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Abstract

This deliverable presents support algorithms for automated tug assignment and multiagent path
planning. These algorithms were designed on the basis of the algorithms for tug assignment and path
planning developed in SESAR AEON project. The former algorithms were extended to take into account
diverse and realistic spatiotemporal constraints related to airport surface movement operations (such
as airport’s traffic rules) and the ASTAIR concept in particular. The developed algorithms dynamically
adapt to changes in the environment (such as changes of runway mode of operation) and new
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constraints provided by human operators by recalculating their solutions. To address scalability issues
of the previously developed tug assignment algorithms and to make them suitable for real-time use,
an efficient, meta-heuristics-based approach was developed using Ant Colony Optimisation. The
multiagent path planning algorithm developed in AEON was further improved by taking into account
more realistic details (such as shapes and improved kinematic models of the vehicles) and enhancing
its computational efficiency. During the workshops and interviews conducted in ASTAIR (WP1),
preferred interactions of human operators with automated systems and algorithms were identified
and described in deliverable D1.2 in the context of eight use cases. In this deliverable, we describe how
some of these interactions were modelled and implemented in the multiagent system based on the
developed algorithms. The algorithms were integrated in the ASTAIR’s validation platform (D4.1) and
will be evaluated during the project’s validation phase (WP5).
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Executive summary

The goal of the ASTAIR project is to design a seamless partnership between Human and Artificial
Intelligence (Al) to manage and perform engine-off and conventional airport surface movement
operations at major European airports. ASTAIR original approach to automation is to consider an
integrated airport system instead of many separate sub-systems, analyse the level of autonomy an Al
system could take on tasks and to make the automation controllable by humans at different levels.

With the introduction of high-level automation for airport surface movement operations, the role of
operators and airport operation procedures will significantly change. The key to optimize the overall
performance of the collaboration between humans and Al is to adapt intelligent systems to the
operators’ modus operandi. This will ensure logical consistency across manual and automated control
and reduce the cognitive distance between levels of automation by mapping system functions to goals
and mental model of operators. In ASTAIR, we will propose interactive tools and adaptative Al
algorithms that take advantage of operators’ expertise for controlling and engaging with the
automation at diverse levels.

This deliverable presents adaptive support algorithms for automated tug assignment and multiagent
path planning. These algorithms were designed based on the algorithms for tug assignment and path
planning developed previously in SESAR AEON project. The former algorithms were extended to take
into account diverse and realistic spatiotemporal constraints related to airport surface movement
operations (such as airport’s traffic rules and specific constraints of ground traffic controllers identified
during interviews) and to the ASTAIR’s concept of engine-off taxiing.

The developed algorithms dynamically adapt to changes in the environment (such as changes of
runway mode of operation) and new constraints provided by human operators by recalculating their
solutions. To address scalability issues of the previously developed tug assignment algorithms and to
make them suitable for real-time use, an efficient, meta-heuristics-based approach was developed
using Ant Colony Optimisation.

The multiagent path planning algorithm developed in AEON was further improved by taking into
account more realistic details (such as shapes and improved kinematic models of the vehicles) and
enhancing its computational efficiency.

During the workshops and interviews conducted in ASTAIR (WP1), preferred interactions of human
operators with automated systems and algorithms were identified and described in deliverable D1.2
in the context of eight use cases. In this deliverable, we describe how some of these interactions were
modelled and implemented in the multiagent system based on the developed algorithms. The
algorithms were integrated in the ASTAIR’s validation platform (D4.1) and will be evaluated during the
project’s validation phase (WP5).
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1 Introduction

1.1 Purpose of the document

In this deliverable we describe algorithms for the automated assignment of towing vehicles and
multiagent path planning, which form the basis for the ASTAIR concept. The developed algorithms are
based on the corresponding algorithms developed in SESAR AEON project, described in the AEON’s
deliverables D2.1 ‘Multiagent System for Routing” and D2.2 ‘Model for optimal allocation of towing
vehicles’. In this deliverable we describe the developed extensions, in particular which allow taking
into account a range of operational constraints relevant to engine-off taxiing and which enable real-
time use of the algorithms and adaptation to changes. Furthermore, we describe how some of the
interactions with human operators relevant to the ASTAIR concept could be modelled and
implemented algorithmically.

1.2 Intended readership

The intended readership also includes:
e researchers developing computational models for sustainable airport operations;

o the key stakeholders targeted by the ASTAIR solution, in particular ground handlers, airport
management, airlines, ATC operators and the industry providing green taxiing solutions;

e the overall aviation community interested in the document, as it will be publicly available.

1.3 Related documents

This deliverable builds upon or relates to the following documents:

e AEON project deliverable D2.1 Multiagent System for Routing, edition 00.00.03, edition date
16/9/2022, outlining the routing algorithm used as the basis for the ASTAIR project.

e AEON project deliverable D2.2 Model for Optimal Allocation of Towing Vehicles, edition 00.00.03,
edition date 19/9/2022, outlining the algorithm used for the tug allocation used as the basis for
the ASTAIR project.

e D1.1 State-of-the-Art, edition 01.00, edition date 26/2/2024, as basis for the algorithms that are
described in this document.

e D1.2 Workshops Report, edition 01.00, edition date 27/6/2024, describing operational working
practices, constraints and interactions relevant for the algorithms described in this deliverable.

e D4.1 Description of the validation platform, edition 01.00, edition date 27/1/2025, in which the
algorithms presented in this deliverable will be integrated and evaluated as a part of the final
validation session.
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e D5.1 Exploratory Research Plan, which describes the objectives and criteria for the validation of
the ASTAIR concept

1.4 Structure of the document

In Section 2 the algorithms for tug fleet management are described. The algorithms for adaptive path
planning for aircraft and tugs are detailed in Section 3. In both Sections 2 and 3 we focus on the
extensions of the AEON’s base algorithms developed specifically for ASTAIR. In Section 3, a special
attention is given to the modelling and algorithmic implementation of interactions with human
operators in the context of several use cases considered in the ASTAIR’s workshops.
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2 Algorithms for tug fleet management

Effective deployment of towing vehicles entails assigning them to carry out tow tasks in order to
minimize the total amount of fuel burned by taxiing aircraft and ensure that aircraft operate according
to schedules, avoiding delays. Furthermore, more temporal constraints related to the assignment of
towing vehicles could be provided by human operators (tug fleet managers). These constraints will be
taken into account in the model similarly to how flight schedules are considered. Adding to the
complexity is the fact that we assume that towing vehicles are electric (electric towing vehicles (ETVs)),
requiring charging times to be integrated into their operational schedules. Together, these aspects
define the tug scheduling problem that is considered in ASTAIR.

The approach that was followed in the AEON project to model the ETV assignment problem as a
general fleet scheduling problem, extending the classic Vehicle Routing Problem (VRP). Such models
effectively incorporate charging requirements and can produce optimal schedules for ETVs. However,
their applicability in real-world operations is limited by two key aspects. The first is that these models
rely on Mixed Integer Linear Programming (MILP) formulations, which are known to suffer from poor
scalability. Especially when considering the dynamic nature of airport operations and frequent
changes, which may prompt frequent rescheduling of ETVs, this can be undesirable. The second
limiting aspect is that these models often follow a two-staged approach, where conflict-free paths are
planned for aircraft first, and ETVs are scheduled after. This approach implicitly assumes that paths for
aircraft will not change depending on the ETV schedule. In actual operations, however, the ETV
schedule determines which aircraft are towed. Due to the kinematic differences between towed and
regular taxiing aircraft, the paths found in the path planning stage of the model may no longer be valid.

