the trajectories, a safety zone is added around all agents. To this end, we define a 
general safety distance, as well as a safety distance that an agent has to keep when it is trailing another 
aircraft. Both safety measures are defined in relation to the shape radii of the corresponding pair of 
agents. Moreover, two aircraft that consecutively take off from the same runway must have a minimal 
separation to mitigate the wake turbulence of the preceding aircraft. We use the time-based 
separation minima from RECAT-EU for that [4]. 

The model currently assumes that the A-CDM milestones in the flight schedule as well as the runway 
exit are predicted with high accuracy. In reality, arriving aircraft may vacate the runway at varying 
times and exits due to operational factors such as pilot behaviour and weather conditions. The model 
already includes a positioning tolerance to handle potential noise in position measurements. A similar 
mechanism could be introduced to accommodate uncertainties in the time of vacating the runway. 
Once the aircraft has entered the taxiway system, the Guidance Agents can adjust the speed profile to 
minimize any incurred deviations. As last resort and to cope with an aircraft using an unanticipated 
runway exit, centralized (partial) replanning could be triggered to adapt the taxi trajectory.  
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Departing aircraft may incur pushback delays, and the duration of their engine-start may be imprecise. 
Minor delays could be captured through buffer times added to the offblock-time as well as the engine-
start duration. Larger delays could again be counteracted by locally adjusting the trajectory or partial 
replanning if needed. 

3.1.2 Activity sequence of Aircraft Agents 

To take the various surface movement operations into account during path planning, the route of an 
Aircraft Agent is expressed as a combination of the following three activities: 

• Go-to activities have one start vertex and a set of goal vertices. Thus, the routing algorithm 
gets two degrees of freedom: the path between the vertices, and the time to traverse this 
path. The regular taxiing between one point to another point at the airport is an exemplary 
go-to activity. 

• Follow activities comprise a predefined ordered list of edges that must be part of the route. 
Therefore, during routing, time is the only remaining variable as the path cannot be changed. 
Pushback and push-pull manoeuvres of departing aircraft are examples of such. 

• Wait activities define a vertex at which an agent has to wait for a fixed duration. For instance, 
a wait activity is used to specify the place at which the pushback-truck is decoupled from the 
aircraft, or the necessary direction-switch of the push-pull manoeuvre within the pushback 
operations occurs. 

Using a combination of these activities, the Routing Agent defines an activity sequence for both 
departing and arriving aircraft, as depicted in Figure 4. 

 

Figure 4. Activity sequence for regular taxiing of arriving and departing aircraft as well as inbound and 
outbound holding.  

 
1. Engine warmup and cooldown: In the sequence, the warmup and cooldown of the engines 

represent special cases. The routing algorithm takes the warmup-phase as part of the engine-
start manoeuvre and on basis of the aircraft-specific engine-start duration as input value into 
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account. Therefore, if this duration exceeds the time needed till decoupling from the 
pushback-truck, additional waiting in form of holding is added to the route. We do not model 
engine cooldown, as it does not have an influence on the routing regarding the kinematics, 
since the engines are switched off after standstill at the gate. 

2. Inbound holding: When an aircraft arrives at the airport, but its stand is still occupied by a 
departing flight, the Routing Agent has three options to resolve the anticipated stand-conflict: 
for long conflict durations (option 1), it sends the arriving flight to the remote holding platform. 
Otherwise, it defines a detour along the taxiways (option 2), or reduces the agent’s taxi speed 
for short conflicts (option 3). To this end, the Routing Agent first calculates the single-agent 
route directly to the stand, i.e. the trajectory without accounting for other aircraft agents, to 
estimate the severity of the stand-conflict. Then, it computes a single-agent trajectory via the 
remote holding points. When this detour is insufficient to resolve the stand-conflict, the 
Routing Agent assigns the remaining time as remote holding duration (option 1), and updates 
the agent’s activity sequence accordingly. In contrast, when the taxi duration now exceeds the 
time at which the departing aircraft has cleared the stand (option 3), it keeps the original 
activity sequence of the agent. 

