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1 Introduction

1.1 Purposes of the document

This document covers deliverables D2.1 (Advanced automation in aviation: current and future
developments, opportunities and challenges) of the HUCAN project. D2.1 reflects on the output of
Task 2.1 (Advanced automation and artificial intelligence in transport modes), Task 2.2 (Advanced
automation in aviation: current developments and future scenarios) and Task 2.3 (Opportunities and
Challenges identification). This document will serve as one of the inputs to Task 4.1 (Case studies
introduction: level of automation analysis and certification issues).

This document covers the OBJ1 - Landscape of advanced automation within the EU Digital Strategy for
Mobility and Air Traffic Management (ATM) of the HUCAN project, by providing following,

review and consolidation the levels of automation taxonomy
e acomprehensive scientific review of the state-of-the-art of advanced automation in transport
and Aviation,
discussed opportunities to apply advanced automation and Artificial Intelligence (Al) in ATM
e identify challenges in achieving advanced automation and impact of Al technology

1.2 Intended readership

The intended audience for this document is:

e Single European Sky ATM Research Programme (SESAR) research networks
o particularly, projects under the SESAR Joint Undertaking (SJU) flag “capacity-on-
demand and dynamic airspace”
e EU and national representative regulatory authorities and policymakers
e Air Navigation Service Providers (ANSPs) and industrial stakeholders
e academic community

1.3 Structure of the document

The report is structured into five chapters.
The first chapter provides an overview and explains the structure of the document.

Chapter 2 provides a discussion of the level of automation, which is important for categorising
automation systems. It discusses various taxonomies available in various fields and, in particular,
aviation, such as SESAR and European Union Aviation Safety Agency (EASA). It then provides a
taxonomy that is used in this document and a recommendation to streamline it across different
entities. After that, this chapter lists the research criteria used to perform the literature survey, which
includes choices made in including and excluding certain areas. Lastly, the chapter discusses various Al
methods available and explains different categorizations. It further illustrates the range and variety of
Al methods.
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Chapter 3 provides a thorough literature survey of the advancement in different transport modes,
including air transport, rail transport, road transport, and maritime transport. The chapter starts with
a discussion of general trends in mobility and then discusses specific trends related to each mode of
transport in detail.

Chapter 4 focuses on two main topics related to aviation: airspace optimization and human assistance
in connection with higher automation. The chapter provides a comprehensive literature survey of the
current trends and advancements in these topics, which directly relate to the SESAR flagship "capacity-
on-demand and dynamic airspace" and the use cases defined in the HUCAN project. Some of the
highlights of this chapter include a discussion about technical systems, eXplainable Al and past projects
in the areas.

Chapter 5 discusses future opportunities for high aviation automation and its associated challenges. It
presents the results of the workshop on "Opportunities and Challenges" organised as part of Work
Package 2.

Finally, Chapter 6 concludes the document with a summary of the main points covered in the preceding
chapters.

1.4 Glossary of terms

Table 1 Glossary of terms

Source of the

Term Definition .
definition

Advance Automation It refers to the use of a system that, under certain i ISO/IEC
conditions, operates without direct human | 22989:2022(en), 3.1.7
intervention.

Air Traffic All aircraft in flight or operating on the manoeuvring | ICAO Annex11 - ATS
area of an aerodrome.

Artificial Intelligence “The branch of computer science that deals with the | [Russell 2010]
development of computer systems capable of
performing tasks that typically require human
intelligence. These tasks include learning, reasoning,
problem-solving, perception, natural language
understanding, and interaction with the
environment."

EASA Al Roadmap 2.0
“Technology that can, for a given set of human-

defined objectives, generate outputs such as content,
predictions, recommendations, or  decisions
influencing the environments they interact with”.

Air Traffic Management | The dynamic, integrated management of air traffic i ICAO 4444 - ATM
and airspace including air traffic services, airspace
management and air traffic flow management - safely,
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economically and sufficiently - through the provision
of facilities and seamless services in collaboration with
all parties and involving airborne and ground-based
functions.

High Automation Automation supports the human operator in i SRIA 2020
information acquisition and exchange, information
analysis, action section and action implementation for
all tasks/functions. Automation can initiate actions for
most tasks. Adaptable/adaptive automation concepts
support optimal socio-technical system performance.

Explainable Al (XAl) Explainable Al refers to the capability of Al systems to | Adadi, A., & Berrada,
provide understandable explanations of their : M. (2018). Peeking
decisions and actions to human users. It aims to : inside the black-box: A
enhance transparency, trust, and accountability in Al i survey on explainable
systems by making their internal mechanisms and | artificial intelligence
reasoning processes interpretable and @ (XAl)

comprehensible to users. XAl techniques enable users
to understand how Al systems arrive at their outputs,
which is crucial for building trust, verifying
correctness, detecting biases, and identifying
potential errors or limitations in Al-driven decisions.

Digital Assistant A concept that includes Artificial Intelligence, and goes
beyond tools based on machine learning algorithms
that provide data and information to a human
operator.
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2 Scope and methodology

Over the past decade, the technology landscape has undergone a remarkable transformation, paving
the way for the expanded role of automation. One of the most significant developments has been the
evolution of these systems' capabilities to analyse complex situations, learn from them, and make
intelligent decisions autonomously. This progression has exceeded expectations, as high automation
systems have demonstrated proficiency in cognitive tasks previously believed to be exclusive to human
capabilities. The transformation can largely be attributed to recent advancements in Artificial
Intelligence and Machine Learning technologies, evidenced by applications like ChatGPT, AlphaGo, and
AlphaFold, to name a few.

The field of ATM has seen rapid changes and growth, with increased demand and the emergence of
new players such as Unmanned Aerial Vehicles (UAVs). To address these challenges and meet future
needs, it is expected that the integration of higher levels of automation in ATM systems will be critical.
Strategic Research and Innovation Agenda (SRIA) defines high automation as

“Automation supports the human operator in information acquisition and
exchange, information analysis, action section and action implementation for all
tasks/functions. Automation can initiate actions for most tasks.
Adaptable/adaptive automation concepts support optimal socio-technical system
performance.” (SRIA 2020)

By leveraging highly automated systems, the ATM industry can potentially transform how it operates
with improvements in safety, efficiency, and reliability. Automated systems can analyse large amounts
of data from various sources, including radar, weather sensors, and flight plans, to provide controllers
with real-time insights and decision support. With the use of machine learning algorithms, these
systems can adapt to changing conditions and optimise air traffic flow dynamically, leading to
smoother operations and fewer delays. Additionally, this technology can assist air traffic controllers
and pilots by reducing their workload and alleviating stress associated with their responsibilities.
Furthermore, increasing the levels of automation in ATM systems can augment human capabilities
rather than replace them entirely, which is clearly expressed in EASA Al Roadmap (EASA, 2023) as a
human-centric approach.

Despite the clear benefits and progress made in automation technology, there remain significant
challenges surrounding the integration of higher levels of automation and artificial intelligence in ATM
operations. The SIRA for Digital European Sky, issued by SJU, highlights numerous critical issues and
obstacles. SIRA emphasises the need to concentrate on developing new methodologies for validating
and certifying advanced automation that ensure transparency, legal compliance, robustness, and
stability under all conditions while taking into account a future ATM environment that relies on
multiple Al-based systems of systems, with a focus on human-centred design.

Aligned with the project's objectives, this research endeavours to facilitate the utilisation of novel
systems that offer discernible benefits in terms of effectiveness and efficiency. The primary focus of
this document is to investigate the opportunities and challenges associated with advanced automation
in the field of transportation, particularly within aviation. These challenges encompass concerns
related to human-machine interactions and the organisational impact of automation (Lim (2023) and
Fortunati & Edwards (2022)). Additionally, paramount to the success of these advanced systems is the

Page | 14
© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

sesar’

JOINT UNDERTAKING

assurance of security and resilience against cyber threats (Lee (2023)). Striking a delicate balance
between automation and human involvement, especially in decision-making processes, poses a
multifaceted challenge (Samad (2023)). The objective of this document is therefore to provide a
thorough overview of the concrete needs that exist in the transport sector, in particular in the aviation
sector, for the implementation of advanced automation. The aim is to gain a contextual understanding
of the requirements for standardising regulatory frameworks and adapting certification methods to
ensure the safe and responsible use of advanced automation technologies.

2.1 Level of Automation

"Automation” is generally described as the use of control systems and information technology to
minimise the need for human input, particularly in repetitive tasks. Accordingly, "Advanced
Automation" (AA) (ISO/IEC 22989, 2022) refers to the use of a system that, under certain conditions,
operates without direct human intervention. These definitions highlight the evolution and
sophistication of technological systems in reducing human involvement in certain processes, from
basic automation for repetitive tasks to more advanced automated systems capable of operating
independently.

The SESAR research and innovation initiative has been instrumental in supporting air traffic controllers
and reducing their workload to enhance the efficiency of the Air Traffic Management (ATM) system.
While there is a shared understanding that the future of ATM will involve higher levels of automation,
a collective vision is imperative to shape a research roadmap detailing specific actions. In line with this,
the most recent directives (SESAR, 2020; SESAR, 2023(a); SESAR, 2023(b)) emphasise a comprehensive
examination of automation characteristics and the establishment of conditions to facilitate its practical
and scalable implementation, with a keen consideration of certification aspects.

As evidenced in the literature over time (Sheridan et al., 1978; Parasuraman et al., 2000; Dekker et
al.,2002; Save et al., 2012) advances in technology have provided increasingly sophisticated ways to
automate human operator tasks, thereby enhancing human-machine performance within complex
systems. In this regard, the concept of automation is seen as nuanced, rejecting the binary notion of
‘all or nothing'. Instead, it emphasises the importance of deciding the degree to which a task should
be automated. Beyond the mere delegation of tasks to machines, the introduction of automation
implies qualitative changes in human practices. Recognising this, our approach involves considering
different levels of automation within each function to establish guidelines for effective automation
solutions.

Accordingly, in the context of the SESAR level of automation taxonomy (LOAT) approach (SESAR, 2013),
the key is to determine the degree to which automation should be implemented, recognising a wide
range of options between these extremes and carefully evaluating the associated advantages and
disadvantages. Qualitatively, high-level automation support for information acquisition involves
integrating data from different sources, filtering and highlighting relevant information based on
predefined criteria visible to the user. Similarly, high-level automated support for information analysis
assists users in comparing, combining and analysing information items, and triggers alerts when
attention is required. High-level automated decision-making means that the system autonomously
generates options and decides on actions, with human notification only on request. Support for the
execution of action sequences, both automatic and user-initiated, is an integral part of high-level
automation, enabling monitoring and intervention as required.
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More recently, the EASA Al roadmap (EASA, May 2023) delves into crucial aspects of artificial
intelligence (Al) and autonomy within the aviation sector. According to the LOAT approach, the
roadmap emphasises the importance of adaptivity in the learning process, enabling performance
improvement through experience, particularly in machine learning contexts like online learning.

In particular, the new roadmap provides a new perspective on categorising the level of automation
associated with Al-based technology. There are three scenarios for classifying human interaction with
machines: human assistance (Level 1), human-Al teaming (Level 2), and advanced automation (Level 3
Al). Specifically, Level 1 Al supports human augmentation (L1A) or human cognitive assistance in
decision-making and action selection. Level 2 Al is further subdivided into cooperation (Level 2A) and
collaboration (Level 2B), characterised by the type of interaction and shared awareness between
humans and Al-based systems. Level 3 Al introduces distinctions between 3A and 3B, where 3A
involves supervised automatic decision-making and action implementation, while 3B involves
unsupervised automatic decision-making and action to support safety, especially in the absence of
human supervision (EASA, February 2023; EASA, May 2023).

For the purposes of HUCAN, it is worth to be noted that the classification also introduces the
distribution of authority (EASA, February 2023), ranging from full authority for the end-user (up to
Level 2A Al), through partial authority (Level 2B Al), to full authority for the Al-based system (Level 3
Al). As a result, the Human-Al Teaming (HAT) further classifies the intensity of the interaction,
distinguishing between cooperation (Level 2A) with a directive approach and collaboration (Level 2B)
with a focus on joint problem-solving and shared awareness. This nuanced approach provides insight
into the collaborative dynamics between humans and Al-based systems in aviation operations, taking
into account different levels of authority and communication requirements.

In light of the above, for the purposes of HUCAN, advanced automation is intended as the combined
utilisation of sophisticated technologies, often incorporating Al, machine learning (ML), and robotics,
to enhance and streamline complex processes in various industries (Baribieri et al., 2022). In this realm,
automation goes beyond basic, rule-based tasks, supporting the human operator's cognitive capacities
in information acquisition and exchange, information analysis, action selection and action
implementation, also exhibiting a higher level of adaptability and autonomy (SESAR, 2020). In this
regard, AA systems can analyse large datasets, learn from experiences, and make intelligent decisions,
allowing them to operate in dynamic and unpredictable environments. These systems often involve
interconnected components, such as sensors, actuators, and computing systems, working together to
optimise efficiency, reduce human intervention, and achieve higher levels of precision and reliability.

2.2 Research Criteria

Within the framework of the HUCAN project, diverse research criteria have been strategically
employed to guide investigations and analyses.

The primary aim of this document is to conduct a thorough analysis of the present and future
applications of advanced automation and Al within various transportation sectors, encompassing
automotive, trains, ships, and aviation. This analysis seeks to uncover how automated systems and Al
technologies are currently utilised and planned for implementation across different transport
domains. The emphasis is on identifying both commonalities and distinctions in the adopted solutions
while comprehending the operational-level benefits and challenges. In this regard, in the first part of
the report, the focus is primarily on the European context, aligning with the policy objectives and
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funding programs advocated by the European Union in the transport sector. Particular attention is
devoted to developments in the aviation sector, recognising its significance as a focal point for
advancements in high-level automation. The methodology employed for scoping the literature review
is structured to leverage insights from previous research initiatives funded under the H2020 and
HorizonEU programs. The scope encompasses artificial intelligence, advanced automation, mobility,
and transport, with a territorial focus on the EU and the EEA.

Subsequently, the attention turns specifically to the aviation sector, building upon the findings related
to the challenges and opportunities of advanced automation in diverse transportation modes. The
study aims to delineate the current state of developments and future scenarios of advanced
automation and Al in the aviation sector. Considerations include SESAR expectations, outcomes from
prior SESAR exploratory research, and initiatives explored by industry and ANSPs for ATM-related air
and ground systems in the short, medium, and long term. The research criteria encompass "high level
of automation in aviation" and "artificial intelligence in aviation," refining the focus on aviation-specific
contexts, exploring applications of automation and artificial intelligence, and delving into the ATM
control phase, with a specific focus on the working environment and tasks of air traffic controllers. The
inclusion of a "project of interest" criterion allows for targeted analysis of specific projects with
potential impacts on the broader research area.

Furthermore, a systematic literature review has been conducted. The review process may have
different biases that can affect the effectiveness of the research:

v" Reading before planning (defining a review protocol that specifies the research question being

addressed)

v Reading everything / read unlinked papers (detect as much of the relevant literature as
possible)

v' Reading outdated version of a paper/book

v Reading but not writing

v/ Start reading with few resources

v’ Language bias

v" Not keeping bibliographical information

In order to mitigate the above-cited biases, the review has been performed according to a defined
process. The process has been set up integrating the specific needs within a typical framework of a
“systematic literature review”.

The process includes the following phases:

a) Planning the review
b) Conducting the review
c) Writing the review

Such phases are executed in cascade and each phase is organised according to a series of steps.

Planning the review is the first phase agreed among the partners. It has preliminary identified the need
of the review and then has defined a precise review protocol. The review protocol mainly relies on
three key aspects: (i) formulate appropriate research questions; (ii) identify the most appropriate
temporal frame; (iii) identify the sources to consider.
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The temporal frame has been set equal to the last five years (2018 — 2023). The sources point out
where to find literature. They have been identified categorising the main purposes of the studies on
the problem of interest. Apart from the projects, the main considered sources have been Google
Scholar, Research Gate, Science Direct, AIAA ARC, Journals such as International Journal of Information
Technology & Decision Making.

Three major criteria for selection have been fixed:

e Relevance
O To what extent the material covers the research questions?
o Does it provide sufficient details to gain a clear picture of the results achieved?
o Does it overlap with other research?

e Authority
O Has it been published by a reputable source or is it possible to justify why it is an

important source?

e Temporal horizon
O Is the material still influential in the field?
O s it keeping up to date with new research?

2.3 Al Methods

Advancement in the field of Al is the dominating factor in revolutionising the technology landscape.
From autonomous driving to language translation and social networking, Al has made higher
automation possible in almost all domains. The power of Al models and techniques has opened up
endless possibilities, making it the go-to technology for implementing automation and autonomous
systems. Therefore, it is important to have an overview of Al technologies and methods. This section
covers the various methods and techniques available under the Al umbrella. Our aim is to provide an
overview, with additional references available for those who wish to learn more.

‘ BIG DATA REASONING
\‘\ / oH .
Capable of processing massive . " Ability to reason (deductive or
amounts of structured and inductive) and to draw inference

based to the situation. Context
driven awareness of the system.

unstructered data which can
change constantly

Capable of analyzing and solving
Ability to learn based on . complex problems in special-
historical patterns, expert input -~ purpose and general-purpose

‘ and feedback loop . | \\\ domain. ‘
LEARNING PROBLEM SOLVING

Figure 1 Key characteristics of an Al system (Stefan van Duin, N. B. 2018)
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Al is a multidisciplinary field that seeks to develop intelligent systems capable of performing tasks that
typically require human intelligence. These tasks encompass a wide range of domains, including
problem-solving, decision-making, perception, language understanding, and learning. Al systems use
computational methods and algorithms to mimic or replicate human cognitive functions such as
reasoning, learning, planning, and perception. From a technical standpoint, Al can be defined as,

"[T]he branch of computer science that deals with the development of computer systems

capable of performing tasks that typically require human intelligence. These tasks include
learning, reasoning, problem-solving, perception, natural language understanding, and
interaction with the environment." (Russell, 2010)

From an operative standpoint, EASA has defined Al in its Al Roadmap 2.0 as

“Technology that can, for a given set of human-defined objectives, generate outputs such
as content, predictions, recommendations, or decisions influencing the environments they
interact with.” (EASA 2022)

There are various methods that constitute Al and can be grouped into three broader categories:
traditional Al, machine learning and evolutionary algorithms. Table 1 provides a short summary of the
differences in capabilities and nature of each category.

Table 2 Summary of the differences in Al capabilities and nature of each category

Evolutionary

Characteristic Traditional Al Machine Learning .
Algorithms
Deterministic Yes No No
Knowledge . . .
. . Extensive Not Required Not Required
Engineering
Data-Driven No Yes No
High-Dimensional NG Yes Ves
Search
Adaptable No Yes Yes
Interpretability High Varies Varies
Scalable No Yes Yes
Generalisation No Yes No

2.3.1 Traditional Al

Traditional Al, also known as classical Al, is the term referred to pre-modern machine learning
techniques. The techniques that fall under this category involve explicitly programming rules and logic
to imitate human intelligence. They were popular methods due to their deterministic nature, high
interpretability and ease of implementation. Rule-based systems, Symbolic Al, Knowledge Engineering
and Expert Systems are a few examples in this category. However, these methods exhibit limited
scalability, adaptability and generalisation capabilities, limiting their ability to model and capture
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complex processes. Some examples of traditional Al include rule-based systems, symbolic Al and
Knowledge Representation.

e Rule-Based Systems

Rule-based systems operate on predetermined rules and logic, meaning the output is solely
determined by the input and rules. These systems are deterministic, as they produce the same
output for the same input each time. Rule-based systems have seen extensive use in air traffic
control for various applications, including managing aircraft flow by defining strict rules and
procedures for routing, landing/takeoff sequencing, and aircraft separation (Buchanan, et al
1984). An example of rule-based system by CANSO “Rule-Based Systems in Air Traffic Control”
(CANSO 2019)

e Symbolic Al

Symbolic Al employs symbols and logic to represent knowledge and perform reasoning,
following deterministic rules for logical deduction and inference. This technique is used in
flight planning systems, where logical rules and representations of flight constraints are used
to determine optimal routes, fuel consumption, and flight schedules. “Symbolic Al for Flight
Planning “ (Bazzan, et al. 2014).

e Knowledge Representation

Knowledge representation involves structuring knowledge in a format easily processed by
computers. Brachman and Levesque's (Brachman, et al. 2004) work provides an insight into
this area, explaining techniques and frameworks for effective knowledge representation and
reasoning.

2.3.2 Machine Learning

The recent growth and progress in Al can be largely attributed to the advancements in machine
learning techniques and methods. Machine learning is a field that focuses on computer programs'
ability to learn patterns and relationships from past data, and then use that information to make
decisions on new and unseen data. Unlike traditional Al, machine learning uses data-driven approaches
to learn patterns and make predictions without explicit programming of rules. This allows for better
generalisation, adaptation to new scenarios, and scaling up to larger problems. These methods excel
at finding solutions in high-dimensional search spaces, allowing them to model very complex problems
and tasks with ease. However, due to the high dimensionality of the search space, interpreting the
decision can be challenging. Additionally, these methods can exhibit non-deterministic behaviour due
to factors such as random initialization or stochastic optimization techniques. These techniques
include a wide range of algorithms and methodologies, such as neural networks, decision trees,
support vector machines, and more.
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Figure 2 Relation between Al, Machine Learning and underlying methods and infrastructure (Stefan van Duin,
N. B. 2018)

Machine Learning is further divided into three main learning paradigms, i.e. supervised learning,
unsupervised learning, and reinforcement learning. In Supervised Learning paradigms, each instance
of data consists of observations and explicit labels. This approach is similar to learning from examples.
The learning algorithm takes guidance from the labelled examples and corrects its decision logic. It is
the most effective way of learning since the target is well-defined. Some examples of supervised
learning include Deep Neural Networks, Regression, Decision Trees, Transformers and more. However,
one of the major challenges in supervised learning is generating labelled data, which is expensive to
collect and requires additional effort.

On the other hand, unsupervised learning paradigms define techniques to learn from unlabeled data,
for example, clustering similar data into coherent groups. It allows the power to tap into vast amounts
of unlabeled data. Examples include K-Means Clustering, Principal Component Analysis, Hierarchical
Clustering and more. However, the major drawback in this paradigm is the lack of a well-defined target,
which makes it harder to achieve useful results. Therefore, mostly unsupervised learning techniques
are used in combination with supervised learning methods, such as feature engineering and additional
input signals. This combination of unsupervised and supervised learning techniques has been found to
be quite effective in various applications, including image and speech recognition, natural language
processing, and recommendation systems.
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Finally, reinforcement learning is a type of machine learning approach that is based on learning by
experience. In this learning method, an agent interacts with an environment by taking certain actions
and receiving feedback from the environment in the form of the next state of the environment and a
reward. The reward that the agent receives provides feedback about the impact of the action taken by
the agent, whether it improves the environment or makes it worse. There are several examples of
reinforcement learning algorithms such as Deep Q-Networks (DQN), Proximal Policy Optimization
(PPO), and Asynchronous Advantage Actor-Critic (A3C), among others. These algorithms are designed
to enable the agent to learn from experience to make better decisions in the future. Reward shaping
is considered a critical process in the learning process as it represents a signal to the agent about what
it should learn. However, an incomplete reward can lead to unintended behaviour by the agent.
Therefore, it is essential to design proper reward-shaping techniques to ensure that the agent learns
the desired behaviour and avoids unintended behaviour. For a thorough understanding, we
recommend following references. (Murphy, K. P. 2012) (LeCun, et al. 2015) (Goodfellow, et al. 2016)
(Sutton, et al. 2018).

2.3.3 Evolutionary Algorithms

Evolutionary algorithms are a subfield of computational optimization techniques that fall under the
larger umbrella of Al. These algorithms take inspiration from the principles of natural selection and are
considered a type of probabilistic optimization tool. Evolutionary algorithms, such as genetic
algorithms, evolutionary strategies, and genetic programming, are known for their non-deterministic
nature and their ability to use randomization and selection mechanisms that can lead to varying
outcomes for the same input or initial conditions. At their core, these algorithms function by
generating a population of candidate solutions (often represented as individuals or chromosomes),
and then applying mechanisms such as selection, crossover (recombination), and mutation to evolve
and refine these solutions over multiple generations. A fitness function determines the quality of the
intermediate solutions in the selection process and the final solution. Through this iterative process,
evolutionary algorithms aim to discover optimal or nearly optimal solutions to complex optimization
problems. They are adaptable, scalable and able to model complex processes as they also find solutions
in high-dimensional search space. However, they provide limited ease of solution interpretability and
do not generalise to other problems. The fitness landscape provided by data does not guide the
evolutionary algorithms' fitness function. It can be considered a strength, allowing it to expand learning
exploration and, on the other hand, a weakness as it requires much more computational time to reach
the optimal solution.