An alternative approach followed in ASTAIR that effectively addresses the interdependency between
aircraft paths and ETV schedules, while also capable of handling dynamic environments, is modeling
the problem as a Multi-Agent Pickup and Delivery (MAPD) problem. In MAPD, a group of agents must
tend to an incoming stream of pickup and delivery tasks. Tasks must be efficiently allocated to agents,
and agents must carry out these tasks without colliding with one another. Typically, a MAPD solution
method consists of a task assignment and a path planning module, which solve the problem either
jointly (coupled) or through some iterative process (decoupled).

To address the scalability limitations of the tug scheduling algorithm used in AEON, in ASTAIR we used
a bio-inspired method called Ant Colony Optimization (ACO), which has proven to be able to generate
high quality solutions for VRP-type problems in a relatively short time. This algorithm is described in
this section.

2.1 ETV assignment problem description

We consider the problem of dispatching a limited fleet of ETVs to maximize the fuel savings derived
from ETV operations. Since the ETVs are electric, they need to recharge during operations.
Consequently, the task assignment method must allocate both towing and charging tasks to ETVs. A
towing task corresponds to an ETV towing one aircraft to its designated decoupling location. A charging
task corresponds to an ETV to charging its battery at the ETV depot for a specified time interval.
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Tasks must be allocated efficiently to account for the dynamic nature of airport operations. Specifically,
the task assignment method is required to be fast to allow for rapid rescheduling, with a maximum
runtime of one minute assumed to be sufficiently low. Additionally, the method should scale well with
increasing problem complexity to accommodate variations in operational conditions.

The execution of a tow task is defined as follows. At the start of a tow task, an ETV couples to the
aircraft at the stand. It then tows the aircraft along the airport’s taxiways to the predefined decoupling
point. After decoupling, the aircraft taxis to the runway using its engines. Meanwhile, the ETV enters
the service road network via a service road entry point, either to pick up its next assigned aircraft or
to return to the ETV depot for charging.

Tow tasks are executed by towing aircraft over the layout of an airport, which is represented as a graph
G = (N, E). The edges in E denote the taxiways and service roads. The nodes in N represent stands,
decoupling points, service road entry points, the ETV depot, runway entries, and intersections between
taxiways and service roads.

Aircraft that are available are prescribed by the flight schedule F. Each aircraft can either be towed to
multiple decoupling points. The end-point of the tow task determines a number of factors, including
the achieved fuel savings, the discharge of the ETV, and which next tow tasks can be reached on time.
Therefore, the task assignment method must select which towing end-point will be used. To represent
this choice of where to tow the aircraft, we consider multiple potential tow tasks associated with flight

f € F, one for each possible towing end-point. All tasks that tow flight f are grouped in Afc't and the

total set of tow tasks is definedas A = Uyep A}'t . All aircraftin F are categorized into regional, narrow-

body, and wide-body. The category mass used for the battery modelling of ETVs.

Each tow task a € A has a pickup node ng € N and drop-off node n¢ € N. The pickup node is the
aircraft stand from the flight schedule and the drop-off node is a decoupling point near its scheduled
runway entry or on any of the TRPs. The pickup time of task a is denoted tg as and is equal to the
Actual Off-Block Time (AOBT) in the flight schedule. To optimize the assignment of tow tasks to ETVs,
it is important to consider three aspects. First, it is necessary to compute paths over G to find the
duration of tow tasks and the time it takes ETVs to transition between tasks. Second, a method to
evaluate the fuel savings that follow from executing a tow task must be defined. Last, the properties
of ETVs should be considered, including the battery discharge process that determines how many tow
tasks an ETV can execute before requiring charging. These three aspects were considered in D2.2
‘Model for optimal allocation of towing vehicles’.

In the following section we present our model and the related algorithms for ETV assignment based
on Ant Colony Optimization.

2.2 Ant Colony Approach for the ETV assignment problem

Ant Colony Optimization (ACO) was originally introduced by Dorigo and Gambardella [1] to solve the
Travelling Salesman Problem (TSP). ACO is a probabilistic optimization technique inspired by the
foraging behaviour of ants. Itis a population-based meta-heuristic that simulates the ants’ pheromone-
laying and following behaviour to explore and exploit a solution space. By iteratively updating
pheromone trails based on the quality of discovered solutions, ACO guides the search toward
promising regions of the solution space.
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ACO is well-suited for combinatorial optimization problems, including the TSP-related Vehicle Routing
Problem (VRP), general Multi Robot Task Allocation (MRTA) problems, and airport gate assignment.
The ETV assignment problem is essentially about finding an optimal chain of tow tasks for each ETV.
This is analogous to the TSP or VRP, where the goal is to determine an optimal sequence of cities or
delivery points. Because of these similarities, and the proven effectiveness of ACO solution methods,
we developed an ACO-based approach for task assignment of ETVs.

In the ACO method, ants traverse a solution space composed of task nodes to construct a task
assignment. The design of this solution space is detailed in Section 2.2.1, while the solution
construction process is explained in Section 2.2.2. While traversing the solution space, ants must
repeatedly choose which next task node to visit. This task node selection process is detailed in Section
2.2.3.

2.2.1 Solution space

Ants must be able to traverse a solution space in such a way that an optimal task chain can be found.
A temporal network is used to construct a solution space that facilitates the exploration of different
task chains while adhering to the temporal constraints of the problem.

A schematic overview of the ACO solution space is shown in Figure 1. This example shows a temporal
network with five towing tasks, with the start and end node of task i denoted by S; and F; respectively.
The start nodes are positioned along the time axis in correspondence with the task start time and the
end node position follows from the task duration. The positioning of nodes along the vertical axis has
no meaning in this figure. In addition to the tow task nodes, three charge nodes (C;, C;, C3) are shown.
Charge nodes are placed at fixed intervals along the time axis and their associated charge task has a
fixed duration. Compared to the mathematical formulation, this approach poses additional constraints
as charging ETV must now adhere to these predefined intervals. However, during testing and
development, the effect of these predefined intervals on the solution quality was found to be
negligible.

——Time—>»

Figure 1: Schematic of the ACO solution space with five tow tasks and three charge tasks.

When exploring the solution space, ants can only travel in the positive time direction, i.e. from left to
right. Dashed lines are the edges between nodes and indicate feasible transitions between tasks. For
example, from node F3, node Ss and Cs are feasible next tasks. From each node, only the first available
charging node is considered as a feasible transition. Only feasible task transitions are included in the
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solution space, ensuring that each ant always yields a feasible task assignment. The next section details
the process of deriving a task assignment from the explored solution space.

2.2.2 Constructing a Solution

The ACO algorithm constructs task assignments iteratively, with ants exploring the temporal network
by stochastically selecting task transitions based on heuristics and pheromones. High-quality solutions
are reinforced through pheromone updates, guiding convergence to an optimized assignment. This
section outlines the overall procedure for generating a task assignment with ACO, while Section 2.2.3
details the stochastic selection of task transitions and the heuristics and pheromones that influence
this process.