3. Outbound holding to comply with CTOT-slots: Similar to inbound holding, the Routing Agent 
deals with departing flights for which Eurocontrol issued Computed Take-Off Times (CTOT-
slots). However, as long as no arriving flight requires the stand, it assigns a holding duration at 
the agent’s stand so that the agent arrives at the runway at the beginning of the CTOT-slot. In 
case an arriving flight is scheduled for the stand, the Routing Agent sends the departing flight 
to a remote holding location close to the scheduled runway. It updates the activity sequence 
of the departing flight accordingly. 

3.1.3 Routing algorithm 

The Routing Agent carries out multi-agent motion planning for all Aircraft Agents that taxi within the 
planning window. This two-level routing algorithm uses a low-level search to calculate individual 
trajectories per aircraft, and coordinates all agents in its high-level search to yield conflict-free 
trajectories. For the low-level, we extended the Safe Interval Path Planning (SIPP) algorithm [3], and 
adapted the Priority-Based Search (PBS) algorithm [2] to serve as high-level solver. 

PBS constructs a priority order between agents to deconflict their space-time trajectories. In its priority 
tree, each parent-node has up to two child-nodes. Thus, a priority-relation between a conflicting pair 
of agents is established. In each child-node, one additional priority-pair is added with which one of the 
two agents that were previously in conflict must give way to the other agent along its entire route. 
Then, PBS checks the child node that has the lowest sum-of-cost of all agent trajectories for conflicts 
between those agents that do not yet form a priority-relation with each other. We define the cost of 
a trajectory as sum of the taxiing duration and travelled distance. Once a child-node is expanded 
without any collisions, PBS returns the resulting conflict-free trajectories. 

In the low-level search, the route of a deprioritized agent has to be adapted, either by changing its 
path or altering the speed profile along the path. To this end, we translate all paths into a set of graph 
reservations: an aircraft temporarily blocks a set of edges during each movement between one vertex 
and another. The blockage times and set of blocked edges are dependent on the agent’s shape, velocity 
profile, the shapes of other agents, and the safety zone between the shapes. 
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The SIPP algorithm represents moving obstacles as collision intervals and subsequently defines a set 
of Safe Intervals (SIs) per graph location, representing time intervals during which an agent can occupy 
that location. Furthermore, states are defined on vertices and motion profiles with piecewise constant 
acceleration map the trajectory between states. We augmented SIPP to facilitate the activity sequence 
of an aircraft as defined by the Routing Agent, and to take the travelling direction as well as the 
kinematic agent properties into account. Additionally, we use SIs also on edges to deal with the 
reservations of agents higher in priority. In the motion generation, we are bound to the agent’s 
kinematic properties for the current activity and the velocity in the current state. A motion that is part 
of the follow-activity for pushback is for example constrained by a lower maximum speed than regular 
taxiing in a go-to activity. In addition, vehicles that have maximum velocity in the current state, might 
not be able to decelerate enough to satisfy a reservation on the next edge or vertex. In this case, it 
might be required to start decelerating on the edge before the current state. To efficiently account for 
this, we anticipate based on the agent’s current velocity, braking distance, and reservations or velocity 
restrictions within the braking distance. 

3.1.4 Model calibration 

In the MAS model, the agents’ motions during route planning are modelled based on constant 
longitudinal acceleration/deceleration and do not account for slip, i.e. are steady-state motions. 
Nonetheless, to the best of our knowledge, this is the first study to use such detailed kinematics to 
compute trajectories of taxiing aircraft. In the following, we thus include an overview of related values 
found in the literature. 