Overall, evolutionary algorithms are a powerful tool for solving complex optimization problems in a
wide range of fields, including engineering, finance, and bioinformatics. They have proven to be a
highly effective approach for generating high-quality solutions to difficult optimization problems that
would be impractical or impossible to solve using traditional optimization techniques. (Dasgupta et al.,
2013) (Back et al, 1993).
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3 Advanced Automation and Artificial Intelligence in transport
mode

3.1 Introduction

The challenges emerging in managing Advanced Automation (AA) greatly depend on the specific
characteristics of individual sectors. The HUCAN project addresses the social and technical issues
currently experienced in the certification of advanced automated solutions in aviation and aims at
developing a holistic methodology and an operational design toolkit to tackle the emerging challenges
in this realm. However, this technological transformation is driving a transformative phase for the
whole transport and mobility sector. This section provides an overview of the current research and
innovation trends in the transport and mobility sector to identify similarities and differences and
explores the opportunities and challenges associated with the development and implementation of
these solutions at the operational level.

3.2 General trends on AA for mobility and transport

Advanced Automation is a key force in the transformative evolution of industries, improving
productivity, quality and safety while ensuring competitiveness in the technology-driven landscape.
This technical section examines the research initiatives driving innovation in intelligent mobility and
autonomous transport systems, focusing on the integration of AA systems, artificial intelligence and
robotics.

Collaboration among academia, industry and government has been instrumental in advancing
automation. Research focuses on the development of autonomous systems for management, logistics
and transportation, with a strong emphasis on improving efficiency, sustainability and flexibility. The
growing emphasis on human-robot collaboration underscores the importance of advanced
automation systems working synergistically with human operators to improve productivity and safety.

Considering the scope and the objectives of HUCAN, it is important to stress how the EC recognises AA
as a crucial driver of the digital transition, not only as a stand-alone challenge but also as an
indispensable catalyst for achieving specific and overarching sectoral goals (EC Competence Centre on
Foresight, 2022). By anticipating future mobility trends, the EU aims to create favourable conditions
for the development and validation of new technologies and services (EC, 2020). More specifically, AA
in transport and mobility will foster critical sustainability goals, optimising the efficiency of transport
networks and making a significant contribution to the transition to greener and more environmentally
friendly transport solutions and infrastructure (EC, 2023) (EP, 2021a) (EP, 2021b). In this regard, the EC
policy strategy emphasises the importance of enabling testing and experimentation and of making the
regulatory environment fit for innovation to support the deployment of solutions on the market (EC,
2020).

From a research and innovation perspective, academia and industrial stakeholders are intensifying
efforts in common application trends. In autonomous vehicles, significant strides have been made by
industry leaders like Tesla and Waymo, showcasing self-driving cars equipped with advanced sensors,
cameras, and Al algorithms (Iclodean et al., 2023). Similarly, the freight industry is experiencing a
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transformation with the introduction of autonomous trucks, promising efficiency gains and reduced
labour costs (Dekhtyaruk, 2023).

Automation facilitates predictive maintenance, monitoring, and forecasting the maintenance needs of
vehicles and infrastructure (Giordano, et al., 2022). This approach minimises downtime and enhances
operational efficiency across various transportation modes.

Traffic management is witnessing a revolution with advanced automation optimising traffic flow and
reducing congestion through adaptive traffic signal control systems (Gokasar et al., 2023). The
integration of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication fosters a
connected transportation ecosystem, enhancing safety and efficiency on roads (Ahmed et al, 2023).

Automated ride-sharing services are on the horizon, with companies testing prototypes of
autonomous taxis. Simultaneously, micro-mobility solutions, such as electric scooters and bikes with
automated features, are gaining traction in urban areas, catering to the demand for sustainable and
flexible mobility options (Brodersen et al., 2023).

Eventually, in the realm of air transport, urban air mobility (UAM) is emerging with developments in
electric vertical take-off and landing (eVTOL) aircraft poised to revolutionise urban transportation.
Companies are exploring automated drone delivery systems, presenting innovative solutions for
transporting goods in diverse urban and remote areas.

3.3 Specific trends in different transport modes

While macro trends in AA have a universal impact on the mobility and transport sector, their specific
manifestations vary between different transport modes. This section presents the different research
and development (R&D) pathways within each domain, generally mapping the results obtained in the
main projects funded by the EU under Horizon 2020 and Horizon Europe.

3.3.1 Air transport

The aviation industry has seen many technological revolutions, with the smart use of task automation
to improve the safety, efficiency and accessibility of air travel. The deep integration of AA and Al stands
out as a pivotal force for the safer enhancement of avionics and efficient management of various facets
of aviation (EC JRC, 2023).

In this context, AA and Al-based applications are expected to positively enhance the safety of aircraft,
including UAVs and drones. In particular, these technologies foster safer prototyping and testing of
aircraft systems, also contributing to the development of new certification standards (AEROGLASS). In
the area of urban air mobility (UAM) these solutions further contribute to improving route planning
techniques (LABYRINTH, SAFEDRONE, MONIFLY, COMP4DRONES, TINDAIR and AURORA) and more
precise positions of drones and UAS in the U-space (GAUSS), improving sensor performance and
connectivity protocols (SAFEDRONE, SAFIR-MED and ASSURED-UAM).

Significant advances are also expected in ATM, particularly through Al and digital tools that can assist
and support ATC decision-making. These applications can yield major benefits by supporting and
accelerating decision-making, reducing workload and enabling controllers to focus on critical tasks by
automating less critical and procedural tasks (MAHALO, PJ16 CWP HMI, FARO and SAFECLOUDS.EU).
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Researchers are investigating predictive modelling to anticipate safety hazards and collect operational
data from flights. Researchers are investigating predictive modelling to anticipate safety hazards and
collect operational data from flights. In this regard, it clearly highlights the importance of storing and
processing large amounts of operational data to identify patterns and train predictive algorithms for
increased safety and efficiency in air traffic management (SAFECLOUDS.EU). Particular attention is also
given to the design of the human-machine interface (HMI) to facilitate seamless collaboration in Al-
assisted decision-making (PJ16 CWP, HAIKU).

In-flight safety research focuses on the use of advanced sensor technologies and software processing
techniques to improve overall safety, also envisioning recommended future requirements (PJ11
CAPITO and ODESSA). More specifically, projects are obtaining intriguing results in improving obstacle
detection, avoidance and navigation, especially in challenging conditions such as low visibility or
adverse weather (SENSORIANCE, WINFC and VISION). There is also a coordinated effort to monitor the
cognitive state of pilots and to assess the impact of highly automated systems on controller
performance (STRESS and REPS).

In the area of emergencies, significant research and development efforts are directed towards
supporting pilot decision-making in emergencies (SAFENCY project) and managing onboard pilot
incapacitation scenarios (SAFELAND project). Research efforts are also oriented to improving rescue
capabilities in general aviation emergencies, contributing to a holistic approach to safety in aviation
emergency scenarios (GRIMASSE).

Finally, certification projects play a key role in driving innovation in aviation safety. In this phase, one
of the main goals is to improve the assessment of safety areas for both commercial aviation and
rotorcraft operations (OPTICS, OPTICS2 and NITROS). They use bottom-up and top-down approaches
to assess research maturity and potential real-world applications. These projects are refining the
knowledge management framework, using open databases, curating knowledge for innovative training
and proposing improved certification processes (ASCOS project).

These aspects will be further addressed in the second section of this document, with a specific focus
on AA for airspace optimization and assistance to human operators.

3.3.2 Rail transport

The ongoing digital transformation of rail transport offers a unique opportunity to improve safety and
efficiency. AA, as well as increased computing power, artificial intelligence and high-speed wireless
connectivity, are driving the adoption of automation in traffic and safety management. This includes
precise real-time positioning for concepts such as automatic train operation, virtual coupling and train
platooning (EC JRC, 2023).

The EU is emphasising a unified approach to railway automation based on the European Rail Traffic
Management System (ERTMS) system to ensure interoperability. The transition from outdated GSM
technology to 5G-based solutions for safety-critical communications requires careful management to
ensure a seamless transition.

Digitalisation is expected to improve rail safety, but also increases the reliability of infrastructure and
rolling stock through continuous monitoring and preventive maintenance. Innovative sensor systems
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strategically placed along the tracks enable real-time health monitoring, early fault detection and
predictive maintenance. These systems also enhance security by detecting unauthorised intrusions.

Intelligent infrastructure research focuses on future-proof components and improved track systems.
Intelligent mobility management initiatives aim to advance automated transport systems within a
standardised ICT environment.

Accurate train positioning solutions using advanced GNSS approaches have been developed to cope
with growing rail traffic. In particular, the use of AA and Al-based solutions is making a significant
contribution to optimising yard operations (OPTIYARD) and real-time planning solutions to minimise
delays (ARRIVAL and ON-TIME). Real-time monitoring also optimises network capacity, reduces delays
and manages disruptions caused by extreme weather conditions (IN2RAIL).

Finally, data-driven solutions for energy and asset monitoring across the rail system are contributing
to a significant leap forward in improving the safety, efficiency and technological performance of rail
transport systems (IN2DREAMS).

3.3.3 Road transport and mobility

In road transport, the main research trends focus on human-machine interactions, especially
forwarding connected and automated vehicles. From the technical standpoint, particular attention is
devoted to the use of automation safety strategies and testing. Efforts also converge on
communication standards (EC JRC, 2023).

Recent research activities on Advanced Driver Assistance Systems (ADAS) focus on improving driver-
vehicle interaction by improving control transfer, testing new sensors and developing algorithms to
increase system efficiency and reliability. Challenges include the adaptation of ADAS systems to
different driving conditions and the seamless transfer of control between driver and vehicle. Efforts
are also focused on assessing driver fitness, fatigue and reaction times to counter risky behaviour and
reduce the risk of human error (MEDIATOR, ADASANDME, I-DREAMS and FITDRIVE). Testing also
addresses the seamless transfer of control between driver and vehicle, taking into account the driver's
state, environmental conditions and accident-prone situations (MEBESAFE).

Other research has worked on efficient communication among automated systems, drivers and the
surrounding environment, with significant progress in communication standards and algorithms
(ENSEMBLE, COSAFE). Sensor systems monitor driver behaviour and enable communication with the
environment (HADRIAN and SAFER-LC), infrastructure (Vehicle to Infrastructure; V2l), other vehicles
(Vehicle to Vehicle; V2V) and the vehicle environment (SMARTCARS and SAFE STRIP), in particular for
the detection of hazardous situations (VI-DAS and DENSE). Some initiatives also focus on improving
safety through enhanced interactions between automated vehicles and other road users and
facilitating the integration of automated vehicles (TRANSAID), even providing high-impact
demonstrations of autonomous minibuses (AVENUE).

Safety testing tools are increasingly based on virtual environments, incorporating various features in
digital models of the human body and analysing traffic accident data to develop effective accident
prevention strategies (SENIOR, SIMUSAFE). Notable projects improve the safety of vulnerable road
users by enhancing dedicated in-vehicle active safety systems and contribute to safer urban planning
(PROSPECT, SAFE-UP, XCYCLE, HANDSHAKE).
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Finally, some research projects focus on vehicle automation as well as NTM systems and digital
infrastructure for Coordinated, Connected and Automated Mobility (CCAM), addressing network
prioritisation and traffic orchestration strategies as well as user needs and requirements and human
factors issues related to road transport automation and integrated mobility solutions (CONDUCTOR,
SINFONICA, ORCHESTRA, FAME).

3.3.4 Maritime transport

Significant progress has been made in the field of maritime safety, through technological innovation
and policy improvements (EC, 2020) (EC JRC, 2023).

A key step towards smarter and safer maritime transport is the implementation of the EU VTMIS. This
interoperable system will enhance maritime traffic and transport, improving safety, efficiency and
response to incidents. Technologies such as external and hull inspections by drones complement this
system, streamlining the inspection process and emphasising operational issues over documentation.

Several projects have made a significant contribution to maritime safety, with significant technological
improvements for streamlined ship inspections (SAFEPEC FP7), early warning systems in maritime
radar surveillance (RANGER) and a collision avoidance solution using advanced sensors (SAFENAV)
by developing a prototype using historical and real-time data. Other research initiatives developed e-
navigation solutions to improve information sharing in the maritime sector (EFFICIENTSEA 2).

On the other hand, researchers also explored AA and Al-based solutions to improve evacuation
procedures. Research to enhance smart life jackets, also incorporating wristbands and augmented
reality applications aims to redefine evacuation procedures for passenger ships for enhanced
situational awareness (SAFEPASS). Significant progress has been made in technologies for tracking
passengers and crew during emergency evacuations: localisable life jackets, wristbands with
integrated functionalities for specific passenger groups, including localisation radars for people on
board lifeboats, people counting handheld devices and intelligent decision support systems
(LYNCEUS2MARKET). Al and AR solutions in a massive evacuation vehicle (MEV) are being tested to
better support evacuation procedures.

The projects analysed are in line with policy objectives and focus on vessel traffic monitoring, accident
investigation and safety data management. To reduce the number of accidents at sea, continued
research and innovation are essential, in particular for the integration of sensing, tracking and routing
solutions into ships and monitoring systems. Certification procedures, crew training and regulatory
requirements for innovative equipment require further attention.

3.4 Opportunities and challenges

The research on AA and Al-based solutions promises to significantly improve the safety and resilience
of transport and mobility, reducing the environmental impact of travel and better meeting the users’
needs and societal expectations.

The analysis of current trends in AA and Al-based solutions in transport and mobility reveals four
general drivers: safety, resilience, sustainability and acceptability.
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e Safety is a ubiquitous requirement in research and innovation activity on transport and
mobility, generally addressing all immediate challenges concerning the safe development and
implementation of automation and digitalisation for transport.

e Resilience is a complementary requirement for society to function, as human activities,
including commuting and recreation, and supply chains depend on transport. In this context,
investments in AA and Al tend to focus on strengthening the resilience of EU transport in times
of crisis and improving the cyber-robustness of digital systems.

e Sustainability is a key focus, leveraging Al-driven route planning to create greener transport
solutions, reducing emissions, and enhancing fuel efficiency for traditional vehicles. Initiatives
also promote the adoption of Al-driven technologies in public transport, including CCAM
solutions.

e Human-centric innovation, covers the projects aimed at addressing the needs and
requirements of users about the AA and Al systems under development. This research
generally includes human factors, reskilling and upskilling, and user experience, both from an
operator and traveller perspective.

Against this background, the analysis of the state of the art and the main SRIAs emphasised three key
transversal themes, likewise technological feasibility, standardisation and certification and just
transition and acceptability. Accordingly, the priorities can be mapped as follows:

e Technical and technological challenges mainly concern:

o Data harmonisation, generally encompassing the issues concerning the quality of data
—and, as a consequence, sensor technologies — and connectivity (accessibility issues
will be addressed in the standardisation);

o Infrastructure digitalisation, including all the infrastructure enhancement,
development and maintenance aimed to improve compatibility with AA- and Al-based
concepts;

o Vehicles automation, empowering vehicles and functions able to enhance mobility
safety and security, supporting users’ needs in critical situations and reducing the
number of incidents;

o Networks management, developing AA- and Al-based systems able to optimising the
transport and mobility networks capacity and efficiency;

o Cybersecurity, ensuring the resilience of connected and automated parts and systems
of vehicles and infrastructures against cyber threats.

e Standardisation and certification challenges generally address:

o General and sectoral regulatory frameworks, providing rules to safely address the
specific needs of new technologies development, testing and deployment (e.g. data
governance and accessibility, risk management and protection by design);

o Standardisation, developing shared technical and industrial standards to ensure
consistency and interoperability, especially at transnational level;

o Certification programme, fostering the design of certification processes able to
effectively validate the innovative requirements of AA- and Al-based systems, ensuring
trustworthiness over time

e Just transition and acceptability challenges, eventually, encompass:
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o Workforce training and new job creation, ensuring adequate upskilling and reskilling
programmes to smooth the transition for the workers mostly affected by the
technological innovation, also creating new jobs in fully automated and connected
mobility systems and services;

o Ethical and social impact assessments, promoting a proactive approach to vehicles,
infrastructures and services envisioned since the early stages of design, also taking
into account accessibility, fairness, social well-being and environmental impacts;

o Encourage smart urban planning and mobility, prioritising smart, sustainable and
integrated mobility systems and fostering users’ behavioural changes.

3.5 Takeaway messages

The development and implementation of solutions based on advanced automation and intelligence in
the mobility and transport sector reveal interesting commonalities, despite the specific differences
between the different transport modes. In particular, the range of opportunities in terms of safety,
security and environmental impact transcends individual modes, highlighting their cross-cutting
nature. In light of the above, these are the main takeaway messages:

e Safety as a priority of all the transport modes:
o Solutions based on advanced automation and intelligence in mobility and transport
share commonalities despite mode-specific differences.
o Opportunities in safety, security, and environmental impact extend across individual
transport modes, emphasising their cross-cutting nature.

e Holistic approach to sector challenges:
o Addressing challenges in the sector requires a comprehensive approach.
o Research and development of new technologies should consider both technical
requirements and societal needs to minimise the impact on workers, users, and
society.

e Transversal research and development:
o A transversal approach to research and development is crucial for tackling sector
challenges effectively.
o Analysing main challenges underscores the importance of considering the broader
implications and interconnectedness of new technologies.

e Human-centred approach to new technology regulation:
o Policy guidelines emphasise the need for a regulatory framework tailored to the
specificities of advanced automation and intelligence in transport.
o Encouraging a holistic and interdisciplinary approach, the policy aims to strike a
balance between technological progress and societal well-being.

® Balancing innovation and societal well-being:
o The regulatory, normative, and certification framework should be adapted to the
unique characteristics of advanced automation and intelligence.
o This approach seeks to ensure that the deployment of innovations benefits both
industry stakeholders and the wider community while minimising negative societal
impacts.
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4 Higher Automation and Al in aviation

4.1 Introduction

Automated systems and Al-supported technologies receive an increasing focus in aviation. For this
domain, a comprehensive literature survey of the actual trends and advancements in these topics is
provided to give an overview on state-of-the-art such as the current methods and technologies which
are being planned, developed or already applied. The objective is to identify similarities and differences
of the adopted solutions and the benefits and challenges placed at operational level.

For purposes of the project, this literature survey focuses on airspace optimization and human
assistance in connection with higher automation as these aviation-related topics cover the four case
studies that are used to support the design and the validation of the holistic and unified approach to
certification. The four case studies defined by HUCAN are:

e UCI1# - Dynamic Airspace Sectoring
o Purpose: Improvement of middle airspace utilisation obtained by means of dynamic
optimization of the airspace sector configuration.
o Objective: Dynamically define and apply the best allocation of elementary sectors for
the optimization of air traffic controllers (ATCOs) workload, sector capacity and flow
management.

e UC2# - Al-Powered Digital Assistant in Terminal Manoeuvring Area (TMA)
o Purpose: Enhance runway efficiency by optimising aircraft routing, ensuring
adherence to procedures, and preventing potential conflicts.
o Objectives:

a) Assigning the quickest routes to aircraft while minimising approaching queue
length and adhering to International Civil Aviation Organization (ICAQ) spacing
rules. This is achieved by modifying flight paths from FCFS strategy, increasing
runway capacity and throughput.

b) Maximising adherence to CDO procedures, with environmental impact
reduction.

c) Ensuring continuous CDR functionality (safety increased) by proactively
identifying possible LOS, defined as simultaneous violations of horizontal
distances (<5 NM) and vertical distances (<1000 ft), and taking appropriate
actions to prevent them (by Reinforcement Learning technique).

d) Workload reduction for ATCO and Pilot.

e) Reduction of fuel consumption.

e UC3# - Dynamic Airspace Reconfiguration Service for U-Space
o Purpose: Dynamic U-Space volumes definition and information exchanges between
ATM and U-space.
o Objective: Tool and Al Application dynamically support ATCOs in shaping,
activating/deactivating U-Space volumes to UAS traffic for management of priority
operations, emergencies, of manned aviation in U-Space, with benefits in optimization
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of U-Space as well as controlled airspace, increase of safety levels and ATCO workload
reduction.

e UC4# - Dynamic Allocation of traffic between ATCO and system

o Purpose: Improvement of upper airspace utilisation by means of dynamic allocation
of traffic between the ATCO and ATC Real Ground-breaking Operational System
(ARGOS).

o Objectives: Dynamically support the ATCOs in managing the traffic in the sector, by
means of issuing operational clearances to safely handle basic traffic situations and
aid controllers in handling complex traffic situations. ARGOS has 3 modes of use. Two
of them will be taken into account in HUCAN: the autonomous management of the
traffic by ARGOS in specific circumstances and the hybrid management of the traffic
between the ATCO and the ARGOS system (dynamic allocation of traffic).

These case studies map the challenges that are in the SRIA as are particularly associated with
certification issues. They cover different aspects of the capacity-on-demand concept, address different
kinds of airspaces (i.e., middle airspace, TMA, U-space), and are based on different technologies and
kinds of algorithms (both deterministic and non-deterministic Al-powered ones). Finally the case
studies will be used to feed and validate the theoretical research, to design and test the certification
method and to produce and validate guidelines for certification.

Accordingly, the scope of this literature survey is focused on airspace optimization and human
assistance covering these HUCAN case studies and includes the control-centre (TMA, lower, upper
airspace), the tactical phase and the ad-hoc phase (between 2 minutes to 2 hours before flight). The
working places of tower and airport controllers as well as the pre-tactical planning phase (between 2
and 12 hours before flight) are not considered.

4.2 Airspace Optimization

Work on optimising airspace and associated procedures has been carried out in recent years with two
main objectives. One was to improve traffic flows by adapting main flight routes or sector shapes.
Secondly, the work has focussed on the integration of various aircraft systems. The focus here was on
the integration of UAVs into conventional airspace.

To classify the different approaches to airspace adaptation and route optimisation, the literature
researched was divided into different groups. These include Dynamic Airspace Configuration, Human-
Autonomy Teaming, and Planning System Development (Figure 3).
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Figure 3 Classification of Literature survey of Airspace Optimization

Table 3 Overview of the literature survey, with types, subtypes and title

Classification Sub-classification Type Title

§Automatic Airspace sectorization: A

survey i Survey

i Dynamic airspace sectorization for
flight-centric operations
Method
Dynamic Sectoring i 3D airspace design by evolutionary
computation

: Validating Dynamic Sectorization for
i Air Traffic Control due to Climate
Sensitive Areas: Designing Effective Air
: Traffic Control Strategies

i Evaluation
Dynamic Airspace :
Configuration i

: On the Impact of UAS Contingencies
U-space & ATC on ATC Operations in Shared Airspace

. Concept
Integration

Collaborative ATM-U-space interface

Optimization-Based Autonomous Air
Traffic Control for Airspace Capacity

Autonomous System Method ;Improvement

gAutomated Flight Planning of High-
: Density Urban Air Mobility

Trust & Acceptance : A Methodological Framework of
5 : Human-Machine Co-Evolutionary
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Evaluation : ATC Systems

4.2.1 Dynamic Airspace Configuration

Dynamic sectorization refers to the short and medium-term adaptation of sectors to current or
expected traffic volumes. The aim is to adapt the boundaries of sectors in such a way that air traffic
can be managed efficiently without compromising safety. The scientific literature describes various
methods of how sector boundary optimisation could work.

4.2.1.1 Automatic Airspace sectorization: A Survey (Flener et al., 2013)

In the realm of air traffic management, the paper "Automatic Airspace sectorization: A Survey",
authored by Pierre Flener and Justin Pearson from the Department of Information Technology at
Uppsala University, Sweden, published in 2013, stands as a pivotal exploration into the intricate world
of airspace sectorization.

The survey provides a thorough examination of the concept of airspace sectorization, a critical
component in air traffic management, aimed at minimising a cost metric while adhering to geometric
and workload constraints. With a focus on algorithmic aspects, the paper targets experts in the field.