The high-level loop for the ACO algorithm is shown in Algorithm 1. This is the original ACO algorithm
[1], which remains unchanged in our application. Lines 1-3 initialize the pheromones, heuristics, the
best solution xpest, and the best objective frest. Then, the algorithm performs a number of N" iterations.
In each iteration, a total of N°" ant solutions are constructed (line 6). The objective function value fi is
evaluated for each ant solution xi. The value of the objective function is the total fuel savings resulting
from executing the tow tasks in the solution. If this value is higher than the current best, the best
solution and objective value are updated (lines 9 and 10). At the end of each iteration, the pheromones
are updated (line 13) according to the process described in Section 4.3. After the maximum number of
iterations has been reached, Xpest and frest are returned (line 16).

Algorithm 1 High-level ACO

1: Initialize pheromones, heuristics

2: Initialize best solution Xpest < None

3: Initialize best objective value fpest ¢ 0

4: for i =1to Nt do

5. for k=1to N** do

6 Construct single ant solution x; (see Algorithm 2)
7 Compute objective value fi, for solution xy
8
9

if fr > foest then

: Xbest < Xk
10: Soest < fr
11: end if
12:  end for
13:  Update pheromones (see Section 4.3)
14: end for
15:
16: return Xpest, fbest

To tailor the original ACO algorithm to our specific problem and solution space, we modify the process
of constructing a single ant solution. The pseudo-code for this process is provided in Algorithm 2. First,
a set with available tow tasks A, a set with charge tasks C, and an empty solution x, are initialized (lines
1-3). Then, each single ant constructs a task chain for the available ETVs. For each ETV, a route r; is
initialized and the initial conditions for the ETV battery b; and previous task node npr, are set (lines 5 -
7). When the ETV starts its operations, b is set to the maximum battery capacity and the ETV starts
from the depot. In the case of replanning or a rolling horizon approach, the initial conditions b;® and n°
are set accordingly.
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By using the edges originating from the previous task node, the set with reachable task nodes A" s
constructed (line 9). From those reachable nodes, only the task nodes that are still available in set A
are retained (line 10). By taking the intersection with the union between set A and C, it is ensured that
the charge nodes are not lost. When battery b; is at maximum capacity, the set A" does not contain
any charge nodes. If no available tasks remain, the loop terminates (line 12), and the route for ETV j is
appended to the ant solution (line 24). The ant then resets to the start of the solution space to
construct a task chain for the next ETV.

From the available tasks, only those for which the ETV has sufficient battery are considered feasible.
This requires its current state of charge bjto cover the sum of reaching the task from the previous node
a°(nprev, @), executing the task g*(a), and returning to the depot g/’(a) (line 14). Note that for charge
tasks, g*(a) is negative in this formulation. From the set of feasible tasks, the next task node npex: is
selected based on a probabilistic selection process (line 15) as described in Section 2.2.3.

If the selected task node is a tow task, all the alternative tow tasks A" that tow the same flight f are

removed from the available set A (lines 16-19). This ensures that each aircraft is assigned to at most
one ETV. Charge nodes, if selected, are not removed as multiple ETVs can utilize these concurrently.
Lastly, the ETV battery is updated, the selected task is appended to the ETV route r;, and the previous
task node is updated (lines 20 - 22). When the ant has constructed a task chain for all ETVs, the single
ant solution x is returned (line 27).

Algorithm 2 Construct single ant solution x;.

1: Initialize the set of tow task nodes A < {all tow tasks}

2: Initialize the set of charge task nodes C' « {all charge tasks}
3: Initialize empty solution x; + [

4: for j =1 to NETV do

5:  Initialize ETV route r; « [nY]

6:  Initialize ETV battery b; < b‘;

7. Initialize previous task node npyye, 1

8:  while True do

9: Get the set of reachable nodes A™*<! from previous task node Nprev

10: Get the set of task nodes that are still available A2vail « Areach 0 (AU C)
11: if A*vil = () then

12: break

13: end if

14: Get task nodes for which b; is sufficient A®* « {a € A | b; > ¢%(nprev, @) + ¢~ (a) + ¢ (a)}
15: Select transition to next task node ey from Afeas (see Section 4.3)

16: if nyet € A then

17: Retrieve flight f associated with 7nyeyx¢

18: Update A + A\ A‘}“

19: end if
20: Update ETV battery b; < b; — (qS (Nprevs Mnext) + q~ (nnext))
21: Append nyex¢ to 7
22: Update nprey ¢ Mpext

23:  end while

24:  Append 7; to x;
25: end for

26:

27: return x;
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Figure 2 visualizes the construction of a single ant solution for two ETVs in the example solution space
from Figure 3. First, the ant constructs a task chain for ETV 1 in Figure 2(a), starting with task node S;.
From Fy, task node S, is selected as the next task. As no task nodes are available from F4, the task chain
for ETV 1 is complete. The ant then resets to the start of the solution space to construct the task chain
for ETV 2 in Figure 2(b). As indicated by the grayed-out nodes and edges, the tow nodes already visited
by the ant are no longer available. For the second task chain, S; is selected as the first task node. The
ant then visits two charge nodes and concludes by executing tow task 5.

When constructing the task chain for ETV 2 in Figure 2(a), selecting node Ss (and subsequently Ss) from
F, yields a higher objective value than the current solution. This is because executing more tow tasks
increases the total fuel savings. However, since task node selection follows a stochastic process, this
outcome represents one possible solution generated by an individual ant. Additionally, if the initial
battery condition of ETV 2 (i.e., b,°) was already low, task node Ss could be omitted from A’ (line 14
in Algorithm 2), forcing the ant to travel over the charge nodes. The next section further details task
node selection, including the pheromone levels and heuristic values that guide this process.

—Time—> —Time—>

(a) Task chain for ETV 1 (b) Task chain for ETV 2

Figure 2: Single ant solution construction process for two ETVs.
2.2.3 Task Node Selection

As indicated by line 15 in Algorithm 2, an ant selects its next task node from the set A™*. This happens
according to the typical node selection process in ACO, where the probability for an ant to move from
node j to node j is defined as pj; in the Equation below:

pi = (Tij)a(mj)ﬁ
Y Tkeares () ()P

Here, 7; is the pheromone level and n; is a heuristic value for edge (i, j). The set A™ contains all nodes
an ant can travel to from node /. Lastly, a and  are weighing parameters, determining the importance
of the pheromones and heuristics respectively. Defining appropriate values for t; and nj is crucial to
the ACO solution quality as they largely determine how the algorithm searches through the solution
space.

Heuristics

The heuristics are defined by

Page | 15

© —2025- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH
PLANNING
Edition 01.01

sesar’

JOINT UNDERTAKING

FS; L
w If_]EA
N =19" q,l
1-—= ifjecC
Q

where nj is the heuristic value for moving from node i to node j. If j is a tow task node, the heuristic
value is computed as the immediate reward of executing task j, expressed by the associated fuel
savings FS;, divided by the time until the ETV becomes available for its next task. This division promotes
tightly planned schedules with less idle time for ETVs. If node j is a charging task node, the heuristic
value is determined by the ETV’s current state of charge q; relative to its maximum battery capacity Q.
As a result, the ant is less likely to select a charging node when the ETV’s battery level is high.