We define a general speed limit of 15 m/s in line with the design taxi speed given in the A-SMGCS 
manual from ICAO [5]. Except for the dedicated wait-locations, agents must taxi at least with the 
minimal velocity of 1.5 m/s to avoid stop-and-go during taxiing. For curved taxiway segments, the ICAO 
manual mentions that speeds up to 10 m/s may occur. Most previous studies on airport surface 
movement operations define curved segments as turns with a maximal velocity of 5 m/s. Since we 
model taxiway curves explicitly through Bezier-curves (see Section 2.1), we define a speed limit 𝑣56789 
per edge by using 

𝑣!"#$% = #𝑎&'( ∗ 𝑟!"#$% 

with the lateral acceleration 𝑎2$: and the radius of curvature 𝑟56789 of the respective edge. To obtain 
𝑟_𝑐𝑢𝑟𝑣𝑒, we use the median value of all curvatures per 1 m-segment of the underlying Bezier-curve. 
For passenger comfort in public transport, [6] provides a range for both longitudinal and lateral 
accelerations of ±0.9 m/s². Furthermore, they claim that a car driver with a normal driving style 
experiences a lateral acceleration of up to ±4 m/s² and a longitudinal acceleration of -2 m/s² to 1.47 
m/s². In contrast, [7] found in empirical studies that the acceptable limits for passenger comfort are 
1.23 m/s2 for longitudinal and 0.98 m/s² for lateral acceleration. As noted above, previous studies did 
not consider lateral accelerations to define turn speeds. For longitudinal acceleration/deceleration, 
different values are reported: for example, ±0.98 m/s², or 0.26 m/s² as acceleration and -0.8 m/s² as 
deceleration. 
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To find realistic values for the longitudinal and lateral accelerations of taxiing aircraft, we use historic 
track data from Schiphol captured by ADS-B receivers that record the aircraft positions during taxiing 
with a rate of 1 Hz. To this end, we map the positions onto the graph representing the taxiway 
centrelines, and smooth the resulting trajectories with a Savitzky-Golay filter (window length of 11 s, 
linear polynomial). This yields the travelled taxi distance along the graph edges as well as the speed 
and acceleration at each time point of the trajectory. However, we only use the data on the edges that 
correspond to the main taxiways: while the tracks become too noisy in the bay areas and at aircraft 
stands, the accelerations on runways for takeoff and landing are not representative of those 
experienced during taxiing. 

Figure 5. Calibration of longitudinal acceleration and deceleration values with historic track data. 
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Figure 6. Calibration of curve speed with historic track data 

 

In Figure 5, the acceleration over velocity of each data point is visualized as 2d-histogram. The 1% and 
99% percentile lines of the acceleration values per 0.5 m/s step show that the longitudinal 
acceleration/deceleration remain similar across different taxi speeds. Therefore, we set the 
acceleration to 0.4 m/s² and deceleration to -0.5 m/s² independent of an agent’s speed. While these 
values seem low compared to those mentioned in the literature, we argue that using these in planning 
increases the flexibility during execution: the Guidance Agents have more options to locally adjust the 
trajectories if necessary. 

Figure 6 visualizes the historic curve speeds of different aircraft types as average speed along a curved 
edge with radius 𝑟. The average speed is calculated as 𝑣̅ = Δ𝑑/Δ𝑡 with the time difference ∆𝑡 and 
travelled distance ∆𝑑 of the data points per edge along each trajectory. Although higher curve speeds 
exist, we define the speed limit in curves based on a lateral acceleration of 1.5 m/s² for small aircraft 
(left plot) and 1.125 m/s² for large aircraft (right plot).  

 

 

 

 

 

 

Table 1: Kinematic and algorithm parameters that are used in the routing algorithm 

Table 1 summarizes the kinematic values and lists the main algorithmic parameters used by the routing 
algorithm. In general, two aircraft agents have to keep a minimal safety distance between them equal 
to the average of their shape radii. However, when an aircraft is trailing another agent, it has to keep 
a safety distance of at least 3-times the shape radius of the preceding aircraft, which is in accordance 
with experts. The planning window 𝑤%234 and replanning period ℎ%234 are provided as ranges with the 
requirement that ℎ%234 < 𝑤%234. 