Distinguishing between airspace sectorization and configuration, the survey underscores the tactical
nature of airspace sectorization. Configuration, described as a (pre-)tactical action, is contrasted with
sectorization, which is either strategic or (pre-)tactical based on inputs. The absence of temporal
aspects in sectorization, unlike configuration, presents challenges in reusing models. The paper serves
as a technical overview for air traffic control (ATC) and ATM experts, emphasising algorithmic aspects
and excluding realism evaluations.

The survey introduces classification criteria, categorising approaches into graph-based and region-
based models. It classifies frequency as static or dynamic and explores input and output granularity,
dimensionality, constraints, workload categories, constraint types, and cost functions. The technology
section discusses various algorithm design methodologies and optimisation technologies, including
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hybrid approaches. Test scales and data types for evaluating airspace sectorization tools are also
outlined.

Table 4 Airspace sectorization classification criteria provided in (Flener,P. & Pearson, J. 2013)

Name Description

Approach Graph-based model

Region-based model

Frequency Static: strategic or pre-tactical

Dynamic: tactical at pre-determined times

Input Granularity Mesh of blocks
ATC functional Blocks (AFBs)
Elementary Sectors
Control sectors
Area of Specialisation (AOS)

Air Traffic Control Center (ATCC)

Output Granularity functional airspace Blocks (FABs)
Elementary Sectors
Control sectors
Area of Specialisation (AQS)

Air Traffic Control Centre (ATCC)

Cost Function Coordination cost: total cost of coordination between sectors
Transition cost: cost of switching from old to new sectors
Workload imbalance: impact of resulting sectors on workload balance
Number of sectors: the total number of sectors should be minimised

Entry points: minimise total entry points into resulting sectors

Technology Stochastic local search (SLS)
Constraint programming (CP)

Mathematical modelling (MP)
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Global optimization (GO)
Evolutionary algorithms (EA)
Computational geometry

Ad hoc algorithm design

Encompassing 16 approaches from 1998 to 2011, the survey provides a comprehensive overview of
algorithmic methods for automatic airspace sectorization.

The conclusion stresses the need for further modelling in airspace sectorization to align with Functional
Airspace Blocks (FABs) and address operational constraints. Implementing airspace optimizations that
alter control sectors is acknowledged, with emphasis on the associated heavy costs in training and
potential infrastructure changes in Air Traffic Control Centres (ATCCs). Transition costs are highlighted,
requiring careful planning for changes in airspace design. The survey recommends increased use of
constraints in computation processes, advocating for mature optimisation technologies such as
Constraint Programming (CP) and Mathematical Programming (MP). The separation of concerns
between modelling and solving is deemed crucial for flexible exploration in an evolving field like
sectorization.

4.2.1.2 Dynamic airspace sectorization for flight-centric operations (Gerdes et al, 2018)

In the scope of air traffic management, the paper "Dynamic airspace sectorization for flight-centric
operations" [1], authored 2018 by Ingred Gerdes, Annette Temme and Michael Schultz from the
German Aerospace centre, Braunschweig, Germany, shows a possibility to dynamically adapt sectors
to main traffic routes in order to optimise the efficiency of airspace.

The aim of the work was to create a suitable fast and efficient continuous airspace sectorization that
can react to current traffic flows and efficiently support the controller even in unusual traffic situations.
This approach bridges the gap between structured and unstructured airspace designs and will
therefore be a fundamental key element for the efficient management of future urban airspace. The
approach is so dynamic that it could also react to different traffic flows over the course of a day with
a variable adjustment of the sector boundaries. The scalable approach follows the requirements of air
traffic by bundling traffic patterns, identifying areas with high traffic density and providing an efficient
planning and control structure to support airspace operators and users.

To ensure a more efficient allocation and a harmonised distribution of workload, the paradigm of
traffic flow determined by the airspace structure ('flow follows structure') has been transformed into
a dynamic approach in which the structure is adapted to the traffic flow ('structure follows flow'). The
benefits of dynamic sectorization can include improved capacity utilisation through flexible use of
airspace and better distribution of the workload for air traffic controllers.
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Figure 4 Generation of sector structure depending on task load in (Ingrid et al. 2018)

Different parameters for the structure of sectors are stored in a chromosome set. The main flight
routes were extracted from DDR2 data sets of EUROCONTROL and summarised using a fuzzy clustering

method. The airspace was initially constructed as a Voronoi diagram, which already contained the
corresponding centre points.

; \,

Figure 5 Example for the overlapping sectors (blue areas, the darker, the more sectors overlap) and the SBBs
(bordered by red lines) (Ingrid et al. 2018)

An evolutionary algorithm then performed the optimization over several generations, creating a
population with a predefined number of solutions for the given problem, where each solution is
encoded as a sequence (chromosome) of parameters (genes) describing a possible problem solution.
As in nature, solutions between two chromosomes can be mixed or mutated by crossover. An
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evaluation function decided after each generation which chromosomes were the most suitable for the
next generation.

4.2.1.3 3D airspace design by evolutionary computation (Delahaye, et al. 2008)

In the scope of air traffic management, the paper "3D airspace design by evolutionary computation”,
authored 2008 by Daniel Delahaye and Stephane Puechmorel from Ecole Nationale de I'Aviation Civile
(ENAC), Toulouse, France, the used genetic algorithm stands in the foreground, not the tactical
optimization of the air space to optimise the traffic flows or controller's workload [2].

This paper from basic research presents an airspace-cutting method which synthesises balanced
sectors with minimum flow cut. It shows a way to divide an airspace into meaningful sectors that must
obey various boundary conditions. These include convexity, minimum distances from route crossing
points to sector boundaries, minimum dwell times of aircraft in sectors and the specification of sector
boundaries running vertically in space. The approach chosen to generate sectors, which must always
be designed in such a way that there are no gaps between them, is an evolutionary algorithm that uses
techniques of inheritance, mutation, selection and recombination (crossover) inspired by nature to
find (near) optimal solutions to complex problems. The modifiable parameters are encoded on
chromosomes and only evaluated after each generation using a fitness function. It was shown that
even with very large airspaces and hypothetical 1000 sectors, the algorithm very quickly produces good
results that meet all boundary conditions.

From an actual point of view, the results from the paper are not suitable for operational use, where
en-route sectors are to be dynamically adapted to current demand. Instead, very large airspace could
be created in this way according to the required criteria on the basis of a complete reorganisation. Due
to formatting errors, some equations are difficult and sometimes impossible to read.

4.2.1.4 Validating Dynamic Sectorization for Air Traffic Control due to Climate Sensitive Areas:
Designing Effective Air Traffic Control Strategies (Ahrenhold et al, 2023)

The study titled "Validating Dynamic Sectorization for Air Traffic Control due to Climate Sensitive Areas:
Designing Effective Air Traffic Control Strategies", authored by Nils Ahrenhold, Ingrid Gerdes, Thorsten
Mdihlhausen, and Annette Temme from the German Aerospace Centre (DLR) Braunschweig, Institute
of Flight Guidance, explores the application of dynamic sectorization in air traffic control to address
challenges posed by climate-sensitive areas. Published in 2023, the research focuses on validating the
effectiveness of dynamic sectorization strategies, aiming to balance the workload of air traffic
controllers amid changing traffic patterns influenced by climate-related considerations. This summary
provides an overview of the key findings, methodologies employed, and implications for enhancing air
traffic management in response to dynamic environmental factors.

= | Evolutonary ,
/ Fuzry Clustering Varonol N
Algorithm
{ Scanari data f ! I
Trafhc for & panod n time > Cluster canters Structure List of vertices-i ectorization

| i I Partition » | Optimie Sect
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Figure 6 Overview of the dynamic sectorization approach taken (Ahrenhold, et. al 2023)

In this feasibility study, the application of dynamic sectorization in the context of air traffic control to
cope with climate-sensitive areas is examined. Dynamic sectorization serves as a means to balance the
workload of air traffic controllers in response to changing traffic patterns. A multi-objective
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optimization system analyses traffic flow and determines time-dependent sectorizations, integrated
into a radar display. The use case involves climate-sensitive areas causing changes in traffic flow.

The study evaluates the developed solution through Human-in-the-Loop (HITL) tests with air traffic
controllers. A controller assistance system in a dynamic airspace sectorization environment is
compared with traditional working methods. The validation shows that the solution is highly applicable
according to controllers' assessments, yet emphasising the need to adapt current procedures and
define new aspects more precisely.

The methodology includes the application of a three-stage approach for dynamic sectorization,
incorporating Fuzzy Clustering, Voronoi Diagram, and Evolutionary Algorithms. Two defined scenarios
are used to test the system's performance, including a climate-sensitive scenario with changes in traffic
flow due to contrail restrictions.

The results of HITL experiments show that the DAS approach is effective without unrealistic behaviours
in the simulation. Air traffic controllers rate the system's performance as realistic, with no safety
concerns or increased workload. Suggestions for improving controller guidelines are made, including
naming conventions and visual guidelines.

In the conclusion, it is emphasised that the study represents an initial feasibility study and clear
responsibilities are necessary for sector adjustments. Recommendations for dealing with specific
situations and initial guidelines for using dynamic sectorization are developed. Future steps include
adjusting the evaluation function based on controller feedback and extended feasibility tests with
interacting controllers. The method could also be expanded to the 3D airspace to enable horizontal
and vertical sector management.

4.2.1.5 On the Impact of UAS Contingencies on ATC Operations in Shared Airspace (Teutsch, et al.
2023)

In the publication "On the Impact of UAS Contingencies on ATC Operations in Shared Airspace" from
March 2023, the authors J. Teutsch, C. Petersen, G. Schwoch, T. J. Lieb, T. Bos and R. Zon share findings
of simulations for the SESAR Industrial Research Project AURA, which were carried out by the Royal
Netherlands Aerospace Centre, NLR, together with partners from the German Aerospace Centre, DLR.

It is expected that these new airspace users will extend their operations and share available airspace
with manned traffic. Dynamic Airspace Re-configuration (DAR) has been considered as one of the
enablers for the integration of unmanned and manned traffic in such non-segregated airspace.

AURA investigates requirements for an interface between ATM-controlled airspace and highly
automated U-space airspace for large numbers of unmanned aircraft. The project defined AUSA, an
ATM U-space Shared Airspace, which is a generic type of airspace that can be delegated to contain
both ATC and U-space controlled airspace volumes and identified the flow of information between
actors, roles and services (ANSP, CISP: Common Information Service Provider, USSP: U-space Service
Providers). Operational Environment, Human Performance Challenges and DAR are described in this

paper.
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Figure 7 Surveillance Display used for DAR Manager and ATCO - Active (Solid) and Planned DAR (Dashed)
(Teutsch, et. al

The AURA concept follows the principle to be in line with existing research activities and regulatory
framework developments in Europe and is set between phase U3 (U-space advanced services) and U4
(U-space full services) of the SJU.

Results of described simulations:

e Anintroduced DAR Manager role and the designed working position supported and improved
ATC operations.

e Negotiations between the DAR Manager and air traffic controllers, will only be possible if there
is enough lead time (several minutes) to prepare for airspace changes.

e Emergency requests that require immediate action should be communicated to the affected
controllers immediately by the system.

4.2.1.6 Collaborative ATM-U-space interface (Lopez et al, 2023)

In the preprint “Collaborative ATM-U-space interface” from October 2023, the authors M. M. Ldpez,
M. C. Gutiérrez published a concept within the AURO project led by Indra. By developing a concept of
operations and validating an identified set of selected information-exchanges services between ATM
and U-space systems by identifying the requirements for USpace information exchange with ATM
through SWIM, the foundations were laid for the integration of the new entrants in the current and
future air traffic environment.
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ATM System

Figure 8 Information exchange services architecture from between ATM and U-space (Lopez, et al. 2023)

The proposed solution focused on the generation of a common ATM-U-space interface by identifying
an initial set of basic services considering the relevant information needed to be exchanged so as to
permit and guarantee the interoperability between both systems, avoiding airspace fragmentation and
allowing safe drones’ operations into controlled airspace. The exchange shall ensure the necessary
information is available to the related stakeholders in order to enable coexistence of ATM and U-space
traffic.

The Assessment of Validation Objectives regarding U-space operations in controlled airspace takes into
account:

e Operational acceptability of roles, tasks and operations.

e Technical feasibility of support.

e Suitability of the ATM-U-space interface for the different solution architectures.

e Impact on human performance.

e Impact on overall safety of U-space operations in controlled airspace.

e Different operating concepts in terms of missions, operational procedures, information
exchanges and architecture configurations.

The findings of the validation regarding airspace optimization are:

e Information exchanges between ATM and U-Space (and vice versa) for sharing new volumes
definition (dynamic U-space Airspace reconfiguration means U-space airspace volumes
modifications).

e Findings regarding human performance challenges:

e The controller workload was hardly impacted by the activity of this interface. Tasks can be
performed efficiently and safely.

e Situational awareness remains at high levels, but HMI needs to be improved to minimise
controller interventions.
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4.2.1.7 Optimization-Based Autonomous Air Traffic Control for Airspace Capacity Improvement
(Basgpinar et al, 2020)

In the 2020 publication, "Optimization-Based Autonomous Air Traffic Control for Airspace Capacity
Improvement", Baris Bagpinar and Hamsa Balakrishnan from the Massachusetts Institute of
Technology in Cambridge, USA, collaborated with Emre Koyuncu from Istanbul Technical University,
Turkey. The paper responds to the increasing demand in air traffic by introducing an innovative
autonomous ATC system rooted in optimization. The study aims to cope with the rising demand in air
travel through highly automated assistance.

The core of the paper lies in introducing an optimization-based autonomous ATC system with a specific
focus on determining airspace capacity. The study highlights the critical role of predicted trajectories
in the decision-making process and underscores the significance of simulating aircraft movements to
estimate airspace capacity accurately.

To achieve accurate trajectory predictions, the paper model’s aircraft dynamics and guidance
procedures. These models simulate aircraft movements, contributing to the overall predictive
capability of the proposed ATC system.

Predicted trajectories emerge as pivotal components influencing decision-making, and the simulation
of aircraft movements is crucial for creating a traffic environment conducive to estimating airspace
capacity accurately.

The interventions of an air traffic controller are defined as a set of manoeuvres suitable for real air
traffic operations, providing a human-compatible touch to the autonomous system.

The decision-making process of the designed ATC system relies on Integer Linear Programming (ILP).
ILP is constructed through a mapping process, discretizing airspace with predicted trajectories and
enhancing the temporal performance of conflict detection and resolution.

The paper introduces a method for estimating airspace capacity using the proposed ATC system. The
procedure involves constructing a stochastic traffic simulation reflecting the structure of the evaluated
airspace.

Validation of the approach is conducted using real air traffic data for en-route airspace, ensuring the
practical applicability and reliability of the proposed ATC system.

The study concludes by showcasing the effectiveness of the designed ATC system in managing air
traffic, even under higher density conditions than current air traffic scenarios. It also concludes by
acknowledging that the proposed system, though depicted as fully autonomous, can also function as
a semi-autonomous system for decision support by human air traffic controllers. The decision on the
autonomy level rests with authorities, who can choose based on stakeholder preferences and other
factors. The scalability and applications of the system are highlighted, with the ILP formulation
enabling scalability for large-scale ATM scenarios. The benefits and drawbacks are discussed,
emphasising high scalability, easy integration into existing ATM systems, and the use of realistic models
to avoid operational hazards. Future research directions are suggested, focusing on expanding the
method to handle different multi-agent systems and exploring alternative complexity metrics,
constructing a detailed wind model, and improving the aircraft model for more accurate trajectory
predictions.
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4.2.1.8 Automated Flight Planning of High-Density Urban Air Mobility (Tang et al, 2021)

In the realm of advancing urban air mobility, the paper "Automated Flight Planning of High-Density
Urban Air Mobility", authored by Hualong Tang and Yu Zhang from the Department of Civil and
Environmental Engineering, alongside Vahid Mohmoodian and Hadi Charkhgard from the Department
of Industry and Management Science Engineering, all affiliated with the University of South Florida,
USA, presents a pioneering exploration into the intricacies of automated flight planning systems.
Published in 2021, this research delves into the challenges and requirements posed by the burgeoning
field of high-density urban air mobility, aiming to provide scalable, safe, and autonomous solutions.

The study proposes an Automated Flight Planning System (AFPS) to address the anticipated higher
density of AAM operations. The AFPS components, including the Low-Altitude Airspace Management
System (LAMS) and Low-Altitude Traffic Management System (LTMS), aim to provide scalable, safe,
and autonomous solutions.

To meet the demands of high-density operations, the paper recommends third-party service providers
for air traffic management and introduces the AFPS. The components of AFPS involve innovative
technologies like LiDAR data for 3D map generation and the visibility graph method for nodal network
construction.

The LTMS focuses on designing conflict-free 4D trajectories based on flight requests, considering
system cost and equity among operators. The Nash Social Welfare Program (NSWP) is introduced to
maintain fairness among different operators in case of service provided to multiple UAM operators.

A case study in the Tampa Bay area in Florida serves to demonstrate the operability of AFPS,
showcasing conflict-free UAM operations through animations. The paper also discusses tactical
operational decisions for electric vertical takeoff and landing (eVTOL) vehicles, emphasising a shift
from traditional flight planning.

The literature review outlines current challenges in airspace design, the UAM corridor concept
proposed by FAA, the visibility graph method, conflict detection methods, trajectory deconfliction
approaches, and the importance of flight equity in U-space services. The proposed AFPS is presented
as a solution, aiming to generate nodal networks that avoid obstacles in low-altitude urban airspace.

Page | 42
© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION

Edition 01.00 »
4L
JOINT UNDERTAKING
[
i B e ) Low-altitude Airspace |
i l_ v‘mm i l Management System (LAMS)
= - |
| Flight operations
| (origin, destination,
| departure time)

Figure 9 Workflow described (Tang, et al. 2021)

Experiment results include the comparison of models and solvers, analysis of optimality and
trajectories, model comparison, flying time analysis, solution differences, system costs, Operators'
Unfair Benefit Ratios (UBRs), and computation time. The conclusion emphasises the development and
components of AFPS, the importance of fairness principles, the LTMS fairness demonstration, the
success of the case study, and ongoing research and future directions.

The study acknowledges ongoing research areas, including additional conflict resolution strategies,
integration of strategic and tactical planning, applicability to other types of AAM, modification of cost
functions, consideration of weather patterns, and integration of battery monitoring into operational
decisions.

4.2.2 Human Autonomy Teaming

Human Autonomy Teaming (HAT) refers to the interaction of people with automatic or semi-automatic
systems (Lyons et al. 2021). Depending on the activity and trust in the systems, the acceptance of
people in particular is a challenge for support system development in a professional and safety-critical
environment.

4.2.2.1 A Methodological Framework of Human-Machine Co-Evolutionary Intelligence for
Decision-Making Support of ATM (Hu, 2020)

The study “A Methodological Framework of Human-Machine Co-Evolutionary Intelligence for Decision-
Making Support of ATMs”, authored by X. B. Hu proposes a methodological framework of human-
machine co-evolutionary intelligence (HMCEI) for decision making support of ATM. As long as an Al
method aims to compete and replace human controllers, it will be confronted with the difficulty of not
being accepted by human controllers. To address this dilemma, this paper proposes a new thinking
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about applying Al methods, i.e., an Al method should be developed in such a way to assist human
controllers, but never in the way of competing and replacing human controllers.

Although the study is about any implementation, the proposed approach to make artificial intelligent
(Al) methods more acceptable in ATM might be an enabler for LOAT level 2.

4.2.2.2 An Explainable Artificial Intelligence (XAl) Framework for Improving Trust in Automated
ATM Tools (Hernandez et al, 2021)

The paper “An Explainable Artificial Intelligence (XAl) Framework for Improving Trust in Automated
ATM Tools” by C. S. Hernandez, S. Ayo and D. Panagiotakopoulos, describes the basis of an XAl Trust
framework in order to address the gap between research and implementation solutions within an ATM
environment. It highlights current guidelines and recommendations by regulators for trustworthy Al
and addresses what constitutes trust in Al automated solutions in ATM for end users through an Al
Trust Survey answered by stakeholders of the Fly2Plan project.

4.2.3 Planning System Development

Tactical and pre-tactical planning systems for air traffic controllers have been developed for over thirty
years. Arrival (AMAN) and Departure Managers (DMAN), for example, are in use at many international
airports and can now be purchased commercially and customised for the respective airports. For upper
airspace, there are en-route managers that support the organisation of airspace. While these systems
were previously based on deterministic algorithms, initial attempts have been made in recent years to
develop Al-based air traffic controller support systems. The aim is to simulate controller behaviour
more realistically in different situations and thus also improve the HAT.

4.2.3.1 Data-Driven Approach Using Machine Learning for Real-Time Flight Path Optimization
(Kim et al, 2022)

The pursuit of efficient in-flight replanning amidst changing weather conditions has led to the
development of an automated framework explored in the paper titled "Data-Driven Approach Using
Machine Learning for Real-Time Flight Path Optimization", authored by Junghyun Kim, Cedric Justin
and Dimitri Mavris from the Georgia Institute of Technology, Atlanta, Georgia, along with Simon
Briceno from Jaunt Air Mobility, Atlanta, Georgia, published in 2022. This study addresses the
challenges faced by airlines due to flight delays caused by convective weather. The study sets out to
create an automated solution leveraging supervised and unsupervised machine learning techniques
along with a graph-based pathfinding algorithm. The primary objective is to minimise operational costs
for airlines by generating optimised flight paths.

The challenges of manual in-flight replanning and existing limitations in solutions like NASA's Traffic
Aware Planner prompt the need for an advanced approach. The study advocates for the integration of
Al to enhance flight planning, filling the gap in real-time weather optimization. The proposed
automated framework utilises supervised machine learning for wind regression, unsupervised
machine learning for short-term convective weather forecasting, and optimised flight path generation
based on designated points.

The paper provides a comprehensive overview of the proposed methodology, which involves a data-
driven approach for precise and frequent in-flight replanning. Leveraging supervised machine learning,
a hybrid algorithm for wind modelling is introduced, encompassing Multilayer Perceptron (MLP),
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Support Vector Regression (SVR), and Gaussian Process (GP) techniques. Unsupervised machine
learning techniques, specifically DBSCAN, are employed for short-term convective weather modelling.

Waypaints
Short-Term Convective  Convective Designaled Points-based
Weather Modeling Weather Prediction @ Alrways Flight Path Optimization Model
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Figure 10 Methodological overview of the proposed solution (Kim, et. al 2022)

Weather Data

Flight path optimization, based on designated points, incorporates a hybrid method combining the A*
search algorithm with a Free-Flight approach. The approach addresses various assumptions, such as
constant aircraft speed during the en-route phase and the representation of convective weather by
polygons incurring high penalty costs when penetrated by an aircraft.

Two comprehensive case studies on Delta Airlines flights under varying weather conditions validate
the effectiveness of the proposed framework. The first case study demonstrates a minimal difference
between the real and simulated flight times, indicating the reliability of the developed system. The
second case study, conducted during heavy weather, reveals a significant reduction in simulated flight
time, showcasing the potential benefits of the framework in adverse conditions.

The study concludes by presenting three distinct approaches to flight path optimization, all rooted in
machine learning for wind regression, weather forecasting, and path optimization at designated
points. The statistical analysis of real flight data emphasises that the proposed framework consistently
generates flight routes reducing flight time by up to 2%. The developed system empowers US airlines
to conduct more accurate and frequent flight path optimizations, with further opportunities for
improvement highlighted through the integration of additional operational constraints.

4.2.3.2 A Multi-task Learning Approach for Facilitating Dynamic Airspace Sectorization (Zhou et
al, 2022)

The publication “A Multi-task Learning Approach for Facilitating Dynamic Airspace Sectorization”
authored by W. Zhou, Q. Cai, S. Alam proposes a multi-task learning (MTL) approach which is able to
predict sector traffic flow and airspace capacity simultaneously using a shared neural network
architecture. Specifically, the proposed model predicts the demand-capacity imbalance and identifies
the opportunity for sector split/merge implementation. This method is a promising approach but
needs to be validated.
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4.2.3.3 Scoring Mechanism for Automated ATC Systems (Movila, 2023)

In the scope of air traffic management, the Bachelor thesis "Scoring Mechanism for Automated ATC
Systems", authored 2023 by George-Daniel Movila from Escola d'Enginyeria de Telecomunicacid i
Aeroespacial de Castelldefels, Universitat Politecnica de Catalunya, Barcelona, Spain, describes a
scoring system for quantitative assessment of an upper airspace controller support system. The scoring
mechanism focuses on providing a scoring function that evaluates both the operational safety and the
efficiency of the trajectories proposed by MUAC’s ARGOS (EUROCONTROL 2023).