From these definitions, it is clear that the heuristic values may vary in scale, which can negatively
impact the node selection process. For this reason, when constructing the heuristics matrix, we
perform a row-wise scaling for all task nodes to ensure that n; € [0, 1] for all j € AUC. Performing these
scaling operations allows for a fair comparison between heuristic values of different type nodes.

Pheromones

Next, the pheromone update process is described. At the start of the algorithm (line 1 in Algorithm 1),
the pheromone matrix is initialized by setting all entries to a small constant value 1o = 0.1. Then, during
the update pheromone step (line 13) the pheromones are updated using the formula:

Nants

| Tij = (1 _P)Tij + 2 Ale]
k=1

Here, p is the evaporation rate, and At; is the pheromone deposit of ant k on edge (i, j). The
pheromone deposit on edge (i, j) is equal to the individual pheromone deposit of ant k, i.e. AT, if edge
(i, j) is present in ant solution xx.

Atk = {Ark if (i,)) € xi
0 else

This means the ant only deposits its pheromone on the edges it has visited when constructing its
solution.

During testing, the ranked-ant pheromone update scheme was found to produce more stable results.
The reason for this is the relatively small difference in objective values between high- and low-quality
solutions. When pheromone deposits from all ants were considered equally, the pheromone matrix
quickly became saturated with deposits from suboptimal solutions, resulting in slow convergence. The
ranked-ant scheme mitigates this issue by weighing the pheromone deposits with the ant’s relative
solution quality, and only considering the solutions of the top N ants. In the ranked-ant scheme, the
individual deposit by ant k is determined using the equation:

AT = max(1 + N™™ — ranky, 0)ca, ™
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Here, rankg refers to the ranking of ant ks solution when all solutions are sorted by objective value in
descending order. Additionally, f"°™ refers to the objective value of the solution of ant k, normalized
between 0 and 1. Normalizing the objective values produces more predictable pheromone deposits
making the algorithm more consistent across different problem instances. Finally, cAt is a constant,
determined through the parameter tuning process.

Charge Node Insertion

To minimize unnecessary idle time and ensure sufficient battery levels for completing future tasks,
charge nodes are inserted into the ant’s path whenever possible. After the ant selects a tow task node,
the algorithm checks for a valid path through charge nodes to reach the selected node. If such a path
exists, the charge nodes are added to the ant’s path. In the example of Figure 4(b), selecting node Ss
from F, causes nodes C; and C; to be inserted into the ant’s solution.
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3 Adaptive path planning algorithms for aircraft and tugs

The path planning model developed in ASTAIR is an extension of the model presented in deliverable
D2.1 ‘Multiagent System for Routing’ of SESAR AEON project. In this section we describe the developed
extensions. In particular, in section 3.1 we present an overview of the multiagent system model for
path planning used in ASTAIR. During the workshops and interviews conducted in ASTAIR (WP1),
preferred interactions of human operators with automated systems and algorithms were identified
and described in deliverable D1.2 in the context of eight use cases. In Section 3.2 we describe how
some of these interactions were modelled and implemented in the multiagent system based on the
developed algorithms. In particular, we describe how the level of conformance to the standard taxiway
directions could be adjusted in the developed algorithms.

3.1 Multiagent system model for path planning

The developed multi-agent system (MAS) model for autonomous aircraft taxiing operations has a
distributed-hierarchical structure of both centralized and distributed agents, which is illustrated in
Figure 3. The centralized Airport Operations Agent defines and updates the flight schedule and runway
configuration, the centralized Routing Agent plans conflict-free trajectories for all Aircraft Agents and
Towing vehicle Agents which are instructed and monitored by distributed Guidance Agents while
executing their planned routes.

e flight schedule + -
Airport

Operations runway configuration R:u;rtg
Agent g
) trajectories

Gcraft

Agents

Guidance
Agents

~

instructs + monitors

Figure 3: Overview of multi-agent system for autonomous airport surface movement operations
3.1.1 Model specification

The airport taxiing infrastructure is represented by a graph G = (V, E) comprising vertices V and
directional edges E. Each bidirectional taxiway segment between two vertices is constructed from two
unidirectional edges that connect the vertices. Taxiway edges are constructed using Bezier-curves that
closely match the taxiway centrelines from a satellite image of an airport.

The Airport Operations Agent schedules all flights, and updates them whenever new predictions of the
underlying A-CDM milestones are available. When the allocated stand of an arriving flight is still
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occupied by a departing aircraft, or Eurocontrol issued a Calculated Take-Off Time (CTOT) for a
departing aircraft, the agent marks the corresponding flight. Such flights are subject to special routes
assigned by the Routing Agent to account for the necessary holding, detour, or prioritization during
taxiing. Furthermore, the Airport Operations Agent defines the runways in use, i.e. the runway mode
of operation (RMO). Active runways and the resulting flight path of arriving or departing flights must
not be crossed. Thus, the Airport Operations Agent blocks such taxiway segments by setting layout
constraints on them. This mechanism is also applicable for taxiway segments that are temporarily
unavailable.

Both the flight schedule and constraints are shared with the Routing Agent that computes conflict-free
routes for all taxiing aircraft within the upcoming planning window wy,;,4. It re-computes the routing
plans when it receives updates from the Airport Operations Agent, or latest after the replanning period
hping has passed. We use motion planning to account for vehicle kinematics and shapes in planning.
To ensure conflict-free paths, we deploy a two-level search based on Priority-Based Search (PBS) [2]
with an augmented version of the Safe Interval Path Planning (SIPP) algorithm [3].

The resulting trajectories are sent to the Guidance Agents which are positioned at every intersection
in the taxiway system. Each Guidance Agent controls those Aircraft Agents that are moving towards its
location. It instructs them to execute the next part of the planned trajectories, and monitors that the
instructions are carried out accordingly. To do so, the Guidance Agents use the airport radar, which
reports the position, speed, and heading of all Aircraft Agents while they move over the airport surface.
In case the executed movements deviate from the planned routes, the Guidance Agents locally adjust
the trajectories to minimize these deviations. However, when the impact becomes too extensive, they
request central replanning from the Routing Agent. Once one of the Aircraft Agents has passed the
location of a Guidance Agent, it passes the guidance responsibility for that aircraft to the next Guidance
Agent along the aircraft’s route.

Aircraft Agents represent the aircraft (auto-)pilots and are modelled to be fully cooperative: they thus
carry out the instructions as accurately as possible. To account for the different sizes of aircraft, all
flights are categorized as one of the 6 aircraft types from the ICAO aerodrome reference codes. They
are assumed to have a circular shape with a pre-defined radius according to the type.

When planning the trajectories, a safety zone is added around all agents. To this end, we define a
general safety distance, as well as a safety distance that an agent has to keep when it is trailing another
aircraft. Both safety measures are defined in relation to the shape radii of the corresponding pair of
agents. Moreover, two aircraft that consecutively take off from the same runway must have a minimal
separation to mitigate the wake turbulence of the preceding aircraft. We use the time-based
separation minima from RECAT-EU for that [4].