3.2 Modelling human-automation interactions using the developed multiagent 
system model for path planning 

In the ASTAIR project, workshops and interviews with human operators were carried out to determine 
requirements and desirable interactions between humans and automated systems. From these, 
regular occurring and characteristic situations were synthesized into eight use cases described in 
deliverable D1.2. In this section, we explore how the findings from these stakeholder workshops and 
interviews can be embedded into the automated multi-agent system and its path planning algorithms, 
with a focus on its technical implementation. 

parameter value unit 
maximal speed 𝑣!"# 15 m/s 
minimal speed 𝑣!$% 1.5 m/s 
curve speed 𝑣&'()* per edge m/s 
acceleration 𝑎𝑐𝑐 0.4 m/s² 
deceleration 𝑑𝑒𝑐 -0.5 m/s² 
safety distance in general 1 averaged shape radius 
safety distance trailing 3 shape radii of preceding aircraft 
planning window 𝑤+,%- 15 to 60 min 
replanning period ℎ+,%- 3 to 48 min (= 20 % to 80 % of 𝑤+,%-) 
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The developed multi-agent system provides the following tools to support the decision making of 
human operators concerning path planning: 

1) Updating Flight Schedule: The start and goal locations as well as the start times of aircraft are 
obtained from the flight schedule (FS) provided through the A-CDM milestones and inputs from 
human operators. When updated schedule information is available, the ATCOs can update the FS 
entries accordingly. 

2) Adjusting Activity Sequence: Per aircraft, the MAS creates an activity sequence to account for the 
different operations such as following a specific path for e.g. pushback, travelling to and holding at a 
holding point, etc. The ATCOs can adjust this sequence and its elements: they can for instance change 
the pushback path that must be followed, or the required holding duration. Likewise, data such as 
the estimated engine start-up duration is stored within the activity sequence and may be altered by 
human operators. 

3) Setting High-Level Parameters and Constraints: The ATCOs can set and adjust various high-level 
parameters. These affect the path planning of all, a group of, or certain aircraft, and are valid for an 
extended period of time. Examples are: 

• adjusting the conformance level to the standard taxiway directions  
• blocking certain taxiway segments for maintenance work 
• adjusting the speed limits in general or in certain areas such as bay areas e.g. due to adverse 

weather conditions 
• setting general priority levels between aircraft groups e.g. arriving and departing aircraft 

Moreover, ATCOs can set constraints for specific aircraft that have a direct impact on their route. 
While some are valid for the entire taxiing, others are timed, i.e. issued for a specific duration. 
Examples are: 

• constraining the start or goal location in case an aircraft shall leave before or arrive after a 
certain time point 

• selecting a certain location to be passed during taxiing, affecting the aircraft’s activity 
sequence 

• assigning a specific priority relation between two aircraft, i.e. one has right of way over the 
other 

4) Fast-forward simulation with/without Change-overlay: The MAS plans the 4D-trajectories ahead of 
time, and deconflicts all routes within a pre-defined planning window. Thus, the ATCOs can inspect 
how the traffic will evolve in the upcoming period through a fast-forward simulation. As visualized in 
Figure 7 a), a colour scheme is used to indicate the predicted engine status, with the aircraft colour 
being green when engines are switched off, orange during engine-start, and red when they are 
running. The aircraft are categorized into one of six ICAO-types with the red circles indicating the 
associated type sizes. A cyan-coloured tug symbol indicates that a pushback-truck is coupled to the 
aircraft. As additional functionalities, the differences between two routing plans can 



D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH 
PLANNING 
Edition 01.01 

	 	

	
 

Page | 26 
© –2025– SESAR 3 JU 

  
 

 

 

be visualized with a change-overlay as shown in Figure 7 b): one or multiple previous/inferior route 
alternatives are depicted by shadow-aircraft that are connected with a grey line to the new/superior 
solution. Furthermore, any aircraft path can be plotted into the visualization with the executed part 
in darker colour and the remaining path in lighter colour, as shown by the blue and orange 
trajectories in Figure 7. 

 

Figure 7. Examples of the fast-forward simulation with aircraft sizes. 

 

5) Calculation of SAMP Routes: The MAS can calculate single-agent motion planning (SAMP) routes to 
quickly assess different routing options. These routes show the fastest possible paths that account 
for all relevant constraints, but are not yet coordinated with other traffic. 