MUAC's ARGOS system is designed to improve the situational awareness of air traffic controllers,
reduce their workload and enable an increase in capacity in certain situations. The scoring mechanism
of this thesis focused on providing a scoring function that evaluates both the operational safety
(Decreasing Score, D-Score) and the efficiency of the trajectories proposed by ARGOS (Increasing
Score, I-Score). In the author's opinion, automatic scoring should always be used in aviation where
decisions are made automatically. However, the proposed evaluation system only works offline on the
basis of log files from simulations.

The scoring mechanism developed can contribute directly to the automation of air traffic control.
Firstly, the mechanism can ensure that the automated air traffic control systems make correct
decisions, as the algorithm evaluates the software according to how closely its decisions match human
decision-making standards. This reduces the likelihood of errors and increases safety. Furthermore,
the scoring mechanism provides a way to also assess the performance of automated systems and
evaluate the system's ability to handle different types of traffic situations. Finally, the developed
scoring provides continuous feedback that can help the system improve its performance after each
update. Finally, specific metrics allow detailed insights into the performance of the safety-critical air
traffic control systems.

A disadvantage of the scoring mechanism is that no upper limits are available for certain metrics. These
limits could define whether the deviation from the optimal scenario is still acceptable or should be
discarded. As an example, an extended scoring could identify any situation in which an aircraft deviates
significantly from its planned course and should be checked by the automatic system or a controller.
By adjusting the weighting of existing metrics, or adjusting them directly, it could be achieved that they
better reflect the overall performance of the system.

The thesis suggests that scoring mechanisms should not only take data from one system, but also use
information from other independent sensors or sources where possible. The paper uses examples to
show where and how ARGOS could be modified to improve the informative value of scoring. The
scoring calculation includes the following 17 parameters:

Violation of separation standards (separation infringement)
Penetration of a Temporary Segregated Area

Trigger of a short-term conflict alarm

Not respecting horizontal safety buffers after HDG

Not respecting vertical safety buffers after reaching CFL

Not respecting vertical safety buffers prior to reaching CFL
Flights outside the controlled airspace

Flights that exit through other points than specified in flight plan
Too frequent clearances given to a flight

W NOUE WN R

Page | 46
© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

sesar’

JOINT UNDERTAKING

10. Turns too high used to solve conflicts

11. Flown more than 5% above the shortest distance

12. More than 3% of the flown distance prior to Top of Descend not cleared to the cruising level
(ECL)

13. Horizontal deviation from the exit point

14. Vertical deviation from the exit point

15. Instructions given to other points than the ones specified in the flightplan

16. Flights that do not reach the planned cruising level

17. Flights arriving too early at the transfer flight level

Most parameters are not calculated, but contain a fixed value that is added to or subtracted from the
score when the situation in question occurs.

From the author's point of view, the objectives of the project were achieved. It was shown that even
a simple scoring algorithm can be implemented for a complex system and thus its performance can be
tested. The scoring mechanism is not limited to ARGOS from MUAC, as other automated systems such
as the Advanced Autoplanner (AAP) or Skyler (an artificial intelligent air traffic controller agent) could
also use it for validation.

The scoring mechanism focuses on providing a scoring function that evaluates both the operational
safety and the efficiency of the trajectories proposed by ARGOS. In the author's opinion, automatic
scoring should always be used in aviation where decisions are made automatically. The mechanism
can ensure that the automated air traffic control systems make correct decisions, as the algorithm
evaluates the software according to how closely its decisions match human decision-making standards.
Furthermore, the scoring mechanism provides a way to also assess the performance of automated
systems and evaluate the system's ability to handle different types of traffic situations.

4.3 Assistant to Human

Assistant to humans in aviation has progressed along the path of automation to support human in
performing complex tasks. In recent years, the Human Assistant or digital assistants, with the
increasing effectiveness of artificial intelligence, and other new automation technologies have been
foreseen as the next expected steps for adoption across the aviation sector. From IR facial recognition
and fever detector Al thermal cameras at airports, new technologies and digital assistants are
increasingly expected to help streamline processes and assist in safety and efficiency improvements
across aviation. Intelligent monitoring and assistance supporting the safety critical role of pilots on the
flight deck, and aiding ATC to enable greater capacity and more efficient flight paths are also being
suggested.

The State of the art on Digital Assistants (DA), aside from the specific current development reported
in section 3.2.2 in the aviation domain, is a very extended topic including different backgrounds and
different expertise and domains of knowledge. DAs include different dimensions such as trust,
transparency, reliability, and the interaction with humans that can be considered transversal to any
domain. Additionally, considering elements from different research domains can trigger a cross-
fertilisation amongst the different sectors, and support the definition of a rigorous framework of
definitions, attributes, dimensions of DAs in general and this can ease the standardisation, and also
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the benchmark amongst the different applications. The extension of the research topics underpinned
implies a question: Which are the most relevant aspects for the state of the art on Human Assistant?

Wondering about this, the present work starts with observing the variety of terms that can be related
to the Human Assistant. It provides a theoretical framework from the literature supporting a potential
classification of the research and of the applications. Then it analyses the dimensions of man-machine
interaction and human-Al teaming. Considering the previous analysis of the literature, what comes up
is that aside from the interesting application of Al techniques that can be more and more challenging,
to enable DAs, at least the following aspects should be investigated: Task Division and Allocation,
Collaboration and Cooperation, Elements of trust, Explainability, and Performance Measures.

The current status of DA in Aviation is represented by different recent projects (listed in section 3.2.2).
These conclude that in providing proof of concepts of DA in the flight deck, in the control tower, at the
airport and in Advanced Air mobility scenarios, DA will address specific research questions, from
Understanding the effectiveness of Artificial Intelligence in performing specific tasks, to investigating
Explainability, or Al Design Assurance or Human-Al teaming dimensions.

DAs are based on Al and design assurance must be studied for the different techniques. Data
management is part of Al and therefore also part of DAs. On the other hand, the impact of DAs on
humans, as well as the benefit that can be derived from their adoption and the costs, including their
impact on safety culture, have to be investigated. The question is if we are facing simple new tools or
if we are looking at a revolution in the sector.

4.3.1 Human Assistant

The development of a good Taxonomy enables the definition of a comprehensive state of the art. It is
a basic step that allows us to understand the completeness and the accuracy of the work. In the next
sections, the lack of taxonomies explains how the domain can be very extended, explaining the issues
of coverage and providing a justification for the identified research topics to understand the current
status and to address opportunities and challenges. Indeed, in spite of defining the funding elements
of the state of the art, the research on taxonomies can be by itself part of the state of the art to set
the basis for the next work in the HUCAN project where a referenced taxonomy enables a sound work.

Human Assistance currently takes many forms and adopts in both industry and academic arenas a
variety of category names, using some combination of “automated”, “digital,” “smart,” “intelligent”,
“personal,” “agent,” and “assistant” (Grochow, 2020).

Generally speaking, the “assistant” can be digital tools, software agents, chatbots taking the form of
robots, or simply having an interface on a computer. There isn’t a general consensus on a
comprehensive taxonomy, due also to the fact that different domains are involved with different

heritages.

A digital tool is intended as something that can automatically perform specific tasks and that can be
based or not on Artificial Intelligence.

In (Sanchez, 1997) “An agent is a software process that acts on a user’s behalf, performs particular
functions autonomously and realises goals. An agent is versatile in changing environments and works
in a team. Members of that team have complementary specialists or duplicates” intending it as an
autonomous software entity that can interact with its environment.
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The Agent concept goes beyond the digital tool supporting a specific human task and looks at Artificial
Intelligence to support the human in a dynamic environment. Agents in Artificial Intelligence can be
categorised into different types based on how agent’s actions affect their perceived intelligence and
capabilities, such as: Simple reflex agents; Model-based agents; Goal-based agents; Utility-based
agents; Learning agents and Hierarchical agents.

Chatbots typically interact with users via text, though images are now a common feature of Chatbot
interactions and there are a number of ‘bots with speech capabilities. This conversational capacity has
been key to their success, as it reflects a consumer trend — the move away from voice-based channels
and the embracing of chat-based channels.

Whereas a Chatbot focuses on a relatively narrow range of issues, a Digital Agent could be asked to do
anything.

The literature defines a Digital Assistant as a concept that includes Artificial Intelligence, and goes
beyond tools based on machine learning algorithms that provide data and information to the human
operator. Instead, it’s more like a colleague that interacts and “converses” with its human counterpart.
This introduces the idea of Human-Artificial Intelligence teaming.

Such a definition adds a new perspective to the level of assistance that on the one hand is reflected by
the taxonomies of automation and autonomy and on the other hand overlooks collaboration and
cooperation and classifies the object with respect to the interaction with humans.

The literature provides a great variety of taxonomies on the basis of different dimensions. In (Grochow,
2020) an extensive review is proposed. The taxonomies are defined on the basis of:
e The task content of human activity that is used for assistant design instead of identifying
classification criteria.
e The technology and features of design such as communications mode, direction of interaction,
adaptivity, and embodiment (virtual character, voice), and so forth.
e The degree of the perceived intelligence and capability such as simple reflex agents, model-
based reflex agents, goal-based agents, utility-based agents, and learning agents.
e The end-user view of “work output,” and while this approach uses a somewhat subjective
measurement scale, the intention is to extend the work incorporating objectives (see Figure

1)
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Figure 11 The levels of Assistant on the basis of the output (Grochow, 2020).

Finally, robots considered as assistants are well classified. According to the degree of their intelligence,
robots can be divided into two categories: functional robots and intelligent robots. Before the advent
of intelligent robots, robots were primarily referred to as functional robots, whose main purpose was
to perform actions that humans would not want to do or cannot do on their own. They were treated
as tools to improve work efficiency and emancipate humans from manual labour and simple mental
labour. Intelligent robots were invented to meet the demands of human intelligence, such as
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intelligence quotient (IQ) and emotional quotient (EQ). They are on turn divided in cognitive robots,
understanding robots, interactive robots, and autonomous robots (Ren at Al., 2020)

In spite of a generally agreed taxonomy on the human assistant, it is relevant to note that the human
assistant is also defined in terms of the human machine interaction that may play a huge role in the
success of the assistant.

Humans interact with computers in many ways, and the interface between the two is crucial to
facilitating this interaction. HCl is also sometimes termed human—machine interaction (HMI), man-
machine interaction (MMI) or computer-human interaction (CHI) (Bansal et al., 2018), but the
literature offers other ways reported in the table below.

Table 5 Different terms for man machine interaction

Term Acronym
Man Machine Interaction MMI
Human Machine Interaction HMI
Human Agent Interaction HAI
Human Computer Interaction HCI
Computer Human Interaction CHI
Human Machine Collaboration HMC
Human Machine Cooperation HMC
Human Machine Teaming HMT

Man—machine interaction is described as an interaction and communication between human users
and machines in a dynamic environment through several interfaces. Ever since humans started to build
tools, there was the interaction between the humans and the machines. This interaction has evolved
over time. Initially, before the Second World War, people were adjusted to fit machines. In other
words, humans were trained to use the machines. However, in the Second World War, new equipment
was developed so quickly that it was hard to sufficiently train humans. Therefore, the need for a
systematic analysis and synthesis of the interaction between humans and machines arose. The history
of Human—machine interaction can be split up into four time zones. First, in the years 1940 to 1955,
developers tried to find the limits of human possibilities. New equipment was designed such that
human controllers would just be able to deal with it. From 1955 to 1970, things advanced. At this time,
researchers tried to model humans like machines and design products accordingly. Around 1970,
electronics were advancing. Then, from 1970 to 1985, this technology was used to automate many
tasks, which normally required humans. The human ended up being the controller and began
becoming the supervisor. This has advanced much more since 1985 (Krupitzer et al., 2020).

HCI was first used in 1976, and it was popularised by the book, The Psychology of Human Computer
Interaction published in 1983. In 1992, a HCI curriculum was developed by Hewett and other leading
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HCI educators to serve the needs of the HCI community. In CES 2008, Bill Gates emphasised the role
of natural user interface and predicted that the way in which HCI will bring a radical change in the next
few years. Thereafter, HCl researchers expounded the definition of a natural HCI by employing
different approaches (Bansal et al., 2018).

The Association for Computing Machinery (ACM) defines human—computer interaction as "a discipline
that is concerned with the design, evaluation, and implementation of interactive computing systems
for human use and with the study of major phenomena surrounding them". A key aspect of HCl is user
satisfaction, also referred to as End-User Computing Satisfaction. It goes on to say: "Because human—
computer interaction studies a human and a machine in communication, it draws from supporting
knowledge on both the machine and the human side. On the machine side, techniques in computer
graphics, operating systems, programming languages, and development environments are relevant.
On the human side, communication theory, graphic and industrial design disciplines, linguistics, social
sciences, cognitive psychology, social psychology, and human factors such as computer user
satisfaction are relevant (Grochow, 2020).

Desktop applications, internet browsers, handheld computers, and computer kiosks make use of the
prevalent graphical user interfaces (GUI) of today. Voice user interfaces (VUI) are used for speech
recognition and synthesising systems, and the emerging multi-modal and Graphical user interfaces
(GUI) allow humans to engage with embodied character agents in a way that cannot be achieved with
other interface paradigms. An extensive literature providing the current status of research in such
fields is provided in (Bansal et al., 2018), (Ren at Al., 2020) (Krupitzer et al., 2020)

The process of HMI can be divided into the following four steps according to the collection,
transmission and analysis of data: (1) the sensor collects the environment and input signals, (2) the
signal is converted into data, (3) the data is transmitted to the processing centre (4) interaction and
collaboration.

As stated in (Damacharla et al., 2018) HMT can be defined as a combination of cognitive, computer,
and data sciences; embedded systems; phenomenology; psychology; robotics; sociology and social
psychology; speech-language pathology; and visualisation, aimed at maximising team performance in
critical missions where a human and machine are sharing a common set of goals.

(Salas et al., 1992) define a team as “... an interdependent group of members, each with their own
roles and responsibilities, that come together to address a particular goal “

Chapter 2 of (National Academies of Sciences, Engineering, and Medicine, 2022) presents relevant
perspectives on human-Al teaming as a step beyond human-Al interaction. Teams are created to
perform a variety of tasks that require the coordination of multiple interdependent individuals, and
this definition does not require all team members to be human. Further, the performance of a team is
not decomposable to, or an aggregation of, individual performances. This description emphasises the
interdependence of team members.

A human-Al team is defined as “one or more people and one or more Al systems requiring
collaboration and coordination to achieve successful task completion” (Cuevas et al., 2007). Al systems
may play a variety of roles, ranging from decision-support tools to assistants, collaborators, coaches,
trainers, or mediators. Within the human-Al teaming the human has to be in charge of the team, for
reasons that are both ethical and practical. Not only are humans legally and morally responsible and
accountable for their actions, but they also function more effectively when their level of engagement
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is high. While it is assumed that human-Al teams will be more effective than either humans or Al
systems operating alone, in the committee’s judgement this will not be the case unless humans can
(1) understand and predict the behaviours of the Al system; (2) develop appropriate trust relationships
with the Al system; (3) make accurate decisions based on input from the Al system; and (4) exert
control over the Al system in a timely and appropriate manner.

Chapter 3 of (National Academies of Sciences, Engineering, and Medicine, 2022) addresses the most
relevant dimensions of human-machine teaming: mental models, communication and coordination,
and social intelligence.

Mental models are “mechanisms whereby humans are able to generate descriptions of system purpose
and form, explanation of system functioning and observed system states, and predictions of future
states”.

A shared mental model is a consistent understanding and representation, across teammates, of how
systems work (i.e., the degree of agreement of one or more mental models). A shared mental model
includes models of the technology and equipment, models of taskwork, models of teamwork, and
models of teammates.

A team mental model is a mental model of one’s teammate(s) that provides an understanding of
teammates’ capabilities, limitations, current goals and needs, and current and future performance.
Shared mental models within teams also contribute to the development of shared situation awareness.

Communication and coordination are essential for teamwork, given teamwork’s interdependent
nature. Team cognition can in fact be characterised as communication and coordination processes in
addition to knowledge or shared models because team cognition involves more than just knowledge.

Communication can be verbal or nonverbal and can take place through various modalities, such as
voice or text. Much progress has been made toward the creation of Al that understands natural human
language; however, natural language processing remains a challenge for human-Al teaming.
Moreover, natural language, with all its ambiguities, may not be the language of choice for effective
teaming.

Communicating in a common language is just one requirement for effective teamwork.
Communication also needs to be accurate and directed to the right team member at the right time or,
in other words, coordinated. Effective teamwork requires “orchestrating the sequence and timing of
interdependent actions”.

Human teammates can make use of social intelligence for effective teaming. They can understand the
beliefs, desires, and intentions of fellow teammates by developing a theory of mind (i.e., by observing
their teammates’ behaviours and ascribing mental states to them). There have been recent efforts
directed toward providing Al with social intelligence such as the Defense Advanced Research Project
Agency’s (DARPA) ASIST program, for example, though this may resemble a theory of behaviour more
than a full theory of mind (Sandberg, 2021).

4.3.1.1 Collaboration and cooperation

Among the many types of interactions that can take place between human and machine, there are 2
that may seem very similar: collaboration and cooperation.
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In a collaboration, there is no a priori roles distribution, but a spontaneous roles distribution depending
on the interaction history. In contrast, cooperation occurs when different roles are ascribed to the
agents prior to the beginning of a task and this distribution is not questioned until its completion. While
in collaboration the agents work on an even basis, cooperation has an uneven distribution of subtasks
or roles during the task. Cooperating agents work towards the same end and need each other to
complete the task but are not equal. In fact, cooperation is characterised by an asymmetric behaviour
(Jarrassé et al., 2012).

In particular, collaboration can be seen under 3 different perspectives: the organisational perspective,
the relationship perspective, and the interaction perspective. They correspond to different levels of
deployment in human-machine collaboration, considering how humans and machines are organised,
how they work together, and how they interact with each other. Specifically, the organisational
perspective cares about forming the human-machine team organisations and solving task allocation
problems. The relationship perspective analyses acceptance, trust, and dependence of human and
machine on each other. Finally, the interaction perspective is mainly about designs of communication
to foster mutual understanding and bilateral interventions via physical and mental interfaces (Xiong et
al., 2022).

Organizational perspective
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Figure 12 Perspectives on human-machine collaboration (Xiong et al., 2022)

A clear distinction is made in the “EASA Concept Paper: guidance for Level 1 & 2 machine learning
applications”:

® Human-Al cooperation: cooperation is a process in which the Al-based system works to help
the end user accomplish his or her own goal.
The Al-based system works according to a predefined task allocation pattern with informative
feedback to the end-user on the decisions and/or actions implementation. The cooperation
process follows a directive approach. Cooperation does not imply a shared situational
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awareness between the end user and the Al-based system. Communication is not a paramount
capability for cooperation.

e Human-Al collaboration: collaboration is a process in which the human end user and the Al-
based system work together and jointly to achieve a common goal (or work individually on a
defined goal) and solve a problem through a co-constructive approach. Collaboration implies
the capability to share situational awareness and to readjust strategies and task allocation in
real-time. Communication is paramount to share valuable information needed to achieve the
goal, to share ideas and expectations.

In the EASA guidance, the distinction is useful to split the Level 2 of the Al applications
(human/machine teaming) in 2 sub-levels:

e Human-Al cooperation: Level 2A Al.
e Human-Al collaboration: Level 2B Al.
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Figure 13 Human Al Teaming concept overview (EASA 2023)
4.3.1.2 The Theoretical framework in Risky Decision Making

Enhanced support

Risky decision-making refers to the problem of making choices without knowing the exact
consequences (Bier et al., 1999). In a typical risky scenario, the user has to deal with several choices,
and each choice involves multiple possible outcomes. Thus, likelihoods and consequences are two
critical dimensions to characterise the outcome of such a decision (Bedford & Cooke, 2001). In these
kinds of scenarios, it is possible to notice cognitive biases in human decisions, and the use of simple
heuristics to reach a solution (Kahneman & Tversky, 1979). Human-machine teaming for risky decision-
making opens to many questions. For example, who should be assigned with which tasks, including
cognition, judgement, and decision, and under what principles? How can a machine understand human
decision-makers’ values and behaviours and prescribe both normatively correct and subjectively
acceptable solutions?
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The opportunities for human-machine collaboration in risky decision-making can be characterised on
the levels of uncertainty involved.

e Onthe one hand, when the decision task features low uncertainty, the research opportunities
are mainly algorithm-centred, which lie in the effective utilisation of the computing power of
machines (Patel et al., 2019).

e On the other hand, when the decision task is associated with higher uncertainty, the research
opportunities become human-centred. High uncertainty makes many patterns in past data
unaccountable, thus, the required complexity of algorithms increases to model and predict
such data, and issues of overfitting and “black box” become vital (Topol, 2019; Amann et al.,
2020).

Furthermore, in decision tasks with high uncertainty, the research opportunities lie in human—machine
collaboration centred for two reasons. First, humans are vulnerable to various cognitive biases, and
their capabilities of information processing are limited, whereas machines can calibrate biases and
handle mass data in a consistent and normatively correct way. When human and machine judgments
have disparity, machines should be able to explain why the human judgments are wrong. Second,
machines are unable to handle highly uncertain and rare cases well. By contrast, humans can use
intuition and experience to adapt to new situations and quickly learn and generalise reasoning across
tasks.

In order to promote Human-Machine Collaboration in risky decision-making processes, the work of
Xiong et al. (2022) proposes 3 challenges on how to organise Human-Machine Teams, enhance each
other’s capabilities, and facilitate mutual understanding and humans’ trust in machines.

Challenge 1: Developing a more dynamic and flexible human-machine team organisation.

Designing the human-machine team organisation mode to make decisions under risk. Humans and
machines undertake different roles in the environment and tasks with different levels of variability,
uncertainty, and complexity (Daugherty & Wilson, 2018). The challenge can be divided into 3 parts.

e Applying a dynamic task allocation strategy to respond to dynamic characteristics and to
support the combined performance. For specific risky decision-making tasks, human-machine
teams may encounter multiple environment uncertainty risk levels and exhibit dynamic
behaviours (Bier et al., 1999).

e Determining a fair distribution of the responsibilities in human-machine teams in risky
decision-making. Risky decision-making always presents a number of negative outcomes.

e An appropriate accountability distribution in a human-machine team can affect acceptance
and facilitate a beneficial human-machine relationship (Flemisch et al., 2012). Humans usually
tend to blame the machine for the same mistake and negative outcomes (Dietvorst et al.,
2015). This tendency would be more severe in risky decision-making with more uncertain
negative outcomes.

To overcome Challenge 1, the following research questions must be considered.

(1) How should the human-machine team be organised and what are the criteria to decide which one
(human, machine, or human-machine collaboration) holds the authority in risky decision-making?

(2) How should tasks between human and machine decision-makers, including cognition, judgement,
and decision, be assigned? How can dynamic task allocation based on task requirements and the
characteristics of human and machine decision-makers be achieved?
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(3) What are the criteria to decide who should be accountable for the decision outcomes in human-
machine teams in risky decision-making? How does a different accountability distribution impact the
human-machine collaboration performance?

Challenge 2: Employing machines to help overcome humans’ undesirable behaviours effectively
(hence enhancing the human decision-maker) in risky decision-making.

Existing studies pay more attention to how machines assist humans for better decision-making than to
leveraging machines to discover and correct human cognitive and behavioural limitations in risky
decision-making. We break down the challenge into four parts.

e Determining the capability boundary of humans in risky decision-making. The capability
boundary of humans is scoped by human cognitive and behavioural limitations in risky
decision-making (Blumenthal-Barby et al, 2015).

e Developing adaptive machine design to support in overcoming or intervening humans’
multiple limitations.

e Inrisky decision-making, behaviours of human decision makers, as well as multiple limitations
in cognition and behaviour, are affected by multiple dynamic and uncertain factors (Cokely et
al, 2009; Orddfiez et al, 2015).

e Evaluating the collaborative decision-making process objectively and subjectively. Evaluating
the collaborative decision-making process can help understand the collaborative process and
move the machine design and human-machine collaborative design forward (Damacharla et
al, 2018).