The model currently assumes that the A-CDM milestones in the flight schedule as well as the runway
exit are predicted with high accuracy. In reality, arriving aircraft may vacate the runway at varying
times and exits due to operational factors such as pilot behaviour and weather conditions. The model
already includes a positioning tolerance to handle potential noise in position measurements. A similar
mechanism could be introduced to accommodate uncertainties in the time of vacating the runway.
Once the aircraft has entered the taxiway system, the Guidance Agents can adjust the speed profile to
minimize any incurred deviations. As last resort and to cope with an aircraft using an unanticipated
runway exit, centralized (partial) replanning could be triggered to adapt the taxi trajectory.
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Departing aircraft may incur pushback delays, and the duration of their engine-start may be imprecise.
Minor delays could be captured through buffer times added to the offblock-time as well as the engine-
start duration. Larger delays could again be counteracted by locally adjusting the trajectory or partial
replanning if needed.

3.1.2 Activity sequence of Aircraft Agents

To take the various surface movement operations into account during path planning, the route of an
Aircraft Agent is expressed as a combination of the following three activities:

e Go-to activities have one start vertex and a set of goal vertices. Thus, the routing algorithm
gets two degrees of freedom: the path between the vertices, and the time to traverse this
path. The regular taxiing between one point to another point at the airport is an exemplary
go-to activity.

e Follow activities comprise a predefined ordered list of edges that must be part of the route.
Therefore, during routing, time is the only remaining variable as the path cannot be changed.
Pushback and push-pull manoeuvres of departing aircraft are examples of such.

e Wait activities define a vertex at which an agent has to wait for a fixed duration. For instance,
a wait activity is used to specify the place at which the pushback-truck is decoupled from the
aircraft, or the necessary direction-switch of the push-pull manoeuvre within the pushback
operations occurs.

Using a combination of these activities, the Routing Agent defines an activity sequence for both
departing and arriving aircraft, as depicted in Figure 4.

AcTiVITES | follow | | goto | | wait |
regular E | via runway exit (regular or rapid-exit) to stand | g
o  taxiing 5 s
S g
g 2 .
<< inbound | S
holding | 3 5
4
regular 2 | pushback “ decouple | hold " to runway entry (RWY) | §
% E taxiing E | engine-start | é
£ 5
@ % outbound | @ | [hold || pushback |[decouple [hold || torP |[hold |[toRWY | | &
holding E | engine-start | é

Figure 4. Activity sequence for regular taxiing of arriving and departing aircraft as well as inbound and
outbound holding.

1. Engine warmup and cooldown: In the sequence, the warmup and cooldown of the engines
represent special cases. The routing algorithm takes the warmup-phase as part of the engine-
start manoeuvre and on basis of the aircraft-specific engine-start duration as input value into
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account. Therefore, if this duration exceeds the time needed till decoupling from the
pushback-truck, additional waiting in form of holding is added to the route. We do not model
engine cooldown, as it does not have an influence on the routing regarding the kinematics,
since the engines are switched off after standstill at the gate.

2. Inbound holding: When an aircraft arrives at the airport, but its stand is still occupied by a
departing flight, the Routing Agent has three options to resolve the anticipated stand-conflict:
for long conflict durations (option 1), it sends the arriving flight to the remote holding platform.
Otherwise, it defines a detour along the taxiways (option 2), or reduces the agent’s taxi speed
for short conflicts (option 3). To this end, the Routing Agent first calculates the single-agent
route directly to the stand, i.e. the trajectory without accounting for other aircraft agents, to
estimate the severity of the stand-conflict. Then, it computes a single-agent trajectory via the
remote holding points. When this detour is insufficient to resolve the stand-conflict, the
Routing Agent assigns the remaining time as remote holding duration (option 1), and updates
the agent’s activity sequence accordingly. In contrast, when the taxi duration now exceeds the
time at which the departing aircraft has cleared the stand (option 3), it keeps the original
activity sequence of the agent.

3. Outbound holding to comply with CTOT-slots: Similar to inbound holding, the Routing Agent
deals with departing flights for which Eurocontrol issued Computed Take-Off Times (CTOT-
slots). However, as long as no arriving flight requires the stand, it assigns a holding duration at
the agent’s stand so that the agent arrives at the runway at the beginning of the CTOT-slot. In
case an arriving flight is scheduled for the stand, the Routing Agent sends the departing flight
to a remote holding location close to the scheduled runway. It updates the activity sequence
of the departing flight accordingly.

3.1.3 Routing algorithm

The Routing Agent carries out multi-agent motion planning for all Aircraft Agents that taxi within the
planning window. This two-level routing algorithm uses a low-level search to calculate individual
trajectories per aircraft, and coordinates all agents in its high-level search to yield conflict-free
trajectories. For the low-level, we extended the Safe Interval Path Planning (SIPP) algorithm [3], and
adapted the Priority-Based Search (PBS) algorithm [2] to serve as high-level solver.

PBS constructs a priority order between agents to deconflict their space-time trajectories. In its priority
tree, each parent-node has up to two child-nodes. Thus, a priority-relation between a conflicting pair
of agents is established. In each child-node, one additional priority-pair is added with which one of the
two agents that were previously in conflict must give way to the other agent along its entire route.
Then, PBS checks the child node that has the lowest sum-of-cost of all agent trajectories for conflicts
between those agents that do not yet form a priority-relation with each other. We define the cost of
a trajectory as sum of the taxiing duration and travelled distance. Once a child-node is expanded
without any collisions, PBS returns the resulting conflict-free trajectories.

In the low-level search, the route of a deprioritized agent has to be adapted, either by changing its
path or altering the speed profile along the path. To this end, we translate all paths into a set of graph
reservations: an aircraft temporarily blocks a set of edges during each movement between one vertex
and another. The blockage times and set of blocked edges are dependent on the agent’s shape, velocity
profile, the shapes of other agents, and the safety zone between the shapes.
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The SIPP algorithm represents moving obstacles as collision intervals and subsequently defines a set
of Safe Intervals (Sls) per graph location, representing time intervals during which an agent can occupy
that location. Furthermore, states are defined on vertices and motion profiles with piecewise constant
acceleration map the trajectory between states. We augmented SIPP to facilitate the activity sequence
of an aircraft as defined by the Routing Agent, and to take the travelling direction as well as the
kinematic agent properties into account. Additionally, we use Sls also on edges to deal with the
reservations of agents higher in priority. In the motion generation, we are bound to the agent’ s
kinematic properties for the current activity and the velocity in the current state. A motion that is part
of the follow-activity for pushback is for example constrained by a lower maximum speed than regular
taxiing in a go-to activity. In addition, vehicles that have maximum velocity in the current state, might
not be able to decelerate enough to satisfy a reservation on the next edge or vertex. In this case, it
might be required to start decelerating on the edge before the current state. To efficiently account for
this, we anticipate based on the agent’s current velocity, braking distance, and reservations or velocity
restrictions within the braking distance.

3.1.4 Model calibration

In the MAS model, the agents’ motions during route planning are modelled based on constant
longitudinal acceleration/deceleration and do not account for slip, i.e. are steady-state motions.
Nonetheless, to the best of our knowledge, this is the first study to use such detailed kinematics to
compute trajectories of taxiing aircraft. In the following, we thus include an overview of related values
found in the literature.