6) Calculation of MAMP Routes: Like the regular path planning, the MAS can also calculate alternative 
multi-agent motion planning (MAMP) routes based on altered input data, updated activity sequences, 
or changed high-level parameters or constraints like those mentioned in Section II-C3. However, to 
generate conflict-free trajectories for the selected set of vehicles, more computational time is needed 
than for calculating alternative SAMP routes. 

In the following, we describe several use cases to demonstrate the abilities of the MAS to engage in 
interactions with human operators using its interaction tools. These use cases are inspired by the 
ASTAIR project use cases UC1-UC8 described in the deliverable D1.2 “Workshops report”, but adapted 
here to better illustrate how the algorithms presented in this deliverable work. In the following case 
descriptions we will refer to relevant UC1-UC8 to make this link more explicit. 

3.2.1 Case ”Conformance to Taxiway Procedures of ATC” (related to UC4 “High level taxi 
strategy tuning” from D1.2) 

In today’s operations, ATCOs use procedures and rules to create aircraft flows through the taxiway 
system. At Amsterdam Airport Schiphol, the main taxiways TWY-A, TWY-B, TWY-C, and TWY-D are used 
primarily in one direction as visualized in Figure 8. However, ATCOs may deviate from these taxiway 
procedures on their own discretion. In the historic data, most aircraft indeed follow the standard 
direction, with a few exceptions to e.g. go around an aircraft that is holding on a taxiway to start its 
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engines. For fully automated operations, adhering to such procedures is not necessary, and paths could 
be optimized without such constraints, increasing the operational efficiency. However, such free-flow 
routes may not be comprehensible for human operators, especially when the traffic is dense. 
Furthermore, should the automation fail, the human operators may not be able to resolve and 
continue the operations. Therefore, for human-automation teaming, the ATCOs must be able to adjust 
the conformance level to taxiway procedures of the path planning, which we explore in the following. 

 

 

 

 

 

 

 

 

Figure 8. Standard taxiway directions as part of ATC procedures at Amsterdam Airport Schiphol 

The standard taxiway directions visualized in Fig. 3 must be known to the MAS. The conformance to 
these taxiway procedures of ATC is then adjusted by changing the associated cost of traversing a taxiway 
segment cseg during path planning by multiplying it with a cost factor cTWY : 

cseg = (ttaxi + cd ∗	dtaxi) ∗cTWY 

with the taxi time ttaxi and taxi distance dtaxi along that segment. cd = 0.1 s/m to convert the distance to 
unit time. For example, when cTWY = 5, it is five-times more expensive to traverse that taxiway segment 
in comparison to one with cTWY = 1 for identical taxi time and distance. Since the sum-of-cost is 
minimized during path planning, non-standard taxiway directions that are assigned higher values for 
cTWY are less likely chosen. 

In the future, instead of letting the ATCOs set the conformance level manually, they could opt for 
letting the MAS do so dynamically e.g. based on the number of flights to be routed in each planning 
round and the learned preferences of ATCOs. Moreover, other high-level routing parameters could be 
adjusted as well, for example: 

• Setting default priorities e.g. between arrivals and departures or between aircraft and ground 
vehicles: giving higher priorities to a certain group will tend to decrease their taxi times. 
Nonetheless, the ATCOs can deviate from these default priorities by assigning a specific 
priority-value to any vehicle. 

• Setting the general speed limit for the entire taxiway system or certain areas like the bay areas, 
foremost dependent on the weather situation. Potentially, a data-driven AI subsystem could 
pose recommendations based on historic weather patterns. 
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• Setting the minimal or maximal duration that an aircraft holds at a remote holding location. 
This will impact the decision-support provided by the MAS for e.g. arriving aircraft whose stand 
is still unavailable for a certain duration. 

3.2.2 Case ” Departing Aircraft is Delayed” (related to UC2 “Normal operations with re-
scheduling” from D1.2) 

In real-world airport operations, delays frequently arise out of various reasons, and have to be dealt 
with. When planning the taxi routes of aircraft, delays occurring prior to the predicted start of the 
route can be counteracted by updating the prediction and replanning the route accordingly. Many 
delays may remain unknown to automated systems, and updating the predictions may require 
coordination among human operators as well as their expertise and problem-solving skills. Therefore, 
to achieve effective human-automation teaming, such changes and prediction updates must be 
steadily supplied to the MAS. In the following, we explore one such example. 