To overcome Challenge 2, the following research questions are taken into account.

(4) What are human cognitive and behavioural limitations in risky decision-making? How can these
limitations and their impacts be understood and modelled?

(5) How can machines provide normatively correct solutions for human cognitive and behavioural
limitations? What impacts do different contexts or tasks have on human cognitive and behavioural
limitations? In which way can machines be designed and developed to help overcome these limitations
adaptively?

(6) What indicators can best describe and quantitatively evaluate the collaborative decision-making
process?

Challenge 3: Developing communication and interface design to support mutual understanding and
trust in human-machine teams.

Communication and information sharing have a critical role in achieving an understanding of intentions
and behaviours and creating an effective human-machine team (Chen et al., 2018; Edmonds et al.,
2019). More specific challenge details are described below.

e Design for intention identification and alignment. The identification, understanding, and
alignment of respective goal(s), value(s), and intention(s) in a human—machine team can
improve the efficiency and performance of Human-machine collaboration (Schaefer et al.,
2017).

e Effective behaviour identification and monitoring of behavioural limitations in risky decision-
making. When the capability boundary is known, monitoring and identifying the human’s
irrational behaviours or behaviours due to cognitive limitations are critical for the intervention
toward the human (Damacharla et al., 2018).

e Appropriate intervention designs to overcome inconsistency in capabilities and behaviours in
human-machine teams. When decisions of the human and machine decision-makers are
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inconsistent or capability/behaviour limitations arise, appropriate intervention can effectively
prevent possible negative outcomes (Daugherty and Wilson, 2018).

e Interaction design and evaluation considering human perception and understanding of
machines. The physical interface has developed to be adaptive and algorithm dependent;
more variables in the mental interface, such as trust and acceptance, should be considered to
facilitate effective human—machine collaboration in risky decision-making (Dubois and Le Ny,
2020).

To overcome Challenge 3, we pose the following research questions for consideration.

(7) How do machines express their intentions, capabilities, and behaviours in risky decision-making?
What behavioural indicators can represent human intentions? In which way can a human—machine
team effectively align the goal, value, and intention?

(8) What behavioural indicators can represent the underlying cognition of human decision-making?
How can machines identify and collect those indicators?

(9) How does a machine explain its decision-making rules? How does a machine understand humans’
decision-making rules? How could the machine implement the intervention in an acceptable way?
(10) How can influencing factors in human—machine collaboration be modelled in risky decision-
making? How can these models be embedded in algorithms behind the interaction interface?

Organize Together
Challenge 1: Human—Machine team
organization
» Team organization mode
* Dynamic task allocation
» Accountability distribution

Risky decision-Making

* Uncertainty, dynamics, complexity

* Possibility of negative and Work Together
unfavorable outcomes Challenge 2: Mutual enhancement of

Machine toward Human

» Capability boundary identification

» Adaptive machine development

» Collaborative decision-making process
Human-Machine collaboration evaluation
' IT:IS]‘ allo::nohr! : Interact Together
* Human-Machine team
. l hi o Challenge 3: Human—Machine
Human—-Machine communication communication

« Intention identification and alignment
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« Intervention design

« Interaction design and evaluation

Figure 14 Challenges for Human-Machine Collaboration in risky decision-making (Xiong et al., 2022)

4.3.1.3 Task division and allocation

Effective human—machine (agent) interaction requires the appropriate allocation of indivisible tasks
between humans and machines. Task allocation, recently also referred to as function allocation,
decides which agent does what in a team. It represents an enabler for a successful interaction being a
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main topic of research in human-automation interaction (Ponti et al., 2022), especially when machines
exhibit high levels of intelligence and autonomy. The topic is part of human-computer interaction and
includes a large body of literature in different fields, including cognitive engineering and human
factors. Function allocation covers human—human function allocation, team design, and human-
automation function allocation. It is traditionally conducted as part of the human systems integration
(HSI) process used during the design of complex systems (MILSTD-46855A, 2011) (Roth et al, 2019).

4.3.1.3.1 Classification of Task allocation methods

Consider different types of function allocation methods, such as fixed (static allocation) or dynamic
(dynamic allocation). In static allocation, the functions allocated to the human and machine members
are static and don’t change based on situational factors. Dynamic allocation and reallocation of tasks
between humans and machine agents involves integrating adaptive automation based on situational
factors. It also includes the provision for human team members to seamlessly reassign tasks among
themselves.

Multi-agents and human—agent task allocation methods can be classified into the following types:

e homogeneous agent-based is a task allocation method typically undertaken in structured
environments, where all of the agents and tasks are of the same type and any agent can
perform any task. Homogeneous task allocation is based on the assumption that all agents and
performances across agents are identical, which is why these methods are usually applicable
to multi-agent teams and not human—agent teams.

e capabilities-based is a task allocation method considering the heterogeneity of agents,
commonly seeking to match the capabilities or types of agents with task demands.
Heterogeneous agents vary in their capabilities, operating areas, and communication
capabilities MABA-MABA (men-are-better-at, machines-are-better-at) is known as a classical
theory outlining the general strengths of humans and machines and has been used as a basis
for function allocation.

e capacity-based (or adaptive automation) is a task allocation method relying on human
capacity information (e.g., workload, fatigue) to aid in the allocation of tasks (or level of
automation control), aiming at keeping capacity in acceptable ranges.

4.3.1.3.2 Approaches for task allocation

A prominent approach used for years to decide which tasks are better performed by machines or by
humans has been the HABA-MABA (“Humans are better at, Machines are better at”) list firstly
introduced by Fitts (1951). This list contains 11 “principles” recommending the functions that are
better performed by machines and should be automated, while the other functions should be assigned
to humans. Although researchers differ in what they consider appropriate criteria for task allocation,
the influence of Fitts’s principles persists today in the human factors’ literature.
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Present-day machines appear to surpass
humans in respect to the following:

7. Ability to respond quickly to control signals
and to apply great force smoothly and precisely

8. Ability to perform repetitive, routine tasks

9. Ability to store information briefly and then to
erase it completely

10. Ability to reason deductively, including
computational ability

relevant facts at the appropriate time

5. Ability to reason inductively

6. Ability to exercise judgment
Figure 15 Fitts list (Fitts, 1951).

11. Ability to handle highly complex operations,
i.e. to do many different things at once

However, the HABA—MABA approach suffers from the clear limitation that the lists of what humans
versus machines are better at can become quickly outdated as technologies continue to improve. In
2022 SEI (SEl, 2022) has identified a new list considering the Al-powered machine.

Humans surpass Al* Al surpass humans*

* Exposing Bias » Computation
* Identifying downstream impacts + Computational complexity
* Judgment * Repetition
* Recognizing Bias * Replication
* Responding to change * Scale
* Socio-political nuance * Short and long-term memory
» Taking context into consideration » Simultaneous operation
* Velocity

Figure 16 New Fitt's list (SEI, 2022)

Another limitation in the MABA approach is that by integrating the machine in performing a task, new
tasks are created for the human who now has to interact with the technology (e.g., entering inputs,
engaging/disengaging the automation, monitoring, etc.). These new tasks (e.g., monitoring system
states and functioning) may, ironically, require what the Fitts report originally stated humans are bad
at doing—namely, tasks requiring vigilance and little activity.

Another relevant approach for task allocation is represented by the Level of Automation (LoA)
framework addressed in each sector. LoA frameworks incorporate taxonomies that specify which
aspects of cognitive performance are being addressed (e.g., gathering the information, interpreting
the information, generating solutions, deciding on action, taking an action), and the level of
automation presumed. Much of the focus of LoA research is on understanding the impact of different
LoA on human situation awareness, workload, complacency, trust, and ability to take over when
automation fails.

(Roth et al., 2019) highlights that a major concern with the LoA approach as guidance to system
designers is that tasks are described at too high a level of classification (e.g., information integration,
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decision, action). As a consequence, it limits the range of options for how work might be organised
across the human and automated agents.

Cognitive Task Analysis (CTA) and Cognitive Work Analysis (CWA) methods are well suited for
identifying and analysing the full range of demands of the work domain. CTA methods typically
leverage knowledge of domain experts. CWA is an integrated set of analytic tools intended to
represent the cognitive demands of work and the requirements to effectively support work
performance. Work domain analyses are often conducted using an abstraction hierarchy (AH)
representation of the goals, constraints, and functional means available to achieve the goals at
different levels of abstraction.

Recent works have emphasised the importance of designing systems that enable more fluid
distribution and redistribution of work to accommodate changing demands (Naikar, 2018); (Naikar &
Elix, 2016); (Naikar, Elix, Dagge, & Caldwell, 2017). Studies have shown that while team members may
have formally defined roles and command structures, in practice, the allocation of tasks and leadership
roles are more fluid, responding to the local demands of the situation. Accordingly, the idea is to
analyse and design systems to support the functions that individuals and automated agents could, in
principle, take on.

Interdependency analysis tools that represent both the human and the automated agent, the work to
be performed, and the relationships between the human and the automated agent throughout the
work have been provided. In analysing interdependencies, the tools consider not only new tasks
emerging when automation is introduced (e.g., new monitoring tasks) but also ways that each agent
can support the other agent in performing their tasks (e.g., a robot may need the help of a human to
navigate around certain obstacles).

(Malone, 2018) proposes the concept of a Collective Intelligence further elaborating the need to
allocate functions of cognitive processing, information flow, and task coordination beyond the scope
or capability of individuals.

(Ali et al., 2022) proposes an interesting allocation method based on trust in both existing and novel
tasks arriving at unknown times being different from task scheduling problems in which a set of tasks
is known in advance such that they can be sequenced. Here trust is the willingness of the trustor to be
vulnerable to the actions of the trustee.
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Figure 17 Flowchart with the main ideas of the artificial trust-based task allocation method for a team

consisting of one human and one robotic agent. (Ali et al., 2022)

The process starts with an incoming task (black dot) defined by a set of task capability requirements.
In this case, the incoming task is defined by two capability dimensions. The trust in each agent is
computed using the capabilities belief distribution of that agent. The task reward and agent costs are
computed using the task requirements. The expected total reward for each agent is computed using
trust in the agent, task reward, and agent cost. The agent that maximises the expected total reward is
allocated the task. The outcome of the task is observed as a success or a failure, which is used to update
the capabilities belief distribution of the agent that executed the task. The process continues for each
incoming task. In such method: 1) tasks are represented by the levels of capabilities required to
successfully execute the task, and agents are represented by the levels of capabilities they possess; 2)
trust in an agent to execute a new task can be reasoned about by considering the similarity between
the new task capability requirements with existing tasks; 3) the belief in an agent’s capabilities is
updated over time as task outcomes are observed, either as successes or as failures; 4) the capabilities
of an agent aren’t known beforehand; 5) Task outcomes are not assumed to be strictly successes or
failures, making them stochastic; 6) Task allocation is done using the robot’s opinion (but the allocation

can be done also by a third party).

Additionally, (Roth et al., 2019) highlights a set of factors that designers have to consider in designing

a man-machine team:

e The need for coherence in the set of tasks that humans are assigned (i.e., avoiding “leftover”

allocation).

e The need to avoid workload spikes as well as excessively low workload during long durations.
e The need to avoid situations where people are assigned responsibility for system outcomes,
but the machine agent is assigned authority to automatically take action (i.e., avoiding
authority/ responsibility mismatches).
e The need to avoid overly rigid (and unworkable) function allocations that lead to workarounds

and disuse.

e The need to avoid brittle automation that is not reliable and/or fails abruptly when outside its

boundary conditions.
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e The need to avoid automation that results in excessive and untimely interruptions.

(Ali et al.,, 2022) addresses the following interesting dimensions of Task allocation: Novel tasks,
Unknown and Dynamic Agent Capabilities, Negotiation and Fairness.

4.3.1.3.3 Novel tasks

Novel tasks that the human-robot team has not experienced before may occur, especially in dynamic
situations. Part of the challenge in allocating novel tasks has to do with the difficulty in representing
and characterising tasks. Very recent works address some approaches, but further research is needed
since knowing the correct levels of capabilities to represent a task is a limitation of the current
research.

4.3.1.3.4 Unknown and Dynamic Agent Capabilities

Agents on a human-robot team may be unfamiliar with the capabilities of their teammates if they have
had limited interaction. A human can estimate the capabilities of another agent through interactions.
Capabilities may grow through practice or training. Capabilities may also diminish if they are used
infrequently or with fatigue. These concepts can have a great impact when dealing with Al-powered
machines since on the one hand they stress the relevance of assuring training of the team to increase
the acceptance and on the other hand they require a process of re-tuning of the machine after a
potential degradation of performance.

4.3.1.3.5 Negotiation and Fairness

An agent may, for their own reasons, disagree with the agent responsible for task allocation. When
such disagreements occur, agents will need a way to negotiate the allocation of a task until they reach
a consensus. To start, the task allocation method will need to determine whether there are any
disagreements among agents. One idea could be to simply request input when an agent disagrees with
the allocation of a task. Once it is determined that disagreements between agents are present, how
agents will negotiate and whether one agent will have the ultimate authority will have to be
considered.

4.3.1.3.6 Metrics

(Sachendra Yadav, 2023) highlights that an important aspect of task allocation is to measure the
effectiveness and efficiency of the adopted strategy. Identify the strengths and weaknesses of the
strategy.

Measuring the effectiveness of a function allocation strategy in a human-Al team can be done through
several metrics:

e Workload: Assess the workload of both human and Al agents to ensure it is balanced and
manageable.

e Stability of the Work Environment: Evaluate how well the function allocation strategy adapts
to changes in the work environment.

e Mismatches Between Responsibility and Authority: Identify any discrepancies between the
responsibilities assigned to an agent and their authority.

e Incoherency in Function Allocations: Look for any inconsistencies or conflicts in the allocation
of functions.

e Interruptive Automation: Measure the extent to which automation interrupts human work.

Page | 62
© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

sesar’

JOINT UNDERTAKING

e Automation’s Boundary Conditions: Determine the conditions under which automation
performs effectively.

e Function Allocations Limiting Human Adaptation to Context: Assess whether the function
allocation strategy restricts human adaptability to changes in context.

e Workflow Performance: Evaluate how well the function allocation strategy supports the
overall performance of the workflow.

4.3.1.4 Elements of Trust

Trust is a subjective and abstract concept (Li et al., 2023), and is closely related to the fields of sociology
and psychology. The definition of trust can vary significantly due to differences in the field of study,
the specific objects and subjects being considered, and the contextual factors involved (Jgsang &
McAnally, 2005). Therefore, there is no unanimous consensus on a single, widely accepted definition
of trust. Typically, researchers define trust according to the specific scenario they are studying and
identify the factors that influence it. Depending on the context, different forms of definition have been
used. For example, in security (Internet of Things framework), trust can be understood as a relationship
between nodes within a network. It can be defined as the subjective probability or possibility of one
node exhibiting the desired behaviour as perceived by another node (Sfar et al., 2018). If the actions
and behaviours of node B align with the expectations of node A, it can be said that node A trusts node
B. In the context of node interactions, trust can be described as follows: Node B may be considered
trustworthy by node A if node A believes that node B will strictly adhere to the expected and required
behaviour.

Though there are many competing definitions of trust (Kaplan et al., 2023), there has not been a
consensus on one specific definition of the concept (Sheridan, 2019). Trust has been examined through
meta-analyses in relation to other forms of technology, such as automation (Schaefer et al., 2016) and
robots (Hancock et al., 2011); (Hancock et al., 2021), and through systematic review (Hoff & Bashir,
2015).

There are different definitions not only in different research fields, but also in the same context. An
overview of user trust definitions and influencing factors in human-Al interaction has been conducted
(Bach et al., 2022). 23 articles have been analysed: 7 articles provided trust definitions; 8 articles
conceptualised trust, but did not define it, and the remaining 8 articles neither defined nor
conceptualised trust.

Concerning the articles that gave a definition of trust, 4 of them used Mayer’s (Mayer et al., 2006) trust
definition ((Foehr & Germelmann, 2020); (Glikson & Woolley, 2020); (Lin et al., 2019); (Thielsch et al.,
2018)), 2 of them used Lee and See’s (Lee & See, 2004) trust definition ((Hoffmann & Séllner, 2014);
(Zhou et al., 2020)), 1 article developed its own definition in combination with different works (Yan et
al., 2013).

The concept of trust is typically used in the technological environment. In the analysed articles, revised
definitions are taken from the fields of sociology and psychology. The definitions are adapted
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depending on the objective of the research. Thus, there is the need to give an unambiguous definition
that can be used in the context of the Human-Machine Interaction.

Title

Trust definition

Trust definition references

Alexa, can | trust you? Exploring consumer paths
to trust in smart voice-interaction technologies
(Foehr & Gemmelmann, 2020}

Buiding e-commerce satisfaction and boosting
sales: the role of sodial commerce trust and its
amtecedents {Lin et al., 2019)

Hfects of personality traits on user trust in
human-machine collaborations (Zhou
et al, 2020)

Exploring trust of mobile applications based on
user behaviors: an empirical study (Yan
et al, 2013)

Human trust in artifical intefligence: review of
empinical research (Glikson & Woolley, 2020}

Incorporating behavioral trust theory into system
development for ubiquitous applications
[Hoffmann & Soliner, 2014)

Trust and distrust in information systems at the
workplace (Thiekch et al, 2018)

The willingness of a party to be vuinerble to the acsions of
another party based on the expectation that the other
will perform a particular acion important to the trustor,
irrespective of the ability to monitor or control that
other party.

The willingness of a party [the trustor] to be vudnerable to
the actions of ancther party based on the expectation
that the other [the trustee] will perfform a particular
action important o the trustor, imespective of the ability
to monitor or control that other party.

The attitude that an agent will hefp achieve an individual's
goals in a situation charcterized by uncertainty and
vuinerabdity.

His/her belief on whether the application could fulfill a task
as expected (the trustworthiness of maobile applications
relates to their dependability, security, and usability).

The willingness of a party to be vulnenble to the acions of
another party based on the expectation that the other
will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that
other party

The belief that an agent will help achieve an individual's
goal in a situation characterized by uncerainty and
vulrerabiity.

The willingness to depend on and be vulnerable t an
Information System in uncertain and risky environments.

(Mayer et al., 2006}

(Mayer et al,, 2006}

(Lee & See, 2004)

Own definition and referenced (Avizienis
et al, 2004)

(Mayer et al, 2006}

(Lee & See, 2004)

(Gefen et al, 2003; Mayer et al, 2006;
Meefen et al, 2020; Wang &
Emurian, 2005}

Figure 18 Definition of Trust in various literature studies

Once the definition of trust has been established, there is a need to look for what elements can
increase and/or decrease the human operator's trust in the Al-enabled system. A growing number of
researchers argue that fostering and maintaining user trust is the key to calibrating the user-Al
relationship, achieving trustworthy Al and further unlocking the potential of Al for society.

According to “EASA guidance for Level 1 & 2 machine learning applications”, one of the main
contributors in increasing the trust is explainability. As an example, if the explanation is warning the
end user about the malfunction of the Al based system, the explanation will not positively influence
the end user’s trust in the system. Other influencing factors highlighted by the EASA guidance are:

e End user’s general experience, belief, mindset, and prior exposure to the system.
The maturity of the system.
e The end user’s experience with the Al-based system, whether the experience is positive and
there is a repetition of a positive outcome.
e The Al-based system knowledge on the end user’s positive experience regarding a specific

situation.

e The predictability of the Al-based system decision and whether the result expected is the

correct one.

e The reinforcement of the reliability of the system through assurance processes.
The fidelity and reliability of the interaction:
o interaction will participate in end user’s positive belief over the Al-based system’s

trustworthiness;

o weak interaction capabilities, reliability, and experience can have a strong negative
impact on the belief an end user may have in the trustworthiness of the whole system.
It can even force him or her to turn off the system.
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There are several factors that can influence the trust. They can be divided into 3 categories: factors
related to the human user (the trustor), factors related to the Al-system (the trustee), and the
contextual factors, related to the interaction between trustee and trustor, and the task to be
performed. Furthermore, human-related factors can be divided into “users’ abilities”, such as
situational awareness and task performance, and “personal characteristics”, such as demographic
information. Al-related factors can also be divided into “performance-related items”, such as
reliability, and “attributes”, such as communication style. Contextual antecedents have here been
related either to the “team”, such as shared tenure, or “team tasking”, such as difficulty.
The analysis showed that human factors, Al factors and shared contextual factors are significant
predictors of trust. Within each subcategory, multiple variables have both reported positive and
negative influences on trust (Kaplan et al., 2023). Many of these have to do with the specific interaction
between one single human user and a specific Al system.

Table 6 List of factors influencing trust in Al

Factors affecting trust

Human (Trustor) Al (Trustee) Contextual
o : Personal Performance- : . .
User abilities .. f . Attributes Team Team tasking
characteristic related items
Competency/ Age Dependability i Al personality Communicatio Risk
Understanding Attitude Performance Antropo- | n : Task
Expectancy | towards Al Predictability morphism Interaction complexity
Expertise Comfort with Reliability Appearance frequency :  Tasktype
Operator Al Behaviour Shared mental
performance Culture | Communicatio | Models
Prior Education : n : Tenure
experience Gender Level of
Workload Personality automation
traits Reputation
Propensity to Transparency
trust

Satisfaction

Monitoring factors that may influence trust in the Al system is undoubtedly important, but it remains
a passive activity. It can be productive to identify which procedures can actively influence operator
confidence. With this objective in mind, the study conducted by Bach et al. has taken into account 23
articles, from which were identified 3 main themes: socio-ethical considerations (8 articles), technical
and design features (12), and user characteristics (22).

4.3.1.4.1 Socio-ethical considerations influencing user trust

An important task to enhance user confidence is the preparation and adaptation of the environment
in which a system is to operate (Lee et al., 2021). This is because the development of Al-enabled
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systems is typically faster than the readiness of human users, and this mismatch might lead to low user
trust. Some possible solutions to set up mechanisms in place to foster, maintain, and recover user trust
(Binmad et al., 2017), might be, for example, ensuring user data protection, promoting high-quality
user interactions and solution-oriented technical support. It was also suggested that user trust was
likely to increase over time (Elkins & Derrick, 2013). Therefore, building and maintaining open
communications with users, for example, by requesting ongoing feedback of an Al-enabled system
being used, can be useful to increase user trust.

4.3.1.4.2 Technical and design features influencing user trust

During the development of a virtual agent whose task is to assist and communicate with a user, the
following technical and/or design features were found to increase trust:

1. Anthropomorphism and human-like features, especially benevolent features (e.g., smiling,
showing interest in the user) in an Al-enabled system.

2. Immediacy behaviours in which the Al-enabled system could create and project a perception
of physical and psychological closeness to the user.

3. Social presence of the Al-enabled system (Morana et al., 2020); (Weitz et al., 2021).

4. Integrity of the Al-enabled system (i.e., repeatedly satisfactory task fulfilment) (Hoéddinghaus
etal., 2021).

5. Supporting text/speech output when communicating with users.

6. Providing users with texts rather than a synthetic voice (Law et al., 2021).

7. Alower vocal pitch of the Al-enabled system.

Specifically, for AI/ML and automated algorithms, the following technical and/or design features were
found to influence user trust:

1. Explanations and information regarding how the algorithm worked, Al’s actions (Barda et al.,
2020), (O’Sullivan et al., 2019), reflections of Al reliability, model performance (Zhang &
HuRmann, 2021), feature influence methods, risk factors to predictive models, contextual
information and interactive risk explanation tools (baseline risk and risk trends).

2. Correctness of Al/ML predictions.

3. AI/ML integrity.

In Thielsch et al., it was found that system reliability (dependability, lack and correctness of data,
technical verification, distribution of the system) and the quality of the system information (credibility)
influenced user trust. If an information system used a website to interact with users, multimedia
features, security certificate/logo, contact information, and a social networking logo were found to be
important for user trust (Sharma, 2015).

4.3.1.4.3 User characteristics influencing user trust

User characteristics can be divided in user inherent characteristics, user acquired characteristics, user
attitudes and user external variables.