We define a general speed limit of 15 m/s in line with the design taxi speed given in the A-SMGCS
manual from ICAO [5]. Except for the dedicated wait-locations, agents must taxi at least with the
minimal velocity of 1.5 m/s to avoid stop-and-go during taxiing. For curved taxiway segments, the ICAO
manual mentions that speeds up to 10 m/s may occur. Most previous studies on airport surface
movement operations define curved segments as turns with a maximal velocity of 5 m/s. Since we
model taxiway curves explicitly through Bezier-curves (see Section 2.1), we define a speed limit v e
per edge by using

Veurve = / Qat * Teurve

with the lateral acceleration a;,+ and the radius of curvature 7,,,-,. Of the respective edge. To obtain
r_curve, we use the median value of all curvatures per 1 m-segment of the underlying Bezier-curve.
For passenger comfort in public transport, [6] provides a range for both longitudinal and lateral
accelerations of 0.9 m/s?. Furthermore, they claim that a car driver with a normal driving style
experiences a lateral acceleration of up to +4 m/s? and a longitudinal acceleration of -2 m/s? to 1.47
m/s?. In contrast, [7] found in empirical studies that the acceptable limits for passenger comfort are
1.23 m/s2 for longitudinal and 0.98 m/s? for lateral acceleration. As noted above, previous studies did
not consider lateral accelerations to define turn speeds. For longitudinal acceleration/deceleration,
different values are reported: for example, +0.98 m/s?, or 0.26 m/s? as acceleration and -0.8 m/s? as
deceleration.
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To find realistic values for the longitudinal and lateral accelerations of taxiing aircraft, we use historic
track data from Schiphol captured by ADS-B receivers that record the aircraft positions during taxiing
with a rate of 1 Hz. To this end, we map the positions onto the graph representing the taxiway
centrelines, and smooth the resulting trajectories with a Savitzky-Golay filter (window length of 11 s,
linear polynomial). This yields the travelled taxi distance along the graph edges as well as the speed
and acceleration at each time point of the trajectory. However, we only use the data on the edges that
correspond to the main taxiways: while the tracks become too noisy in the bay areas and at aircraft

stands, the accelerations on runways for takeoff and landing are not representative of those
experienced during taxiing.

1.5
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Figure 5. Calibration of longitudinal acceleration and deceleration values with historic track data.

ICAO-A| ICAO-B | ICAO-C ICAO-D | ICAO-E | ICAO-F
20.0 PR v
. * . * *
17.5 A o o o oF 1 o -
. * ° . - *
15.0 o ———————— —
— : . ° 3
@0 12.5 H b =
.g. ° e I E i
3 10.0 . . l . o0 I
2 754 . | *  historic (ICAO-D)
@ e historic (ICAO-B) e historic (ICAO-E)
5.0 1 e historic (ICAO-C) h H * historic (ICAO-F)

25 - ¢ mmm imit (this study) °

L] .
— 8y = == == == yelocity bounds =
o o

.’ o mm==_|imit (this study)
=t == == yglOCity bounds =

0.0 T T T T T T T T T
0 100 200 300 400 O 100 200 300 400
radius of curvature [m] radius of curvature [m]

Page | 23

© —2025- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH
PLANNING
Edition 01.01

sesar’

JOINT UNDERTAKING

Figure 6. Calibration of curve speed with historic track data

In Figure 5, the acceleration over velocity of each data point is visualized as 2d-histogram. The 1% and
99% percentile lines of the acceleration values per 0.5 m/s step show that the longitudinal
acceleration/deceleration remain similar across different taxi speeds. Therefore, we set the
acceleration to 0.4 m/s? and deceleration to -0.5 m/s? independent of an agent’s speed. While these
values seem low compared to those mentioned in the literature, we argue that using these in planning
increases the flexibility during execution: the Guidance Agents have more options to locally adjust the
trajectories if necessary.

Figure 6 visualizes the historic curve speeds of different aircraft types as average speed along a curved
edge with radius r. The average speed is calculated as ¥ = Ad /At with the time difference At and
travelled distance Ad of the data points per edge along each trajectory. Although higher curve speeds
exist, we define the speed limit in curves based on a lateral acceleration of 1.5 m/s? for small aircraft
(left plot) and 1.125 m/s? for large aircraft (right plot).

parameter value unit

maximal speed vy, 4, 15 m/s

minimal speed v,,;, 1.5 m/s

curve speed Vgyrpe per edge m/s

acceleration acc 0.4 m/s?

deceleration dec -0.5 m/s?

safety distance in general 1 averaged shape radius

safety distance trailing 3 shape radii of preceding aircraft
planning window w1, 15to 60 min

replanning period hy,,,, 3t048 min (=20 % to 80 % of wy,,)

Table 1: Kinematic and algorithm parameters that are used in the routing algorithm

Table 1 summarizes the kinematic values and lists the main algorithmic parameters used by the routing
algorithm. In general, two aircraft agents have to keep a minimal safety distance between them equal
to the average of their shape radii. However, when an aircraft is trailing another agent, it has to keep
a safety distance of at least 3-times the shape radius of the preceding aircraft, which is in accordance
with experts. The planning window wy,;,; and replanning period hy,;,, ; are provided as ranges with the
requirement that hy, ;g < Wping-

3.2 Modelling human-automation interactions using the developed multiagent
system model for path planning

In the ASTAIR project, workshops and interviews with human operators were carried out to determine
requirements and desirable interactions between humans and automated systems. From these,
regular occurring and characteristic situations were synthesized into eight use cases described in
deliverable D1.2. In this section, we explore how the findings from these stakeholder workshops and
interviews can be embedded into the automated multi-agent system and its path planning algorithms,
with a focus on its technical implementation.
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The developed multi-agent system provides the following tools to support the decision making of
human operators concerning path planning:

1) Updating Flight Schedule: The start and goal locations as well as the start times of aircraft are
obtained from the flight schedule (FS) provided through the A-CDM milestones and inputs from
human operators. When updated schedule information is available, the ATCOs can update the FS
entries accordingly.

2) Adjusting Activity Sequence: Per aircraft, the MAS creates an activity sequence to account for the
different operations such as following a specific path for e.g. pushback, travelling to and holding at a
holding point, etc. The ATCOs can adjust this sequence and its elements: they can for instance change
the pushback path that must be followed, or the required holding duration. Likewise, data such as
the estimated engine start-up duration is stored within the activity sequence and may be altered by
human operators.