All routes of aircraft are based on the flight schedule: per flight, the respective start point and time as 
well as the goal location are extracted from it when forming its activity sequence. The corresponding 
activities are updated when flight schedule entries change. The updates are then accounted for when 
the MAS replans the routes of all flights that are or will be taxiing within the planning window. If 
necessary, the replanning can also be triggered rule-based or manually. In the example, the target off-
block time as start time of the route is updated. 

In a similar way, any adaptations to the flight schedule are handled, e.g.: 

• Assigning a new stand to an arriving aircraft: the goal location in the activity sequence is 
adapted. 

• Allocating deicing to a departing flight in winter conditions: intermediate activities are inserted 
into the sequence that demand the aircraft to taxi to one of the deicing locations at which it 
has to hold for a specific time to receive the deicing. 

• Changes to the takeoff slot assigned by Eurocontrol (i.e. CTOT-slot): the constraining time to 
be at the runway is adjusted, potentially also affecting the holding time at the stand and/or 
remote holding location. 

In general, any flight schedule change may lead to knock- on effects, e.g. trigger a stand conflict (i.e. 
the delayed departing flight is blocking the stand that an arriving aircraft is assigned to) that have to 
be resolved as well. This may entail further interactions between the MAS and the human operators. 
However, as such interdependent effects occur mostly after the original cause, there is likely more 
time for the human operators to request and act upon recommendations from the MAS or make 
informed decisions to resolve them. 

3.2.3 Case ”Non-standard Pushback Path” (related to UC4 “High level taxi strategy tuning” 
from D1.2) 

At Schiphol, the standard pushback and push-pull paths dependent on the aircraft types are defined 
in the airport manuals for all stands. We integrated these paths in the airport layout and use them as 
part of the activity sequence for outbound flights. However, based on the historic data as well as on 
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interviews with operational experts, it can be concluded that the ATCOs deviate from these standard 
pushback procedures in around 20 % to 30 % of times to further optimize the flows and taxi times of 
the involved aircraft. Thus, the MAS must accommodate to receive and process such informed changes 
based on the experience of the ATCOs.  

By specifying a non-standard pushback path, the activity sequence is automatically updated: during 
the pushback-activity, the aircraft must follow the new path. While the changes are still pending the 
acceptance by the ATCO, the MAS keeps both the original as well as the new activity sequences in 
cache. Likewise, it keeps a copy of the original MAS solution. When queried by the ATCO, it replans the 
potential routes of all agents using the new activity sequence of the departing aircraft. Once the new 
solution is accepted by the ATCO, the MAS automatically sends the new routes to the affected aircraft. 

3.2.4 Case ” Unavailability of Stand” (related to UC3 “Arriving traffic without parking” from 
D1.2) 

The stands form one of the bottlenecks in the capacity of airports, and the aircraft stand allocation is 
a manifold problem of its own. Due to delays, arriving ahead of time, or allocation constraints among 
others, a stand may still be occupied by another aircraft at the time that an arriving aircraft could enter 
it. The route of the arriving aircraft must thus be adapted. Such cases are visible in the historic data, 
but were also raised in interviews with experts as both a common operational challenge and 
interesting use case for airside automation. In the following, we provide an interactive example how 
the unavailability of a stand can be resolved using the agent-based framework of human-automation 
teaming. 