User inherent characteristics (personality traits and gender)

It was observed that personality traits of the users can influence predictive decision-making and trust
in Al-enabled systems (Zhou et al., 2020). The study used the big five personality traits (Gosling et al.,
2003) and found that Low Openness traits (practical, conventional, prefers routine) had the highest
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trust, followed by Low Conscientiousness (impulsive, careless, disorganised), Low Extraversion (quiet,
reserved, withdrawn), and High Neuroticism (anxious, unhappy, prone to negative emotions). A user
interface was suggested to include modules to identify and inform user personality traits to users. This
would allow users to be aware of how their personality traits influenced their decision-making when
interacting with an Al-enabled system. Moreover, women were more likely to trust an Al-enabled
system (Morana et al., 2020).

User-acquired characteristics (user experiences and educational levels)

A previous experience with a provider or a producer of an Al-enabled system can influence user trust.
Positive experiences with a system allowed the user to be rooted deeply in the provider’s or producer’s
ecosystem, enabling the transfer of such trust to other systems from the same provider or producer.
Generally, users without a college education were less likely to trust an Al-enabled system than those
with a college education (Elkins & Derrick, 2013). The study also found that trust increased over time
along with growing familiarity with the system, including when the initial trust level in the Al-enabled
system is relatively low.

User attitudes (user acceptance and readiness, needs and expectations, judgement and perceptions)

User acceptance and readiness of an Al-enabled system were found to be key determinants of user
trust ((Foehr & Germelmann & Germelmann, 2020); (Khosrowjerdi, 2016); (Klumpp & Zijm, 2019);
(Smith, 2016)). Two studies suggested that addressing challenges such as artificial divide (Klumpp &
Zijm, 2019) and user uncertainties (Hoffmann & Sollner, 2014) were fundamental for promoting user
acceptance and readiness. The first study defined the artificial divide as the ability or lack thereof to
cooperate successfully with Al-enabled systems. The study outlined that users might be divided by
their motivation (e.g., intention to use) and technical competence toward Al-enabled systems. The
study highlighted the importance of analysing artificial divide elements (e.g., rejection of an Al-enable
system) and addressing challenges properly (e.g., early-stage user involvement, training, enhanced
user experience and empowerment) to foster user trust and prevent mistrust.

The second study suggested that user uncertainties had to be addressed by identifying and prioritising
the uncertainties and their antecedents in relation to a specific Al-enabled system, improving user
understandability, sense of control, and information accuracy.

User needs and expectations of Al-enabled systems included user intention to use an Al-enabled
system (Khosrowjerdi, 2016), relevance of technical system quality (e.g., reliability) and information
quality (e.g., credibility) to users (Thielsch et al., 2018), as well as usefulness of an Al-enabled system
to its users (Foehr & Germelmann, 2020). In general, user expectations of an Al-enabled system might
not be aligned with the intention of the system’s investors and developers (Lee et al., 2021). This might
result in the system being operated in a way that was unforeseen by investors or developers, hitting
and missing the target user expectations. The mismatch between user expectations and experiences
was suggested to be a risk to user trust and needed to be addressed, especially when users were
heavily dependent on specific Al-enabled systems.

For user judgement and perceptions, the key elements found to be affecting user trust in an Al-enabled
system included perceived credibility (e.g., expertise, honesty, reputation, and predictability), risk (i.e.,
likelihood and severity of negative outcomes), and ease of use (e.g., searching, transacting and
navigating) ((Corritore et al., 2012); (Foehr & Germelmann, 2020)) as well as perceived benevolence,
integrity and transparency ((Elkins & Derrick, 2013); (Hoddinghaus et al., 2021)). Importantly, it was
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found that the relatability a user felt to an Al-enabled system determined the user’s trust in the system
((Thielsch et al., 2018); (Zhang & HuRmann, 2021)).

Socio-ethical Technical and User
considerations design features characteristics

Inherent Acquired
characteristics characteristics

Attitudes

. user acceptance and initial interactions, user
personality traits, user experiences, readiness, needs and interactions, cognitive
gender educational levels expectations, judgemen load levels, time and
and perceptions usage

Figure 19 Influencing factors of trust
User external variables (initial interactions, user interactions, cognitive load levels, time and usage)

When an Al-enabled system was introduced to a potential user through the user’s close relatives,
friends or partner, the potential user typically used this opportunity to collect information regarding
the system’s benevolence, ability, and integrity (Foehr & Germelmann, 2020). Importantly, initial trust
was likely to be fostered as well. In review-based recommender systems, the quality of user
interactions on an Al-enabled system’s platform was found to be a determinant of user trust ((Duffy,
2017); (Lin et al., 2019)). Creating an effective environment where users were willing to exchange social
support and share high-quality reviews was suggested as crucial to foster and maintain user trust.
Another important determinant of user trust was the user’s cognitive load when interacting with an
Al-enabled system (Zhou et al., 2020). When under a low cognitive load, the user was more willing to
trust a system enabled by a greater availability of the user’s cognitive resources which allowed more
confidence and willingness to analyse and understand the Al-enabled system.

One study found that user trust increased as more time was spent interacting with an Al-enabled
system (Elkins & Derrick, 2013), likely as a result of understanding the system better and thus
perceiving it had greater integrity.

Finally, usage was suggested as a reliable predictor of user trust; the more a user used an Al-enabled
system, the more they trusted the system.

Trust is one of the foundational attitudes within human interaction and without it, many important
social bonds would be jeopardised. Without a minimal amount of trust in others, we would become
paranoid and isolationist because of fear of deceit and harm (O'Neill, 2003).
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The placement of trust in someone often requires a belief about their trustworthiness, but the two are
not synonymous. Being trustworthy helps in gaining trust but is neither necessary nor sufficient.
Deceivers can attract others' trust, so “Misplaced trust” is common enough. The trustworthy can be
denied others’ trust, so “Misplaced Mistrust” is also common enough.

It is possible to take into account three dominant trust paradigms to analyse if Al can be something
that has the capacity to be trusted (Ryan, 2020):

e The rational account, in which the trustor is making a logical choice, weighing up the pros and
cons, when determining whether to place their trust in the trustee; it is a rational calculation
of whether the trustee is someone that will uphold the trust placed in them.

e The affective account, that states the trustor places a confidence in, and belief in, the goodwill
of the trustee. There is an “expectation that the one trusted will be directly and favourably
moved by the thought that someone is counting on him”.

e The normative account, that implies the trustee’s actions will be grounded on what he ought
to do.

In order to evaluate whether the definition of trust is respected, it is possible to see if a set of
characteristics are met:

‘A’ has confidence in ‘B’ to do ‘X'.
‘A’ believes ‘B’ is competent to do ‘X’.
‘A’ is vulnerable to the actions of ‘B’.
If ‘B’ does not do ‘X’ the ‘A’ may feel betrayed.
‘A’ thinks that ‘B’ will do ‘X’, motivated by one of the following reasons:
a. Their motivation does not matter (rational trust).
b. ‘B’s’ actions are based on a goodwill towards ‘A’ (affective trust).
c. ‘B’ has a normative commitment to the relationship with ‘A’ (normative trust).

vk wh e

According to these characteristics, it can be noticed that Al can meet only the first three requirements.
Furthermore, the first three requirements describe the rational account, thus the trust in Al can be
seen more as a sort of reliance.

Concerning the fourth characteristic, the author highlights the difference between betrayal and
disappointment. Betrayal closely relates to the confidence placed in, and confidence of, the trustee.
Disappointment is the appropriate response when someone simply relied on someone or something
to perform a task. We feel disappointed by those we rely on but feel betrayed by those we trust. The
exclusion of betrayal is incompatible with the normative and affective accounts of trust, but non-
necessarily the rational account of trust.

In conclusion, Al is not a thing to be trusted. The rational account of reliability does not require Al to
have emotion towards the trustor (affective account) or be responsible for its actions (normative
account).

One can rely on another based on dependable habits, but placing a trust in someone requires they act
out of goodwill towards the trustor. This is the main reason why human-made objects, such as Al, can
be reliable, but not trustworthy, according to the affective account.
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In the normative account, the trustee must be held responsible for its actions, which Al cannot.
Whereas, reliable Al places the burden of responsibility on those developing, deploying and using these
technologies.

4.4 Explainable Artificial Intelligence (XAl)

The effectiveness of an Al-powered system is greatly limited by the machine’s inability to explain its
decisions and actions to human users.

Automated decision-making systems always raise transparency and accountability issues. However,
since the approval of the European General Data Protection Regulation (Reg. EU 2016/679) these
problems have been addressed from a different perspective. The GDPR, indeed, rephrased and
strengthened the individual prerogatives related to a “right to an explanation”, implicitly elevating the
standards of compliance for systems involving opaque models and logics. Accordingly, researchers and
companies started to develop new Al frameworks, putting more emphasis on the aspect of
accountability related to these aspects

The need for XAl has to be seen considering 5 perspectives (Saeed, W. et al., 2023)
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Figure 20 The five main perspectives for the need for XAl (Saeed, W. et al., 2023)

e Regulatory perspective: Black-box Al systems are being utilised in many areas of our daily lives,
which could be resulting in unacceptable decisions, especially those that may lead to legal
effects. Thus, it poses a new challenge for the legislation. The European Union’s General Data
Protection Regulation (GDPR) is an example of why XAl is needed from a regulatory
perspective. These regulations create what is called the “right to explanation”;

e Scientific perspective: XAl can be helpful to reveal the scientific knowledge extracted by the
black-box Al models, which could lead to discovering novel concepts in various branches of
science;

e Industrial perspective: Regulations and user distrust in black-box Al systems represent
challenges to the industry in applying complex and accurate black-box Al systems. It can help
in mitigating the common trade-off between model interpretability and performance,
however, it can increase development and deployment costs;
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e Model’s developer perspective: XAl can be used to understand, debug, and improve the black-
box Al system to enhance its robustness, increase safety, and minimise or prevent faulty
behaviour;

e End-user and social perspectives: to understand if the system serves what it is designed for
instead of what it was trained for. Figure 2 schematizes well the needs of accomplishing such
perspective, due to its tight correlation with trust.

XAl Development
Object-based belief
Explanation Quality Dimensions
[ Format (Textual Visual, Auditory) ]
Behavioral Beliefs Behavioral imentions
and
[ Suwhrlnnwymfunmmmdnmnd) ] XAl Effects Outcome
texiual and numancald.ua regarding
wccuracy) . Al Adoption
—s. —
urency (Include most current informa,
i S e
Explanation Presentation Time
Automatc (Information dsplayed along
With tha prediction 1o e user)

On Demard (Information that is
supplementary and avalablo on demand
aftor the decision maing)

Figure 21 Synthesised framework for XAl research from a user perspective (Haque, A. B, et al., 2023)

In 2015, the Defence Advanced Research Project Agency (DARPA) launched a four-year research
program on the topic with two main goals. The first one was to create machine learning techniques
producing models that can be explained (their decision-making process as well as the output), while
maintaining a high level of learning performance. The second goal was to convey a user-centric
approach, in order to enable humans to understand their artificial counterparts.

Accordingly, the research topics around Explainability, first addressed by DARPA, then largely
recognized by the scientific community ground on the following key questions (DW, 2019):

i) how to produce more explainable models
ii) how to design explanation interfaces
iii) how to understand the psychological requirements for effective explanations.

4.4.1 XAl Terminology

The first issue towards developing the ground knowledge of Explainability of Artificial Intelligence is
the range of interchangeable terms used to describe some desired characteristics of an Al.

This includes (The Royal Society, 2019; Degas, A., et al., 2022):

e Interpretability, implying some sense of understanding how the technology works intending a
property of an explanation;

e Transparency, implying some level of accessibility to the data or algorithm, indicating also the
ability to be understandable to humans considering three kind of transparent models;
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o “simulatable” models have the capacity to make humans understand their structure
and functioning entirely;

o decomposable models can be decomposed into individual components, i.e., input,
parameters and output, and their respective intuitions;

o algorithmically Transparent models behave “sensibly” in general with some degree of
confidence.

e Justifiability, implying there is an understanding of the case in support of a particular outcome;

e Contestability, implying users have the information they need to argue against a decision or
classification;

e Understandability, often termed as Intelligibility, implying a model that helps a user realise its
functions. In other words, how the model works without any requirement of further
explanation for the model’s internal operations on the data;

e Comprehensibility, which has been used to define the ability of an ML model to represent its
learned knowledge to humans in an understandable way. Clearly, the prior terms differ from
the second on representing the internal operations on the data and the knowledge acquired
from the data.

Above all, the term “Explainability” implies that a wider range of users can understand why or how a
conclusion was reached.

Explainable Al (XAl) explains the inner process of a model i.e., used to provide the explanation of the
methods, procedures and output of the processes and that should be understandable by the users.

DARPA adopted the term “Explainable Al” (XAl).

Today 1 Task
— ' * Why did you do that?
Machi Decisionor * Why not something else?
Training a6 I.ne Learned Recommendation + Whendo you succeed?
Data || Leaming Function * Whendo you fail?
Process « Whencan | trust you?
« How do1 correct an error?
User
XAI [ Task
|

X

+ | understand why

New * 1 understand why not
Training N Machine N Explainable | Explanation « 1 know when you succeed
Data Learning Model Interface + | know when you fail

Process « | know when to trust you
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Figure 22 XAl Concept (DARPA-BAA-16-53, 2016)
According to (EASA, 2022) Al Explainability is defined as the

“Capability to provide the human with understandable, reliable, and relevant information with
the appropriate level of details and with appropriate timing on how an Al/ML application
produces its results”.

For EASA, different perspectives under which Explainability has to be studied lead to two different
types of explainability: Development & post-ops explainability and Operational explainability.
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4.4.2 XAl Principles and Attributes

The National Institute Standard Technology (NIST) in 2021 has introduced four principles (Phillips, P.
et al., 2020) (Figure 1) to which an Explainable artificial intelligence (XAl) system has to adhere:

Explanation:
Delivers or contains accompanying evidence or reason(s) for outputs and/or processes
- >
gl i3l Il
. v " S N = s, 4 e
Meaningful: ' | Explanation Accuracy: | " Knowledge Limits:
System provides Explanation correctly Systemn only operates
explanations that reflects the reason for under conditions for
are understandable generating the output which it was designed
to the Intended and/or accurately and when it reaches
consumerts) reflects the system’s sufficient confidence in
‘ process ‘ its output.
& -4 7 & J

Figure 23 lllustration of the four principles of explainable artificial intelligence according to (Phillips, P. et al.,
2020)

e Explanation: A system delivers or contains accompanying evidence or reason(s) for outputs
and/or processes. By itself, the explanation principle is independent of whether the
explanation is correct,

e informative, or intelligible. This principle does not impose any metric of quality on those
explanations;

e Meaningful: A system provides explanations that are understandable to the intended
consumer(s). This principle encompasses different perspectives — which are the intended
target user of the explanation, what information people will find important, relevant, or useful,
which is the needed prior knowledge and experiences to understand the explanation;

e Explanation Accuracy: An explanation correctly reflects the reason for generating the output
and/or accurately reflects the system’s process. Explanation accuracy is a distinct concept from
decision accuracy. It mustn’t be confused with Decision accuracy referring to whether the
system’s support to decision is correct or incorrect. The explanation may or may not accurately
describe how the system came to its conclusion or action. Additionally, explanation accuracy
needs to account for the level of detail in the explanation. For some target audiences and/or
purposes, simple explanations could be sufficient for other could not.

e Knowledge Limits: A system only operates under conditions for which it was designed and
when it reaches sufficient confidence in its output. The Knowledge Limits principle states that
systems identify cases in which they were not designed or approved to operate, or in cases for
which their answers are not reliable.

According to NIST Explanation are characterised by the following attributes:

e Purposeisthe reason why a person requests an explanation or what question the explanation
intends to answer;
e Style describes how an explanation is delivered:

o level of detail as a range, from sparse to extensive
o degree of interaction between the human and machine:
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= declarative explanations - the system provides an explanation, and there is no
further interaction

= one-way interaction - explanation is determined based on a query or question
input to the system

= two-way interaction - a conversation between people. The person can ask
clarifying questions, or provide new avenues of exploration, and the machine
answers

o Explanation format- visual and graphical, verbal, and auditory or visual alerts.

4.4.3 XAl Taxonomy

Various taxonomies are proposed for XAl. In (Speith, T., 2022 and Schwalbe, G., et al., 2023), based on
extensive research, an XAl taxonomy is built considering different approaches:

e The functioning-based approach, meaning the way an explainability method extracts
information from an ML model

Explainability
Methods

Local Leveraging Meta- Architecture . I
[Pemn‘bations] [ Structure ] Explanation Modification pree

Figure 24 XAl taxonomy according to the Functioning based approach proposed by Samek and Muller
(Speith, T., 2022)

e The result-based approach takes the result of an explainability method as the essential
constituent for its classification

Explainability
Methods

+
Feature Surrogate
Examples
Figure 25 XAl taxonomy according to the Result based approach proposed by McDermid et al (Speith, T.,
2022)

e The conceptual-based approach splits up the classification of explainability methods into
several distinct conceptual dimensions such as: stage (ante-hoc vs. post-hoc), applicability
(model-agnostic vs. model-specific), and scope (local vs. global). Such an approach has been
integrated with other dimensions such as those linked to the output format distinguishing
numerical, rules, textual, visual, and mixed. The stage represents the period in which a model
generates the explanation for the output it provides. The stages are ante-hoc and post-hoc.
Ante-hoc methods generally consider generating the explanation for the output from the very
beginning of the training on the data while aiming to achieve the optimal performance. Post-
hoc methods comprise an external or surrogate model and the base model. The base model
remains unchanged, and the external model mimics the base model’s behaviour to generate
an explanation for the users. The post-hoc methods are again divided into two categories:
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Model-agnostic and model-specific. The model-agnostic methods are applicable to any Al/ML
model, whereas the model specific methods are confined to particular models.
e The mixed based approach joins the previous ones. An example is reported in Figure 7

Explainabili ( Ante-Hoc )—0( E.g., Decision Trees ) -
lainability 5
Methods
Other Techniques
for Explanation
"
o, - 4
|
$ ' '

Explanation by Explanation by Visual Local Architecture
Simplification Feature Relevance Explanation Explanation Modification

Figure 26 XAl taxonomy according to the mixed based approach (Speith, T., 2022)

After scanning more than 200 scientific articles published on XAl, Vilone and Longo deduced that the
scope of explainability can be either global or local (Degas, A., et al., 2022).

In (Degas, A., et al., 2022) another classification of XAl is proposed, which seems to complement the
functioning-based approach:

e Descriptive XAl: The system should be able to provide to all users the detailed description and
rationale of the action to be taken.

e Predictive XAl: The XAl should be able to determine the ‘what if’ conditions or in other words,
provide information to all stakeholders what will be the consequences of the actions that will
be taken.

e Prescriptive XAl: The induced Al functions will, in addition to the above information, be able
to suggest/propose the appropriate actions and options along with an appropriate explanation
such that stakeholders can decide on the next course of actions. In the above scenario, the
user can use the XAl prediction to assess the efficiency of potential actions—‘what if’. XAl
prescription will provide sufficient information to enable the user with immediate action to
perform without testing them. One of the most recent work (Schwalbe, G., et al., 2023)
presents a comprehensive taxonomy considering an increased number of dimensions
including the task and other elements of the explanator (Figure 27)
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Figure 27 Overview of a complete taxonomy (Schwalbe, G., et al., 2023)

4.4.4 XAl Methods

The international community has developed a very broad range of different methods and approaches.
Holzinger, A. et al., 2020, proposes an overview of the chronology of development of successive
explanatory methods (see Figure 8) and a useful discussion on the basic ideas and the current

limitations of the analysed methods.

ftare spow arxt incal | wetues iDame Beory] || mocols. Use concepts WO e varadie shructus
Wit || usibes DuweplUFT, LRP. fserned o Getitutone ard | | beiwesn vernciies
baset oo Dwep layler | sparwe K-LASSO e rnctabe sarpes | Sependency strctes
23Fwgeten model sgrasic end 'm
Peoagh the cem n::onu e om Nhop
e v Laane a1nd haractions cagCn e
| ctamevaton of itlerust | — - .
pont-tos ghotey- el |
- paratiors o0 graen
reural rae Lria
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| oML
SHAP ASV ShapFlow
NPS NPE AISTATS
LIME Anchors GraphLIME
DD ArAl AAAI
LRP Integrated Gradients XGNN
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f ‘ ¢ : t f : :
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Figure 28 Chronology of the development of successive explanatory methods (Holzinger, A. et al., 2020)
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In the table below are reported useful links for some of the most used XAl methods.

Table 7 Explainable Al Methods list and repositories

XAl method GitHub Repo
LIME (Local Interpretable Model Agnostic https://github.com/marcotcr
Explanations) f
Anchors i https://github.com/marcotcr/anchor
GraphLIME . https://github.com/WilliamCCHuang/GraphLIME

LRP (Layer-wise Relevance Propagation)

- https://github.com/chr5tphr/zennit
. https://github.com/albermax/innvestigate

Deep Taylor Decomposition (DTD)

- https://github.com/chr5tphr/zennit
. https://github.com/albermax/innvestigate

Prediction Difference Analysis (PDA)

. https://github.com/Imzintgraf/DeepVis-PredDiff

TCAV (Testing with Concept Activation Vectors)

i https://github.com/tensorflow/tcav

XGNN (Explainable Graph Neural Networks)

https://github.com/divelab/DIG/tree/dig/bench
- marks/xgra
i ph/supp/XGNN

SHAP (Shapley Values)

i https://github.com/slundberg/shap

Asymmetric Shapley Values (ASV)

i https://github.com/nredell/shapFlex

Break-Down

i https://github.com/ModelOriented/DALEX

Shapley Flow

- https://github.com/nathanwang000/Shapley-
¢ Flow

Textual Explanations of Visual Models

. https://github.com/LisaAnne/ECCV2016

Integrated Gradients

https://github.com/ankurtaly/Integrated-
i Gradients

Causal Models

: No Github Repo

Meaningful Perturbations

- https://github.com/ruthcfong/perturb
: explanations

EXplainable Neural-Symbolic Learning (X-NeSyL)

https://github.com/JulesSanchez/X-NeSyL,
https://github.com/JulesSanchez/MonuMAI-
: AutomaticStyleClassification

(Degas, A., et al., 2022) proposed a rigorous review

ATM applications.
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Figure 29 XAl methods with associated types of explanations (N: Numeric, R: Rules, T: Textual, V: Visual), stage
(Ah: Ante-hoc, Ph: Post-hoc), scope (L: Local, G: Global) of explainability, and the design spaces (P: Prediction,
O/A: Optimisation/Automation, A: Analysis, M/S: Modelling/Simulation) (Degas, A., et al., 2022)
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(Schwalbe, G., et al., 2023) proposed another rigorous review of the XAl methods independent of the
application domain that goes through the three strategies proposed by the DARPA program: deep
explanation, interpretable models and model induction.

Further analysis on the methods is provided in (Holzinger, A. et al., 2020), a complete book of a
conference where the term XXAl means beyond the Explainable Al.

An interesting summary of limitations of the current “explainers” is reported in (Swamy, V. et al., 2023).
Post-hoc approaches are most commonly investigated, and they don’t impact the model accuracy and
don’t require additional effort during training. Local, instance-specific post-hoc techniques such as
LIME and SHAP have been effectively utilised in a variety of models. Counterfactual explanations have
been used in numerous classification tasks. Each of the post-hoc XAl solutions presented above, among
many others not mentioned, have weaknesses for deployment in a real-world setting. The
computational time, especially with SHAP, LIME, or counterfactual generation, is in the tens of
minutes; not real time enough for users. In most cases, there is no measurement of trust or confidence
in a generated explanation. The actionability and human-understandability of the explanation is based
on the input format. As human-centric tasks often use tabular or time series data, their subsequent
explanations are often not concise, actionable or interpretable. Lastly, the consistency of the
explanations is not intrinsically measured; generating an explanation for the next step in the time
series could vary greatly from the previous step. Several explainability methods could produce vastly
different explanations with different random seeds.

Less research has focused on in-hoc methods.
4.4.5 XAl main Toolboxes

The international community has developed a very broad range of different methods and approaches
and here we provide a short concise overview to help engineers but also students to select the best
possible method. Figure 10 shows some of the most popular XAl toolboxes (Holzinger, A. et al., 2020).
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Figure 30 Number of stars on GitHub for the most popular repositories (Holzinger, A. et al., 2020)

While these repositories focus on the explanation task, the new Quantus toolbox proposed in
(Hedstrom, A., et al., 2022) offers a collection of methods for evaluating and comparing explanations.