3) Setting High-Level Parameters and Constraints: The ATCOs can set and adjust various high-level
parameters. These affect the path planning of all, a group of, or certain aircraft, and are valid for an
extended period of time. Examples are:

- adjusting the conformance level to the standard taxiway directions

- blocking certain taxiway segments for maintenance work

- adjusting the speed limits in general or in certain areas such as bay areas e.g. due to adverse
weather conditions

- setting general priority levels between aircraft groups e.g. arriving and departing aircraft

Moreover, ATCOs can set constraints for specific aircraft that have a direct impact on their route.
While some are valid for the entire taxiing, others are timed, i.e. issued for a specific duration.
Examples are:

- constraining the start or goal location in case an aircraft shall leave before or arrive after a
certain time point
- selecting a certain location to be passed during taxiing, affecting the aircraft’s activity
sequence
- assigning a specific priority relation between two aircraft, i.e. one has right of way over the
other
4) Fast-forward simulation with/without Change-overlay: The MAS plans the 4D-trajectories ahead of
time, and deconflicts all routes within a pre-defined planning window. Thus, the ATCOs can inspect
how the traffic will evolve in the upcoming period through a fast-forward simulation. As visualized in
Figure 7 a), a colour scheme is used to indicate the predicted engine status, with the aircraft colour
being green when engines are switched off, orange during engine-start, and red when they are
running. The aircraft are categorized into one of six ICAO-types with the red circles indicating the
associated type sizes. A cyan-coloured tug symbol indicates that a pushback-truck is coupled to the
aircraft. As additional functionalities, the differences between two routing plans can
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be visualized with a change-overlay as shown in Figure 7 b): one or multiple previous/inferior route
alternatives are depicted by shadow-aircraft that are connected with a grey line to the new/superior
solution. Furthermore, any aircraft path can be plotted into the visualization with the executed part
in darker colour and the remaining path in lighter colour, as shown by the blue and orange
trajectories in Figure 7.

Figure 7. Examples of the fast-forward simulation with aircraft sizes.

5) Calculation of SAMP Routes: The MAS can calculate single-agent motion planning (SAMP) routes to
quickly assess different routing options. These routes show the fastest possible paths that account
for all relevant constraints, but are not yet coordinated with other traffic.

6) Calculation of MAMP Routes: Like the regular path planning, the MAS can also calculate alternative
multi-agent motion planning (MAMP) routes based on altered input data, updated activity sequences,
or changed high-level parameters or constraints like those mentioned in Section 1I-C3. However, to
generate conflict-free trajectories for the selected set of vehicles, more computational time is needed
than for calculating alternative SAMP routes.

In the following, we describe several use cases to demonstrate the abilities of the MAS to engage in
interactions with human operators using its interaction tools. These use cases are inspired by the
ASTAIR project use cases UC1-UC8 described in the deliverable D1.2 “Workshops report”, but adapted
here to better illustrate how the algorithms presented in this deliverable work. In the following case
descriptions we will refer to relevant UC1-UC8 to make this link more explicit.

3.2.1 Case "Conformance to Taxiway Procedures of ATC” (related to UC4 “High level taxi
strategy tuning” from D1.2)

In today’s operations, ATCOs use procedures and rules to create aircraft flows through the taxiway
system. At Amsterdam Airport Schiphol, the main taxiways TWY-A, TWY-B, TWY-C, and TWY-D are used
primarily in one direction as visualized in Figure 8. However, ATCOs may deviate from these taxiway
procedures on their own discretion. In the historic data, most aircraft indeed follow the standard
direction, with a few exceptions to e.g. go around an aircraft that is holding on a taxiway to start its
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engines. For fully automated operations, adhering to such procedures is not necessary, and paths could
be optimized without such constraints, increasing the operational efficiency. However, such free-flow
routes may not be comprehensible for human operators, especially when the traffic is dense.
Furthermore, should the automation fail, the human operators may not be able to resolve and
continue the operations. Therefore, for human-automation teaming, the ATCOs must be able to adjust
the conformance level to taxiway procedures of the path planning, which we explore in the following.

Figure 8. Standard taxiway directions as part of ATC procedures at Amsterdam Airport Schiphol

The standard taxiway directions visualized in Fig. 3 must be known to the MAS. The conformance to
these taxiway procedures of ATC is then adjusted by changing the associated cost of traversing a taxiway
segment Cseg during path planning by multiplying it with a cost factor crwy :

Cseg = ( tiaxi + Cd * dtaxi) *CTwy

with the taxi time twx and taxi distance di.x along that segment. cq = 0.1 s/m to convert the distance to
unit time. For example, when crwy =5, it is five-times more expensive to traverse that taxiway segment
in comparison to one with crwy = 1 for identical taxi time and distance. Since the sum-of-cost is
minimized during path planning, non-standard taxiway directions that are assigned higher values for
crwy are less likely chosen.

In the future, instead of letting the ATCOs set the conformance level manually, they could opt for
letting the MAS do so dynamically e.g. based on the number of flights to be routed in each planning
round and the learned preferences of ATCOs. Moreover, other high-level routing parameters could be
adjusted as well, for example:

e Setting default priorities e.g. between arrivals and departures or between aircraft and ground
vehicles: giving higher priorities to a certain group will tend to decrease their taxi times.
Nonetheless, the ATCOs can deviate from these default priorities by assigning a specific
priority-value to any vehicle.

e Setting the general speed limit for the entire taxiway system or certain areas like the bay areas,
foremost dependent on the weather situation. Potentially, a data-driven Al subsystem could
pose recommendations based on historic weather patterns.
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e Setting the minimal or maximal duration that an aircraft holds at a remote holding location.
This will impact the decision-support provided by the MAS for e.g. arriving aircraft whose stand
is still unavailable for a certain duration.

3.2.2 Case ” Departing Aircraft is Delayed” (related to UC2 “Normal operations with re-
scheduling” from D1.2)

In real-world airport operations, delays frequently arise out of various reasons, and have to be dealt
with. When planning the taxi routes of aircraft, delays occurring prior to the predicted start of the
route can be counteracted by updating the prediction and replanning the route accordingly. Many
delays may remain unknown to automated systems, and updating the predictions may require
coordination among human operators as well as their expertise and problem-solving skills. Therefore,
to achieve effective human-automation teaming, such changes and prediction updates must be
steadily supplied to the MAS. In the following, we explore one such example.

All routes of aircraft are based on the flight schedule: per flight, the respective start point and time as
well as the goal location are extracted from it when forming its activity sequence. The corresponding
activities are updated when flight schedule entries change. The updates are then accounted for when
the MAS replans the routes of all flights that are or will be taxiing within the planning window. If
necessary, the replanning can also be triggered rule-based or manually. In the example, the target off-
block time as start time of the route is updated.

In a similar way, any adaptations to the flight schedule are handled, e.g.:

e Assigning a new stand to an arriving aircraft: the goal location in the activity sequence is
adapted.

¢ Allocating deicing to a departing flight in winter conditions: intermediate activities are inserted
into the sequence that demand the aircraft to taxi to one of the deicing locations at which it
has to hold for a specific time to receive the deicing.

e Changes to the takeoff slot assigned by Eurocontrol (i.e. CTOT-slot): the constraining time to
be at the runway is adjusted, potentially also affecting the holding time at the stand and/or
remote holding location.

In general, any flight schedule change may lead to knock- on effects, e.g. trigger a stand conflict (i.e.
the delayed departing flight is blocking the stand that an arriving aircraft is assigned to) that have to
be resolved as well. This may entail further interactions between the MAS and the human operators.
However, as such interdependent effects occur mostly after the original cause, there is likely more
time for the human operators to request and act upon recommendations from the MAS or make
informed decisions to resolve them.

3.2.3 Case "Non-standard Pushback Path” (related to UC4 “High level taxi strategy tuning”
from D1.2)

At Schiphol, the standard pushback and push-pull paths dependent on the aircraft types are defined
in the airport manuals for all stands. We integrated these paths in the airport layout and use them as
part of the activity sequence for outbound flights. However, based on the historic data as well as on
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interviews with operational experts, it can be concluded that the ATCOs deviate from these standard
pushback procedures in around 20 % to 30 % of times to further optimize the flows and taxi times of
the involved aircraft. Thus, the MAS must accommodate to receive and process such informed changes
based on the experience of the ATCOs.