Consider the following scenario: Shortly before the flight AC- 7 is landing at Schiphol’s runway 06, the 
ATCO is informed by the ground handler that the chosen stand D04 is blocked / unavailable for another 
20 min. Since the aircraft is landing soon, the MAS has already planned a conflict-free route. The ATCO 
displays the planned route (path displayed in Figure 9a), and notices that the aircraft would arrive 
approximately 15 min too early at the stand. First, ATCO places a pending goal-constraint at the stand 
D04 for the blocked time period and requests the MAS to compute initial alternatives without 
accounting for other traffic, i.e. SAMP routes. The MAS displays three initial solution strategies: (1) 
assign an alternative stand to the aircraft (path b), (2) let it hold at one of the remote holding points 
(path c), and (3) let the aircraft take a detour along TWY-B and TWY-A with minimal taxi speed (path 
d). With these options in mind, ATCO uses the fast-forward simulation to get an impression of the 
traffic situation in the upcoming 30 min. In turn, she disregards all three options: the alternative stand 
(1) is in another bay area and will likely not be acceptable for the airline, all remote holding points (2) 
are already occupied and would require extensive changes to the routes of other aircraft, and she 
deems (3) to be impractical given the amount of traffic in the upcoming period. From her experience, 
ATCO knows that the aircraft could alternatively hold in bay area C/D. She selects the chosen point as 
non-standard holding location at which AC-7 shall hold for 15 min, and lets the MAS compute the SAMP 
route (path e). After checking her resolution option using again the fast-forward simulation, she 
accepts the changes to the activity sequence of aircraft AC-7. The MAS carries out partial replanning 
of the MAMP routes and notifies Anne that the changes have taken effect. 
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Figure 9. The stand of an arriving aircraft is unavailable: SAMP paths of a) original route, b) rerouting to a 
different stand, c) holding at a remote holding point, d) detour with minimal speed, and e) holding at a non-
standard holding point 

In this scenario, through the goal-constraint, AC-7 is not allowed to arrive at the stand prior to the end 
time, which is taken into account as strict requirement during path planning by the MAS. The MAS uses 
a set of options such as rerouting to another stand, or holding at a remote holding location among 
others to create appropriate activity sequences and let the MAS determine the corresponding SAMP-
paths. As none of these route alternatives appear suitable to the ATCO, another activity sequence is 
created from the inputs provided by the ATCO: the chosen holding location is added as intermediate 
goal at which the aircraft must wait for the selected duration. The MAS carries out a partial replanning 
by deconflicting the routes of all aircraft that are affected by the new route of AC-7. 

3.2.5 Case ”Emergency demands Aircraft to Return to Stand” (related to UC8 “Arriving 
flight with technical issue” from D1.2) 

Non-nominal situations may occur infrequently, but often require non-standard resolution strategies. 
Especially in such situations, the automated side of the human-automation teaming must provide a 
flexible interface for effective decision-support. In the following, we consider a scenario in which a 
departing aircraft must return to its stand due to an emergency. 

In the MAS, the activity sequence must be redefined so that the aircraft is not routed further to the 
runway, but instead back to the original or alternative stand. Dependent on the emergency and general 
traffic situation, the ATCO can adjust the priority of the aircraft in comparison to other traffic: a high 
priority yields a fast return route while potentially more traffic is affected, whereas a low priority 
potentially lengthens its taxi time but creates minimal nuisance to the routes of other aircraft. For 
various exemplary emergency situations, changing the priority of the emergency-declaring aircraft did 
not have a significant impact on its own as well as the trajectories of affected aircraft. This suggests 
that the Routing Algorithm is able to recover to the desired level from such situations. For the default 
priority, Fig. 9 visualizes the original route of AC-8 (a) as well as its route back to the stand. The effects 
on other traffic with respect to the original planning are visualized by shadow-aircraft. 
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Figure 10. The blue-circled aircraft declares an emergency: a) shows the original route to the runway, b)-d) its 
route back to the stand with the effects on other traffic shown by shadow-aircraft 
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List of acronyms  

	
Acronym Description 

ACO Ant Colony Optimisation 

ETV Electric Towing Vehicle 

FS Flight Schedule 

MAMP Multi-Agent Motion Planning 

MAPD Multi-Agent Pickup and Delivery 

MAS Multi-Agent System 

PBS Priority-Based Search 

SAMP Single Agent Motion Planning 

SIPP Safe Interval Path Planning 

TSP Travelling Salesman Problem 

VRP Vehicle Routing Problem 

Table 2: List of acronyms 

 