XAl for reinforcement learning tasks There are some studies specifically focusing on explanations in
tasks solved by reinforcement learning. One is that by (Puiutta E, 2020.) It reviews more than 16
methods specific to reinforcement learning in a beginner-friendly way. Comparable and more recent
surveys on the topic are by Heuillet et al (2021) and (Vouros, 2022).

XAl from a HCI perspective When humans interact with Al-driven machines, this human-machine-
system can benefit from explanations obtained by XAl. DARPA program structure anticipated the need
for a grounded psychological understanding of explanation, summarising psychological theories of
explanation to assist the XAl developers and the evaluation. The concept of user-centric XAl requires
a highly interdisciplinary perspective. This is based on fields such as computer science, social sciences
as well as psychology in order to produce more explainable models, suitable explanation interfaces,
and to communicate explanations effectively under consideration of psychological aspects. Figure 11
illustrates a top-level descriptive model of the XAl explanation process (Gunning, D et al., 2021)

XAl
System

recefves Initial Explanation User's Mental Better

.IE::Il Instruction Model Performance
4
may intiady fes Inutzal Mergal /- s assessed by 1% nssessed by nlnllﬂh
Moded
The Goodness || Test of Test of
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e

Iopproprn, Ghves way to Appropriate enebles Appropriate
Trust or Trust Use
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Figure 31 Psychological model of explanation. Yellow boxes illustrate the underlying process, the green
boxes illustrate the measurement opportunities and the white boxes illustrate potential outcomes (Gunning,
Detal., 2021)

The work initiated by DARPA has been further developed. Hence, by now there are several surveys
concentrating on XAl against the background of human-computer interaction (HCI). The survey in
(Ferreira JJ, et al., 2020) is slightly longer, and may serve as an entry point to the topic for researchers.
(Schwalbe, G., et al.,, 2023) highlights different works exploring the concept of explanations and
explainability concluding that: (a) (local) explanations should be understood contrastively, i.e., they
should clarify why an action was taken instead of another; (b) explanations are selected in a biased
manner, i.e., do not represent the complete causal chain but few selected causes; (c) causal links are
more helpful to humans than probabilities and statistics; and (d) explanations are social in the sense
that the background of the explanation receiver matters. Other works rigorously develop a taxonomy
for evaluating black-box XAl methods with the help of human subjects with concrete suggestions for
study design. Very recent work on XAl metrics is provided by (Mueller ST, et al., 2021.) where concrete
and practical design principles for XAl in human-machine-system and several relevant XAl metrics are
recapitulated.
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DARPA studies on such aspects (Gunning et al., 2021) were blocked by the recent pandemic, but the
main conclusions on such aspects were:

e Users prefer systems that provide decisions with explanations over systems that provide only
decisions. Tasks where explanations provide the most value are those where a user needs to
understand the inner workings of how an Al system makes decisions.

e To improve user task performance, the task must be difficult enough that the Al explanation
helps (PARC, UT Dallas).

e User cognitive load to interpret explanations can hinder user performance. Combined with the
previous point, explanations and task difficulty need to be calibrated in order to improve user
performance.

e Explanations are more helpful when an Al is incorrect and are particularly valuable for edge
cases

e Measures of explanation effectiveness can change over time.

XAl from the evaluation perspective. Another hot research topic around XAl are metrics for measuring
the quality of explanations for human receivers. In 2017, Doshi-Velez and Kim proposed a base work
on XAl metric categorization (Doshi-Velez et al., 2017). DARPA proposed metrics as well (DW, 2019)
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Figure 32 Measure of Explanation proposed by DARPA (DW, 2019)

(Schwalbe et al., 2023) collects from other surveys latent dimensions of interpretability with
recommendations and proposes a classification metrics into:

e Functionally grounded: Faithfulness fidelity soundness or causality, Completeness, or
coverage, Localization accuracy Overlap, Accuracy of the surrogate model, Architectural
complexity, Algorithmic complexity, Stability or robustness, Consistency, Sensitivity,
Expressiveness or the level of detail;

e Human grounded: Interpretability or comprehensibility, Effectiveness, (Time) Efficiency,
Degree of understanding, Information amount;

e Application grounded: Satisfaction, Persuasiveness, Improvement of human judgement,
Improvement of human-Al system performance, Automation capability, Novelty.

Page | 81

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP

Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00 »

sesar

JOINT UNDERTAKING
A full focus on metrics for evaluating XAl methods is set in the recent work by (Zhou J, et al., 2021).
4.4.6 XAl from Explanation Interface perspective (Chromik et al., 2021)
The DARPA program distinguishes between the explainable model and the explanation user interface

disentangling the ML model behaviour analysis from communicating it to the user. DARPA classified
the interfaces according to the terms reported in the figure below.

Explanation Interface
Reflexive and Rational
Narrative Generation
3-Level Explanation
Acceptance Testing
Interactive Training
XRL Interaction
Show-and-Tell Explanations
Argumentation and Pedagogy
Decision Diagrams
Interactive Visualization
Bayesian Teaching

Figure 33 Explanation Interface types (Gunning, D et al., 2021)

(Chromik, M., et al., 2021) defines an XAl Explanation interface with the term XAl user interface (XUlI)
as the sum of outputs of an XAl system that the user can directly interact with. Most XAl research
focuses on computational aspects of generating explanations while limited research is reported
concerning the human-centred design of the XUI. Google's People+Al Guidebook2 presents case
studies of explanations integrated into mobile apps. The relevant point highlighted in literature is that
“...explainability can only happen through interaction between human and machine..”. In (Chromik, M.,
et al., 2021) is argued that different types of interaction of Al with Human lead to different type of
explanation interface proposed that on turn identify further research subtopics:

e Interaction as (Information) Transmission - this interaction is

mainly about unidirectional XUl presents users with accurate or
complete explanation about Al behaviour; :
e Interaction as Dialogue — XUl allows a cycle of communication

of inputs/outputs by the computer and perception/action by a : :
human; e T A e e ST v RN -

e Interaction as Control Built on control theory XUl feeds control
signals from the ML model to the human controller (feedback).
These inform the controller how to change parameters of the ML
model or its data so that the model adjusts its behaviour
(feedforward);

e Interaction as Optimal Behaviour: XUl provides explanations for
training humans to have better interactions with Al, for example,
when they face erroneous Al systems or exhibit misconceptions
caused by cognitive biases. It is divided in research that (i)
examines limitations that occur during the interaction with an XAl
and (ii) designs interactions to better moderate these limitations;

<

Page | 82
©-2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

sesar’

JOINT UNDERTAKING

e Interaction as Experience - XUl emphasises managing the
expectations and preferences of users about the Al. It centres
around the explanatory goals of trust;

e Interaction as Embodied Action XUl is built on theories from the
computer-supported cooperative work (CSCW) community,
such as mutual goal understanding, pre-emptive task co-
management and shared progress tracking. XUls which are not
only about understanding Al agents (interaction as
transmission), but which enabled them to also influence the
agents' actions;

e Interaction as Tool Use - XUl is built on Activity theory where the
system influences the mental functioning of individuals and
facilitates the learning from Al.

4.5 Performance Measures

In addition to the key performance indicator (KPl) defined SESAR Performance Framework other
metrics have been proposed in the literature. As long as we do not completely replace humans with
unmanned autonomous systems the best choice is human machine teaming or collaboration, but such
teaming comes with its own set of challenges. Metrics are crucial to accurately and effectively measure
human-machine teaming (HMT) across multiple fields. As stated in (Damacharla et al., 2018), to be
deemed as an HMT, a team should contain at least one human and one machine/intelligent system
and they propose to define HMT as a combination of cognitive, computer, and data sciences;
embedded systems; phenomenology; psychology; robotics; sociology and social psychology; speech-
language pathology; and visualisation, aimed at maximising team performance in critical missions
where a human and machine are sharing a common set of goals. The machines that take part in an
HMT must belong to one of the following categories: unmanned aerial vehicles (UAVs), unmanned
ground vehicles, Al robots, digital assistants, and cloud assistants. Following this approach, metrics can
be related to human, machine and team.

4.5.1 Human metrics

Human-metrics measure different human aspects such as system knowledge, performance, and
efficiency that can be used to evaluate a human agent in an HMT. Situational awareness (SA) is
measured by monitoring task progress and sensitivity to task dynamics during execution. The degree
of mental computation estimates the amount of cognitive workload an operator manages to complete
a task (Steinfeld et al., 2006), (Sammer et al., 2007). The accuracy of a mental model of an operator
depends on interface comprehensiveness and simplicity in addition to control and compatibility a
machine provides. Attention allocation measures the attention an operator pays to a team’s mission
and the operator’s ability to assign strategies and priorities of tasks dynamically. The metric also
considers an operator’s degree of attention over multiple agents. It is measured using eye tracking,
duration of eye fixations to an area of interest, and task completion rate, while attention allocation
efficiency is measured using wait times (Pina et al., 2008), (Crandall et al., 2007). Intervention frequency
is the frequency with which an operator interacts with the machine (Harriott et al., 2014). As per the
literature, operators’ intervention frequency is also known as intervention rate or percentage requests.
Stress can be physical or mental. However, both may indicate the operator’s workload and are
measured in two ways. First, researchers perform sample testing of humans’ stress hormones, such as
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cortisol and catecholamine, which are found in blood, saliva, and urine samples (Rapoliené et al.,
2016). Second, researchers can perform a detrended fluctuation analysis of a human’s heartbeat
(Yazawa et al., 2013).

Human safety metrics involve evaluation of the risk posed to the human life while working near
machines, for example, the location of the machine relative to the human. Human factor studies
suggest that humans can establish the best cooperation with a machine through a 3D immersive
environment (Corbillon et al.,, 2017). In (Forouzandehmehr et al.,, 2013) and (Saad et al., 2016),
researchers suggest that humans can be more effective when the environment and goals are in their
best interest. Other human performance attributes such as psychomotor processing, spatial
processing, composure and perseverance are important to improve the team cohesion through human
performance enhancement.

4.5.2 Machine metrics

Machine-level metrics related to HMT cope with efficiency, performance and accuracy. In particular,
machine self-awareness, or the degree to which a machine is aware of itself (limitations, capacities), is
a precursor to reducing the human cognitive load and measured based on autonomous operation time,
the degree of autonomy and task success (Steinfeld et al., 2006), (Gorbenko et al., 2012). Instead,
unscheduled manual operation time may either be an interruption period in the current plan execution
or an unexpected assigned task (Schreckenghost et al., 2010). Neglect tolerance (NT) is interpreted in
various ways, such as machine performance falling below expectation, time to catch-up, the idle
period, or operation time without user intervention. State metric helps track the machine or plan state
based on four dynamic states: assigned, executed, idle, and out of the plan. Robot attention demand
(RAD) is a measure of the fractional ““task time’” a human spends to interact with a machine. Fan out
(FO) is a measure of how many robots with similar capabilities a user can interact with simultaneously
and efficiently and is the inverse of RAD (Abou Saleh, 2010). Interaction effort (IE) is a measure of the
time required to interact with the robot based on experimental values of NT and FO and is used to
calculate RAD (Abou Saleh et al., 2010), (Crandall et al., 2005).

4.5.3 Team metrics

Mission assignment and execution is the key focus of team metrics. Task difficulty represents the
mental load a particular task generates (Greitzer et al., 2005). The task difficulty metric for a machine
depends on FO and requires three factors for measurement: recognition accuracy, situation coverage,
and critical time ratio of a machine (Glas et al., 2011). Recognition accuracy is the ability of the machine
to sense its I/O parameters. Situation coverage (SC) is the percentage of situations encountered and
accomplished by the robot. SC is defined based on plan and act stages of the mission. Critical time ratio
is the ratio of time spent by a robot in a critical situation to the total time of interaction (Glas et al.,
2011). Network efficiency is the rate of flow of information between the human and the machine and
determines the efficiency of interaction. It also influences time taken for scheduled and unscheduled
manual operations, accuracy of mental computation, negligence tolerance, and human-machine ratio
(Harriott et al., 2014). Four well-known subclasses of false alarms are true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) (Elara et al., 2010). While false alarms measure complex
communication between humans and machines in a team, people may ignore false alarms. A human
factor study presented a trade-off between ignoring false alarms and misses and concluded that alarms
are strongly situation dependent (Meyer et al., 2001). Some other team metrics that can be used in
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effective interactions are hits, misses, automation bias and misuse of automation or metrics based on
application scenario (Doisy et al., 2014). Robustness measures the ability of the team to adapt to the
changes in task and environment during task execution (Shah et al., 2007) while productivity measures
productive time compared to total invested time. Task success ratio indicates the number of
completed versus allocated tasks (Schreckenghost et al., 2010).

4.5.4 Metrics classification

According to the review (Damacharla et al., 2018), metrics can be functionally classified in four classes:
efficiency, time, mission and safety. Metrics to evaluate efficiency will give the observer the required
V&V to tune each agent to operate with maximum efficiency (e.g. attention allocation, decisions
accuracy, mental workload). Time metrics provide data related to the time taken for different
operations by machine, human, and team, and these metrics are very important in decision-making
and performance and status determination (e.g. neglect tolerance, critical time ratio, autonomous
operation time). Mission metrics measure attributes related to a task such as planning (e.g. reliability,
trust, total coverage). Safety metrics measure the agent and mission safety during task execution (e.g.
risk to human, general health, critical hazard). Another class of metrics, termed as applied metrics,
deals with the practicality and research on metrics and is divided into research (e.g. fatigue, stress,
situation awareness) and non-research (e.g. false alarms, team productivity, task success) metrics.

Subjective metrics (SM) are used to measure abstract qualities based on human perception. These
metrics may include feedback or judgement from observers (superiors or experienced professionals),
for example, self-feedback, evaluation, or ratings. These metrics are measured using scales rating from
experts.

Objective metrics (OM) are task-specific tools, functions, and formulae to measure task performance
guantitatively. OM are developed to measure an activity that can be changed, customised, or
expressed by a value for comparison. Finally, some metrics can be measured in real-time, others can
be evaluated only after the accomplishment of the mission.

4.6 Current Development in Aviation

4.6.1 Projects in the last five years

The following table represents the summary of projects that have dealt with Artificial Intelligence and
with Digital Assistants in the last five years. Most of them are funded under the SESAR Program, fewer
under Horizon Europe. Very few projects were recovered that were developed in extra-European
Countries. Sic projects address Digital Assistant and Human-Ai teaming aspects.

Project Startin Endin  Coordinati Summary
name g date g ng entities
date

SESAR First | MALORCA i 01-04- i 31- i Deutsches i The project proposed a
JU projects 2016 03- Zentrum general, cheap and effective
2018 far  Luft- solution to automate the
: speech recognition,
adaptation and
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Eund Ecustomization process to
Raumfahrt new environments, taking
: advantage of the large
amount of speech data
available in the ATM world.
: INTUIT : 01-03- ( 28- i Nommon i The purpose of the project
£ 2016 : 02- i Solutions i was to explore the potential
: 2018 : and : of visual analytics, machine
: Technologi : learning and systems
es modelling techniques to
: : improve the understanding
i of the trade-offs between
ATM Key Performance Area
: (KPAs), identify cause-effect
grelationships between Key
i Performance Indicators
: (KPIs) at different scales, and
. develop new  decision
: support tools for ATM
performance monitoring
and management.
: DART : 17-06- : 19- i Ecole : The project aimed to
: 2016 i 06- : Nationale : understand the suitability of
: 2018 i de i applying big data techniques
I’Aviation for  predicting multiple
: Civile : correlated aircraft
: (ENAC)  trajectories based on data
: : driven models and
accounting for ATM network
: complexity effects.
. ARTIMATIO i 01-01- i 31- : Malardalen : The project has introduced
N 2021 12- S innovative Al methods to
2022 Universitet predict air transportation

traffic and to optimise traffic
flows based on the domain
of explainable
intelligence.
aimed to ensure safe and
dependable
support,

transparent Al models that
include

explanation

artificial
ARTIMATION

decision
focusing on

visualisation,
and
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generalisation with
: adaptability over time.

Other : TAPAS - 01-06-
projects : : 2020

 30-
11
2022

i Centro de i
Referencia
! Investigaci
: on
Desarrollo
e
Innovacion
: ATM

. (CRIDA)

The main objective was to

provide a set of principles
and criteria which pave the
: way for the deployment of
i Al/ML-based technologies in
ATM in a safe and
trustworthy manner.
eXplainable Artificial
Intelligence (XAI)
techniques, together with
Visual Analytics, can help to
explore trade-offs between
efficiency of Al
implementations and the
suitability for deployment in
specific applications.

. MAHALO | 01-06-
é 2020

 30-
 11-
| 2022

: Deep Blue

The project aimed to design
: an automated Al, ML and
: deep neuronal learning-
i based explainable system
for problem solving
i between aircrews and air
Etrafﬁc controllers. Trained
: by the individual operator,
i the machine had the
purpose to be able to inform
Ethe operator what it has
learnt. This will increase
: capacity, performance and
safety. In particular,
MAHALO has investigated
the impact of transparency
(how much the Al is able to
explain why it took a specific
decision) and conformity
: (how much the decision
taken by the Al is similar to
the one a controller would
choose).
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The project aimed to
investigate the effect of
distributed human—machine
situational awareness in en-
route air traffic control
operations and also explore
the opportunities it entails.
To this end, the project was
not focused on automating
isolated individual tasks but
has developed an intelligent
situationally aware system.

. ASTAIR . 01-09-
: 2023

. 28-
| 02-
| 2026

i Ecole
Nationale
de
I’Aviation
! Civile

. (ENAC)

i ASTAIR (Auto-Steer Taxi at
AlRport) will develop an Al-
enabled tool to support a
wide variety of ground
procedures aimed
at optimising resources, and
Eenhancing the safety and
efficiency of a wide range of
airside operations at the
airport.

The project will use Al to
prompt actions, such as
providing clearances to
vehicles on the airport
aprons and taxiways
according to optimal routes
and managing fleets of
autonomous tugs to further
: enhance ground capacity. A
: key focus of ASTAIR will be in
optimising humans and Al
interaction by tailoring
intelligent  systems  to
operators' modus operandi,
ensuring logical consistency
across manual and
automated control.

SESAR : Connecte : CODA . 01-09- | 28- : Deep Blue

3U  dand | 1 2023
: Automate : :
: dATM

. 02-
. 2026

: The CODA project involves
developing a system in
: which  hybrid ~ human-
: machine teams
collaboratively perform
{ tasks.  Specifically, the
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Eproject will show how a
system could adapt to
specific situations and react
accordingly by using
advanced adaptable and
adaptive automation
principles that will
dynamically  guide  the
allocation of tasks. The
system will assess the
operator's cognitive status,
use current traffic data to
foresee the future tasks that
Ethe operator will need to
perform in the future, and
calculate the impact of those
tasks in terms of cognitive
complexity. With this
information, the system will
predict the future mental
! state of the operator and
will act accordingly by
developing an adaptive
automation strategy.

: HYPERSOLV : 01-06- : 30- i Neometsys
. ER 12023 11
| | | 2025

: The project aims to develop
i an HyperSolver based on
advanced Artificial
Intelligence Reinforcement
Learning  method  with
! continuous  reassessment
and dynamic updates, i.e. an
holistic solver from end-to-
end, covering the whole
! process to manage, density
Eof aircraft, complexity of
trajectories, interactions
(potential conflict in
Dynamic Capacity Balancing
timeframe) of trajectories,
Econflict of trajectories at
medium-term and conflict of
trajectories at short-term.
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The project includes the
industrial research aimed to
: create and use airspace
capacity, in combination
with targeted and effective
demand and/or capacity
: measures. The  project
exploits the latest
advancements in artificial
intelligence and machine
learning, to supply a variety
Eof supporting toolsets to
ATM  stakeholders that
enable rapid exploration of
options for the deployment
of capacity-on-demand
solutions, whenever and
wherever required. The
. benefits include increased
' en-route  capacity  and
improved cost-efficiency of
ATS  provision,  without
Ecompromising the current
safety levels.

: Capacity- : FASTNet

on-
demand
and
dynamic
airspace

01-06- 31- Eurocontro
2023 05- [

: § 2026

: 01-06- : 31- i Indra

| 2026

_ : The  project  proposes
i 2023 i 05- i SistemasSa i
: the evolution of ATM
: aviation into an integrated
: digital ecosystem
i characterised by distributed
Edata services. It aims at
further  enhancing the
: airports  and network
integration in tactical, pre-
tactical and strategic
planning through the
development of two
solutions:

-Enhanced AOPs-NOP
Tactical planning, with the
inclusion of an “airport-to-
airport(s)"" AOP to AOP

solutions that contribute to

collaborative planning
gprocess and the use of
i artificial intelligence.
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. - AOP-NOP Strategic and
pre-tactical planning.

. KAIROS

: 01-06- i 31- | Intelmet

: KAIROS will improve the
i quality of meteorological
information provided to the
aviation community through

: the use of artificial
: intelligence. By producing
: accurate digital weather
éforecasts at longer lead
! times, aviation stakeholders
will be in a better position to
Emitigate the impacts of
weather on their operations.
EThe project will integrate
EIive weather information
Efrom Al forecasts with
Eexisting decision support
Etools and platforms to
Eassess the  operational
Ebenefits to several end-
users.

: Al4HyDrop

12023 05- | Solutions

: 1 2026 |

: 01-09- i 28- i Universitet :
:2023 :02- :etiSorost-:
: : 2026 : Norge

. (USN)

{ With an increasing number

and diversity of potential

: drone operations, managing
: the airspace to
i accommodate these drones

will become an increasingly
sophisticated task,
especially in densely
populated urban areas
encompassing restricted
zones with dynamic
environmental and
operational influences. Due
to the associated higher
probability of conflicts, and
ultimately collisions, such
: areas require management
of dedicated structured
airspace, operations, and
services to help mitigate
these potential hazards.
A holistic framework is
necessary to create an
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effective and efficient flow
of information between the
various capabilities in order
Eto systematically organise
the airspace usage.
Al4HyDrop evaluates the
various stakeholder needs,
delivering validated
concepts, defining a
methodology for an airspace
Estructure organisation and
associated U-space services.
The framework considers
the information from other
| services such as
: meteorological and
separation provision, which
can then be used for flight
planning approval process,
: prioritisation. In addition,
: essential elements such as
- surveillance and
contingency planning can be
addressed. The framework
incorporates  various Al
: based tools and associated
. information flows necessary
' to address the complexity,
: safety and scalability
required for implementing
such U-space services.

Aviation : SynthAIR
green i
deal

. 01-09- : 28- : Sintef
12023 02-
: | 2026

i The project aims to respond
to the scarcity of relevant
Edata for aviation and the
Einherent limitations of Al
models in handling diverse
datasets. The main ideais to
learn a model from multiple
datasets and  generate
synthetic data that
: accurately represents new,
unseen datasets, through
the groundbreaking concept
of the Universal Time Series
Generator (UTG).

Page | 92
© —2023-SESAR 3JU

EUROPEAN PARTNERSHIP

Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

Artificial | TRUSTY £ 01-09- i 28- i Malardalen :
: : : : represent one of the last
innovations in aviation,
offering remote traffic flow
i and capacity management
for airports. While
conventional control tower
host operators have direct
visual oversight of runways
and taxiways, digital towers
exploit video transmission to
provide the same vital
information. This
Eadvancement enables the
provision of airport air traffic
services (ATS) from virtually
anywhere, promising
significant enhancements in
Eoperational efficiency and
safety by  augmenting
controller situational
: awareness.

In today's era, artificial
 intelligence and machine
learning are offering
: automated  and  faster
: solutions in many industries,
: bringing the industry to a
more advanced stage.

. Intelligen 12023 02- s
i cefor 2026 Universitet
aviation : : :
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Remote  digital towers

: ASTRA : 01-09- i 28- i Universita
12023 {02- taMalta
: 1 2026

i Nowadays, tactical  Air
Traffic Control (ATC)
hotspots are only identified
up to around 20 minutes in
advance. The aim of ASTRA
is to bridge the gap between
the Flow Management
Position (FMP) and the
planner Controller Working
Position (CWP) by
developing a Al-based tool
for FMP personnel which
can predict and resolve
hotspots earlier than today,
before they are within the
scope of the sector planner.
The objectives of the project
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are to: develop an FMP
function to predict hotspots
at least 1 hour in advance,
: and to propose strategies to
resolve  them; develop
Human Machine Interface
(HMI) concepts to allow
interaction between
operators and the tool; and
demonstrate and validate
the tool by conducting
human-in-the-loop Real-
Time Simulations (RTS) in a
Erepresentative operational
environment.