By specifying a non-standard pushback path, the activity sequence is automatically updated: during
the pushback-activity, the aircraft must follow the new path. While the changes are still pending the
acceptance by the ATCO, the MAS keeps both the original as well as the new activity sequences in
cache. Likewise, it keeps a copy of the original MAS solution. When queried by the ATCO, it replans the
potential routes of all agents using the new activity sequence of the departing aircraft. Once the new
solution is accepted by the ATCO, the MAS automatically sends the new routes to the affected aircraft.

3.2.4 Case ” Unavailability of Stand” (related to UC3 “Arriving traffic without parking” from
D1.2)

The stands form one of the bottlenecks in the capacity of airports, and the aircraft stand allocation is
a manifold problem of its own. Due to delays, arriving ahead of time, or allocation constraints among
others, a stand may still be occupied by another aircraft at the time that an arriving aircraft could enter
it. The route of the arriving aircraft must thus be adapted. Such cases are visible in the historic data,
but were also raised in interviews with experts as both a common operational challenge and
interesting use case for airside automation. In the following, we provide an interactive example how
the unavailability of a stand can be resolved using the agent-based framework of human-automation
teaming.

Consider the following scenario: Shortly before the flight AC- 7 is landing at Schiphol’s runway 06, the
ATCO is informed by the ground handler that the chosen stand D04 is blocked / unavailable for another
20 min. Since the aircraft is landing soon, the MAS has already planned a conflict-free route. The ATCO
displays the planned route (path displayed in Figure 9a), and notices that the aircraft would arrive
approximately 15 min too early at the stand. First, ATCO places a pending goal-constraint at the stand
D04 for the blocked time period and requests the MAS to compute initial alternatives without
accounting for other traffic, i.e. SAMP routes. The MAS displays three initial solution strategies: (1)
assign an alternative stand to the aircraft (path b), (2) let it hold at one of the remote holding points
(path c), and (3) let the aircraft take a detour along TWY-B and TWY-A with minimal taxi speed (path
d). With these options in mind, ATCO uses the fast-forward simulation to get an impression of the
traffic situation in the upcoming 30 min. In turn, she disregards all three options: the alternative stand
(1) is in another bay area and will likely not be acceptable for the airline, all remote holding points (2)
are already occupied and would require extensive changes to the routes of other aircraft, and she
deems (3) to be impractical given the amount of traffic in the upcoming period. From her experience,
ATCO knows that the aircraft could alternatively hold in bay area C/D. She selects the chosen point as
non-standard holding location at which AC-7 shall hold for 15 min, and lets the MAS compute the SAMP
route (path e). After checking her resolution option using again the fast-forward simulation, she
accepts the changes to the activity sequence of aircraft AC-7. The MAS carries out partial replanning
of the MAMP routes and notifies Anne that the changes have taken effect.
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Figure 9. The stand of an arriving aircraft is unavailable: SAMP paths of a) original route, b) rerouting to a
different stand, c) holding at a remote holding point, d) detour with minimal speed, and e) holding at a non-
standard holding point

In this scenario, through the goal-constraint, AC-7 is not allowed to arrive at the stand prior to the end
time, which is taken into account as strict requirement during path planning by the MAS. The MAS uses
a set of options such as rerouting to another stand, or holding at a remote holding location among
others to create appropriate activity sequences and let the MAS determine the corresponding SAMP-
paths. As none of these route alternatives appear suitable to the ATCO, another activity sequence is
created from the inputs provided by the ATCO: the chosen holding location is added as intermediate
goal at which the aircraft must wait for the selected duration. The MAS carries out a partial replanning
by deconflicting the routes of all aircraft that are affected by the new route of AC-7.

3.2.5 Case "Emergency demands Aircraft to Return to Stand” (related to UC8 “Arriving
flight with technical issue” from D1.2)

Non-nominal situations may occur infrequently, but often require non-standard resolution strategies.
Especially in such situations, the automated side of the human-automation teaming must provide a
flexible interface for effective decision-support. In the following, we consider a scenario in which a
departing aircraft must return to its stand due to an emergency.

In the MAS, the activity sequence must be redefined so that the aircraft is not routed further to the
runway, but instead back to the original or alternative stand. Dependent on the emergency and general
traffic situation, the ATCO can adjust the priority of the aircraft in comparison to other traffic: a high
priority yields a fast return route while potentially more traffic is affected, whereas a low priority
potentially lengthens its taxi time but creates minimal nuisance to the routes of other aircraft. For
various exemplary emergency situations, changing the priority of the emergency-declaring aircraft did
not have a significant impact on its own as well as the trajectories of affected aircraft. This suggests
that the Routing Algorithm is able to recover to the desired level from such situations. For the default
priority, Fig. 9 visualizes the original route of AC-8 (a) as well as its route back to the stand. The effects
on other traffic with respect to the original planning are visualized by shadow-aircraft.
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Figure 10. The blue-circled aircraft declares an emergency: a) shows the original route to the runway, b)-d) its
route back to the stand with the effects on other traffic shown by shadow-aircraft

Page | 31

© —2025- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH

PLANNING »
Edition 01.01 4;

JOINT UNDERTAKING
References

[1] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman problem,” Biosystems,
vol. 43, no. 2, pp. 73-81, Jul. 1997, doi: 10.1016/S0303-2647(97)01708-5.

[2] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with consistent prioritization for
multi-agent path finding,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019,
pp. 7643-7650.

[3] M. Phillips and M. Likhachev, “SIPP: Safe interval path planning for dynamic environments,” in
2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 5628-5635. doi:
10.1109/1CRA.2011.5980306.

[4] V.Treve and F. Rooseleer, ““/RECAT-EU’ European Wake Turbulence Categorisation and Separation
Minima on Approach and Departure.” EUROCONTROL, Aug. 11, 2024.

[5] I. C. A. Organization (ICAO), “Advanced Surface Movement Guidance and Control Systems (A-
SMGCS) Manual,” 2004.

[6] 1. Bae et al., “Self-Driving like a Human driver instead of a Robocar: Personalized comfortable
driving experience for autonomous vehicles”.

[7] K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger comfort in
automated vehicles: Acceleration and jerk,” Appl. Ergon., vol. 106, p. 103881, Jan. 2023, doi:
10.1016/j.apergo.2022.103881.

Page | 32

© —2025- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D2.1 SUPPORT ALGORITHMS FOR AUTOMATED TUG ASSIGNMENT AND PATH

PLANNING
Edition 01.01

List of acronyms

sesar’

JOINT UNDERTAKING

Acronym Description
ACO Ant Colony Optimisation
ETV Electric Towing Vehicle
FS Flight Schedule
MAMP Multi-Agent Motion Planning
MAPD Multi-Agent Pickup and Delivery
MAS Multi-Agent System
PBS Priority-Based Search
SAMP Single Agent Motion Planning
SIPP Safe Interval Path Planning
TSP Travelling Salesman Problem
VRP Vehicle Routing Problem
Table 2: List of acronyms
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