. JARVIS

| 01-06- | 31- | Collins
: 2023 : 05- : Aerospace
: : 2026 : Ireland

i The project addresses the
increasing complexity of the
entire aviation ecosystem
(aircraft, air traffic control —
ATC, airports), through the
introduction of a Digital
Assistant  (DA) that, by
teaming with its human
: counterpart (pilots, ATC
operators, airport
: operators), support the
execution of tasks to ensure

safe and profitable
operations in  complex
scenarios. JARVIS
Consortium aims at

developing and validating
three ATM solutions: an
: Airborne DA (AIR-DA), an
ATC-DA and an Airport DA
: (AP-DA). The AIR-DA will
increase the level of
automation in the flight deck
and thanks to Al-based
actions will act as enabler
towards reduced crew
operations and single pilot
operations. The adoption of
the AIR-DA will allow pilots
to deal with complex
: scenarios without
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compromising safety,
security, while reducing the
pilot workload. The ATC-DA
Ewill increase the level of
automation  in  control
towers, where
environmental KPIs and the
capacity management of
airspace will benefit from
Ethe adoption of Al-based
technologies. Finally, the AP-
DA will increase the level of
automation in  airports,
enhancing safety  and
security for intrusion
detection scenarios.

. DARWIN

: 01-06- i 31- i Honeywell

2023 05- Internation

12026 | al

i DARWIN’s ambition and
vision is to develop
technology enabling Al
based  automation  for
cockpit and flight operation
as a key enabler for SPO
: (Single Pilot Operations) and
demonstrate the same (or
. higher) level of safety with
same (or lower) workload as
operations with a full crew.
The system will consist of 3
core enabling technology
layers: 1)  Trustworthy

i Machine Reasoning
Platform will provide
: capabilities for rule-driven,
transparent, and

i explainable decision aiding
or decision making. 2)
Human-Al Collaboration
layer will be implemented
: on top of the Reasoning
Platform. 3) Pilot State and
ETashoad Monitor  will
provide data to the
: collaboration layer and
Eautomation to adaptively
react.
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Human Al
Knowledge and
Understanding for aviation
Esafety — European-funded
project aimed at enhancing
Human-Al
Efuture aviation systems in
: the  2030C
: (https://www.haikuproject.
: eu/). HAIKU has six human-
Ecentric Al use cases, two
each in the air traffic, cockpit
and airport sectors, where
prototype Digital Assistants
Ewill be developed. HAIKU
aims to explore human-Al
interactions and teaming in
: dynamic  and
' simulations of operational
 flight scenarios.
: Three main
questions will be addressed:
¢ What is the recommended
human-Al relationship for
: each of the different Al
applications in aviation?

: o What does it mean for Al
! to be explainable and hence
: trustworthy in each of these
applications?

e How do we best teach Als,
via human-in-the-loop Al
: learning for each of the
potential
applications?
The following main outputs
: are foreseen:

1. New Human Factors
design guidance and
: methods
Capabilities) on how to
: develop safe, effective and
: trustworthy Digital
: Assistants for Aviation

2. A set of aviation use cases
: — controlled experiments
: with  high

teaming

teaming  for

timeframe

realistic

research

aviation

(‘HF4AV

operational
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relevance — illustrating the
tasks, roles, autonomy and
Eteam performance of the
Digital Assistant in a range of
normal and
scenarios

3. New safety and validation
: assurance
Digital
facilitate early integration
into aviation systems by
aviation stakeholders and
regulatory authorities

: 4. Continuous engagement
: with relevant stakeholders -
e.g. policy
: professional
passengers associations and
general public — to deliver
: Guidance on

: acceptable Al in
critical operations, and for
maintaining
strong safety culture record.

emergency

methods  for
Assistants, to

makers,
associations,

socially
safety

aviation’s

: SafeTeam i1 July i 30
é | 2022

EJune
| 2025

i Fundacion
 instituto de '
investigaci
on innaxis

: Safe Transition to Digital

Assistants for Aviation - The

goal of the project SafeTeam
is to progress on the human
factors aspects of the use of
digital assistants to aviation,
- including a
understanding  on  the
technology and processes
: that  will
Eadoption of Al tools and
integration into operations,
enhancing human cognitive
abilities and
automation. SafeTeam is not
purely concerned with the
technical development of Al
applications for aviation but
rather focuses on those
aspects and characteristics
Eof integrating such digital
assistance / Al tools that will
ensure efficient and safe

deeper

facilitate the

potentially
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interaction
operators. The efficiency /
accuracy of the ML
algorithms and Al solutions
is of course of relevance to
the research, but the core
objective of SafeTeam is to
Efacilitate the transition to
digital
ultimately Al-run operations
from a Human Factors and
safety
project will also look into
approval
 issues, concretely on aspects
related to the human ability
to operate sophisticated Al
tools and explainability of Al
operations.
main goal of developing new
human-machine interaction
: concepts  will run
important
challenges required to reach
: TRL6, demonstrating several
concrete  use
: relevant
: placing human operators at
: the core of the research.
Particularly, leveraging the
Epast work done on data

sesar’
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with  human

assistants and

perspective. The

and certification

The project's

along
technical

cases in
environments

i infrastructures, the
SafeTeam project  will
: provide relevant
environments integrated

i with the use cases, to be
: able to demonstrate the
: different ML algorithms and
the human interactions with
the enhancing awareness or
automation
presented.

case studies

: Digital
: Assistant:
: Introducing

12018 2020 | Civil
' 5 : Aviation
: Authority

This year at the Singapore
: Airshow, AIR Lab unveiled its
latest Proof-of-Concept that
i aims to revolutionise the
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working ways of air traffic
Econtrollers -
Assistant.
close collaboration with Civil
Aviation

Singapore
and the Agency for Science,
Technology and Research
: (A*STAR), Digital Assistant
leverages
Erecognition technology to
: automate processes and
streamline
eliminating the need for
: manual
commands.

the Digital
Developed in

Authority of
(CAAS), Thales

speech

operations,

data entry of
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4.6.2 Opportunities and Challenges

Opportunities

1) The application of new technologies and interdisciplinary research brought by the introduction
of the human-centric concept and HMI design focuses on sustainability and resilience.

2) Improvement of workers' well-being.

3) Improve the relationship between human and machine collaboration.

4) Assure the best of human and the best of machine joint working.

Challenges

Considering the opportunities, the following challenges may become an important direction for
research:

1) Human Al Teaming (National Academies of Sciences, Engineering, and Medicine, 2022)

a. Existing human-Al research is severely limited in terms of the conceptualizations of
functions, metrics, and performance-process outcomes associated with dynamically
evolving, distributed, and adaptive collaborative tasks. Research programs that focus
primarily on the independent performance of Al systems generally fail to consider the
functionality that Al must provide within the context of dynamic, adaptive, and
collaborative teams. Research should specifically consider the dynamic process factors
and timing constraints involved when human-Al team members address uncertainties
in task progress or the evolution of performance over work sessions, shifts, task
episodes, software updates, and longer time horizons.

b. Human-Al Team Models. Predictive models of human-Al performance are needed to
provide quantitative predictions of operator performance and interaction in both
routine and failure conditions.

2) Performance Framework to assess the effectiveness of the “assistance” and the potential
integration with SESAR Performance Framework

3) Technologies of multimodal fusion perception and human-like intelligent perception. The
perception of the human emotional status is relevant for a good human-machine interaction.
It is a kind of empathy to be implemented at machine level and to tune as a consequence its
behaviour. Human beings express their emotions and intentions through multiple signals, such
as language, pronunciation, and intonation, facial expressions and gestures, as well as some
physiological signals, such as blood pressure and heartbeat. Most of the existing perception
methods are focused on the single mode. The correlation between the multiple modes is
ignored. Therefore, the creation of multimodal databases, multimodal data hierarchical fusion
perception, and human-like intelligent perception technologies based on this database (R 11)
can be explored.

4) Mechanism of multimodal cooperative analysis and intelligent reasoning. At present,
intelligent reasoning leverages on algorithms conditioned in some way by the status of the
human. Once the multimodal perception is explored, a deep adaptive cooperative semantic
understanding mechanism is needed based on ontology.
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5) Deep understanding of natural language and personalised interaction. In the personalised
interaction, the intelligent robot can adjust the interaction method and strategize neatly
according to the scene, interaction object, interaction state, etc.

6) Personalised interaction to cope with biases of the human- a new form of training. Once the
assistantis “profiled” on the assisted human, typical human biases in specific conditions should
be detected and known by the Assistant that can avoid the error, after which the human will
need to be able to understand the status of the machine and cope with its biases.

7) Effective computing. By using the abilities of perception, deduction, and prediction, intelligent
robots or computers are involved in a large number of tasks in our daily life. The key issue is
that these robots are not similar to humans from the perspective of emotions. It is well known
that emotion is a necessary factor for communication and interaction between humans.
Therefore, people naturally expect intelligent robots to have EQ along with IQ. Can it be an
enabler for an effective man-machine teaming?

8) Integration of human and machine. As the level of intelligence grows and the human overlies
on it more and more, the task allocation and the workload have to be further investigated.

Regarding the XAl
Challenges opportunities

The market of XAl is expected to grow with 20.9% in the next five years representing a great

opportunity.
6’ - - - 162
yVs »

20.9%

51
The global explainable Al
market s expected 10 be
worth USD 162 billion by
2028, wowing at a CAGR of
209% dunng the forecast i Scoe rasoe
pRse wNofh Amarca WEUDPS = ASRPICN0 s MOGRERR ANcs  BLatnAmemca

Figure 34 Explainable Al market forecast3

(Saeed, W. et al., 2023) discusses the challenges and research directions of XAl in the deployment
phase (see Figure 16).

3 https://www.marketsandmarkets.com/Market-Reports/explainable-ai-market-47650132.html?gad_source=1&gclid=CjwKCAIiA-
bmsBhAGEiwAoaQNmMgFQPK_X2bqg34rchi3QUxg8zNUiitkOfaekTC7_HUxjvO7M32XaevxoCNFIQAvD_BwE
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Knowledge-Bi
Human-machine teaming
XAI and security
XAl and reinforcement learning
XAI and safety

Machine-to-machine explanation

Challenges and Research
Directions of XAI in the XAI and privacy
Deployment Phase

Explainable Al planning (XAIP)

Explainable recommendation

Explainable agency and explainable
embodied agents

XATI as a service

Improving explanations with ontologies

Figure 35: Challenges and Research Directions of XAl in Deployment Phase (Saeed, W. et al.,, 2023)
4.6.3 Conclusion

The present work on Human Assistant has provided the most recent current developments on Human
Assistant giving some elements of current research on key aspects of Human Assistant: Man-Machine
interaction, Human Ai Teaming, Trust, Explainability, Task Allocation and Performance metrics. Human
assistant is a topic transversal to all domains and the need of a unique theoretical framework for
taxonomy, research proper classification and benchmark is needed.

For these purposes, the framework proposed in Industry 4.0 and 5.0 could be adopted creating a great
potential of cross fertilisation among the different sectors once they are speaking the same language.
For example, during such study we found that task allocation problems are faced according to certain
paradigms when talking of digital Agents and very extended studies in the robot domain (Multi Robot
Task Allocation). Many aspects of MRTA may apply to digital agents.

Furthermore, the metrics to assess the performance of an Assistant could be a starting point to set up
a link with the SESAR framework expected to consider in the next future the value of the assistant
ecosystem.

Accordingly, the present work provides a very brief overview of the huge world behind the concept of
Human Assistant not aiming at being exhaustive but instead aiming at triggering useful questions on
the basis of the opportunities that Al Assistants can rise and the related challenges.
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5 Opportunities and Challenges

5.1 Workshop

In Work Package 2 (WP 2.3), our primary objective was to analyse the impact of automated systems
and Al on aviation. We focused on identifying key opportunities and challenges, with a particular
emphasis on the human factor and safety concerns. To accomplish this goal, a dedicated workshop
session was organised to collect and discuss "Opportunities and Challenges." The virtual event was
held on January 29th, 2024, and utilised the "Miro interactive whiteboard" to facilitate active
participation and feedback. The workshop was attended by 11 participants from the entire HUCAN
consortium, including partners who were not involved in WP 2. The session spanned from 09:00 to
14:00 and consisted of three parts.

HUCAN - WP 2 Workshop Rule and Info e

"WP2.3 Opportunities and challenges identification" 1. All discussion are routed through the moderator [o==]
+ to share your thought or idea please "Raise Hand"

Agenda 29.01.2024 « if you have a counter argument you can use "blitz emoji* %

« if you have a supporting argument you can use "start emoji’
9:00-10:00 Introduction (1 hr)

2. You can follow the moderator by clicking on the "ID cycle” on the
10:00-12:30 Session 1: Opportunities for Higher Automation (2.5 hrs) top-right corner ]
200 @ -
12:30-13:30 Lunch Break
3. Each section is allocated an estimated time. To cover all topics

13:30 - 14:30 Session 2: Challenges of Higher Automation (1hrs) we will follow the time schedule
14:30- 14:45 Coffee Break 4. Make yourself familiar with the Goals of the workshop.
« find the opportunities and challanges
14:45 - 15:45 Session 3: Takeaways and Conclusion (1hrs) + The outcome of the workhop will become input to the D2.1

Goals of the workshop

1. The main goal of the workshop is to identify opportunities and challenges associated
with higher automation and artificial intelligence-based systems in air traffic control
a. linked to "WP2.3 Opportunities and challenges identification”
2. The input for the workshop is the draft D2.1 (Advanced Automation in Aviatio) which
contains the following activities.
a. WP2.1 Advanced automation and artificial intelligence in transport modes
b. WP2.2 Advanced automation in aviation: current developments and future
scenarios
3. Opportunities mean we are talking about identifying gaps in the current system and
also areas that are lacking in the current processes.
a. main point is to see where automation and Al can help improve the working
4. Challenges are associated with the opportunities defined in section 1.
a. identify challenges that you see in achieveing the stated opportunity
b. rules are the same:- if you have a comment please "raise hand"

Figure 35 WP 2 workshop schedule and goals

To generate ideas and gather thoughts from a diverse group of experts, we chose the brainstorming
workshop method. To keep the discussion organised and extract the most information, we
communicated a set of rules to all participants. These rules included registering and expressing
opinions in favour or against a point. We also moderated two sessions to ensure that each point was
adequately understood and discussed. Additionally, we established general rules such as "the more
the better," "there is no such thing as a bad idea," and "think in terms of: what if" for open discussion.
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Throughout the workshop, participants were actively involved in a discussion surrounding the
complexities and venues of automation in aviation. To facilitate an effective discussion of broader
views, the workshop was structured into four distinct sessions, each of which had a specific purpose.

Opportunities (1/4)

Figure 36 Opportunities (1/4) collected and discussed during the HUCAN WP 2 workshop

The first session, which was the introduction and idea generation session, set the tone for the rest of
the workshop. In the introduction, participants became familiar with the workshop's objectives and
principles, and the ground rules were established to ensure an inclusive discussion. After that, the
remainder of the time was spent gathering perspectives about the current state of automation, the
identification of gaps and the identification of future opportunities, allowing everyone to align to the
main topic and focus on assessing the current landscape and identifying areas for improvement. The
opportunities identified in this session laid the groundwork for the subsequent sessions.
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Figure 37 Opportunities (2/4) collected and discussed during the HUCAN WP 2 workshop

Opportunities 3/4

Figure 38 Opportunities (3/4) collected and discussed during the HUCAN WP 2 workshop

During the second session of the workshop, participants took part in the opportunity exploration and
evaluation phase. Here, they examined the opportunities that were discovered in the previous session.
Through detailed analysis and in-depth discussions, the participants were able to gain a comprehensive
understanding of each prospect. They shared valuable feedback and insights, which helped to identify
any potential opportunities. The discussions were lively and engaging, with participants critically
examining each idea and exploring all possible angles. By working together, they were able to
collectively assess the feasibility and potential impact of each opportunity.
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Opportunities 4/4

Figure 39 Opportunities (4/4) collected and discussed during the HUCAN WP 2 workshop

Towards the end of the session, participants were given a voting scale which included "Do it Now", "Do
it Next", "Do it if we have time" and "Don't Do it". This scale represented the priority in implementing
each opportunity. They used this voting scale to assign priority to each opportunity. At the end of this
session, the total votes were counted and the opportunities that were deemed "Do it Now" were
chosen for the next round.

HIGH VALUE

Do It Next
R )
; .
d ?
Da it When have Time Don't Do it

LOW VALUE

Figure 40 Classification of opportunities into four quadrants according to importance generated during the
HUCAN WP 2 workshop

During the third session of the workshop, participants transitioned from exploring ideas to creating
actionable plans. They shifted their focus towards a more practical approach, identifying the
opportunities that were most urgent and needed immediate attention. With a keen eye for detail, they
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carefully scrutinised each opportunity, looking for any potential roadblocks or challenges that could
hinder their progress. Through candid and strategic deliberation, participants proactively sought to
mitigate risks and devise actionable strategies for implementation. They engaged in open and honest
discourse, sharing their insights and perspectives to ensure that the best ideas were brought to the
table. By working collaboratively, they were able to overcome obstacles and devise practical solutions
that could be implemented effectively.

Challenges (1/2)

Figure 41 Collection of challenges (1/2) associated with opportunities discussed during the HUCAN WP 2
workshop
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Challenges (2/2)

Figure 42 Collection of challenges (2/2) associated with opportunities discussed during the HUCAN WP 2
workshop

The last session was dedicated to a final discussion about synthesising the main takeaways and
determining what steps to take next for WP 2. During the workshop, participants identified 11
opportunities and examined each in detail. Five of those 11 opportunities were shortlisted, and
potential challenges were identified. Overall, the workshop was a great success as it generated intense
and productive discussions in a concise amount of time. As a result, a collection of opportunities and
challenges were gathered, focusing on higher automation in aviation. For a detailed description of each
opportunity and challenges discussed during the workshop, please refer to the following two
subsections.

5.2 Opportunities and Challenges

Al offers opportunities through

1. Its possibilities to quickly process large amounts of data from different sources, even if the
data is conflicting, incomplete or inaccurate;

2. lts characteristics to learn, adapt and predict;

3. lts ability to flexibly support tasks of human operators through building task models and
profiling;

4. Finding new solutions to issues that cannot be solved with conventional means, like conflict
detection and solutions to “larger-than-aviation” problems (e.g. general world-wide
sustainability).

The following subsections discuss opportunities and corresponding challenges for the use of Al in
aviation, which were collected during the workshop.

5.2.1 Efficient data processing
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e Opportunities

Al can process complex, non-accurate information. Most Al systems are capable of processing large
amounts of data; even if the data originates from different sources and contains conflicting
information, it can still be used by the algorithms. Just as well, Al is capable of reasoning with
incomplete data or with information that is processed and provided as an estimate, thus containing
uncertainty.

This efficient data processing is a major benefit of the use of Al/AA in complex decision-making tasks.
e Challenges

The reasoning process and the solution presented to the human operator must be clear, so that a
decision is made based on well-motivated grounds. The information presented must be meaningful to
the human decision-maker so as to solve business problems and provide value in the chain of collecting
data, information processing and decision-making.

The technical challenge of the use of Al is that it needs to be decided what Al techniques to use for
specific situations in which data/information needs to be processed. Information from different
sources that conflicts, uncertain information, incomplete information or information that contains
estimates requires careful analysis before a decision is taken on what Al technique to use.

5.2.2 Continuous learning and adaptation (self-learning systems)

e Opportunities

Self-learning systems offer the possibility to adapt continuously while in operation. This can be a
powerful feature in complex environments in situations where errors have been introduced in the
process. The system will thus autonomously correct errors.

The system is also flexible in learning new things from entering into new operational modes and new
operational environments. Just as well, new systems can be introduced in the aircraft or on the ground,
where, through a self-learning adaptive process, the newly introduced elements will be taken into
account without the need to change the software that processes the new information.

The possibility to expand the Al/AA-model offers a robust environment. Instead of off-line learning and
the need to install new systems with every system upgrade or new operational environment, the
system now is capable of adapting.

e Challenges

An unsupervised learning process can be applied without risk for non-critical system elements,
however, for decisions that impact safety, it must be ensured that the newly adapted system will not
cause any harm.

Learning during the process of operation implies that all aircraft will learn differently and will have
other systems as they have been operating in other environments.

One major challenge is that a mechanism must be in place to learn. As structural changes to e.g. the
airspace are implemented, the trained capabilities of a support system become obsolete. After such
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changes, new training data must first be collected, processed, and thus taught to a system in order to
be able to provide support in the new environment. This extension to the system does not have an
operational function in the existing software but is an internal processing system that is modifying
answers of systems that have been approved in the past already. This kind of software is new to
aviation, where currently all software must be in direct function to an operational process.

Procedures must be in place that ensure the Al is learning within well-defined boundaries and creates
safe and acceptable solutions. The self-learning system must guarantee the learning process to “move”
towards operationally acceptable solutions and should not get stuck into some loop of non-viable
solutions.

5.2.3 Personalised assistants

e Opportunities

Each individual will have a dedicated way of working, even though many of the tasks in aviation have
been standardised. With increasingly complex work, a personal touch will be given to each task.
Through personalised profiling, the user can be assisted by Al systems to perform their tasks without
having to slightly divert from their preferred way of doing so. Central to this adaptation is the
understanding that the ideal outcome varies for each participant involved in the human-Al
collaboration.

Through task models the Al system can propose priorities to the human operator and assist in
scheduling tasks.

Another opportunity of the use of Al in task modelling is that the work can be checked and small
personal mistakes or errors can be eliminated from the process as quickly as possible.

e Challenges

The construction of task models for human operators is a complex process. The task must be detailed
at the correct level and the relation between tasks must be carefully laid down, allowing an
understanding of the consequences of carrying out (part of) a task later in the process or reversing the
order of tasks. Pre- and postconditions must be clear and the context of the task must be considered.

User profiling requires a longer assessment of the user, who may even change their behaviour in the
course of the process. The development of a personalised system could lead to ethical and legal issues.

To assist the user, based on their profile, a sequence of tasks can be offered, that proposes the
preferred task to be performed, where care must be taken that its priority must be in line with the
required objective of the work of the human.

Small errors must be detected before they become serious, however these should not be presented
as annoying. The human operator might have left the task out at the moment to give personal
preferences to a task or consider the task to be of lower priority at the moment.

5.2.4 Long-term adaptation between humans and Al

e Opportunity

Page | 110
© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by
the European Union



ADVANCED AUTOMATION IN AVIATION
Edition 01.00

sesar’

JOINT UNDERTAKING

As the role of the human is continuously changing while Al technology continues to advance, so too
must the relationship between humans and their artificially intelligent counterparts. With growing
experience, the human will consider and perform certain tasks differently than when operating as a
novice. Just as well, the tasks may change over time with new systems and technology, new procedures
or a new operational concept and the Al support system can grow with its human operator. Particular
attention is given to the design of the human-machine interface (HMI) to facilitate seamless
collaboration in Al-assisted decision-making.

In cooperating with Al systems, humans will perceive the role of both human and machine as changing
over time. The continuous support and experience gained from working with an Al system will allow
the human to consider the system as more reliable and trustworthy as long as the support given is
correct. The human might even consider giving certain tasks to the system that were initially
performed manually leading to enhanced productivity, efficiency, and innovation.

This could include providing opportunities for skill development and knowledge acquisition for human
operators, as well as enabling Al systems to continually refine their algorithms and adapt to new
challenges.

e Challenges

To allow cooperation between human and machine, an intuitive and clear user interface is required
that enables the full potential of the partnership. The interface must be able to address complex
problems in aviation but also in human-machine interaction.

The relation between the human and the Al system must be carefully mapped to allow such complex
cooperation. Humans may even expect a changing role from advanced automation when they learn to
master their tasks better.

5.2.5 Support in crisis management

e Opportunities

In situations of crisis-management, Al can support the human operator by taking over the standard
tasks that an operator has, but which are now given less priority because of the crisis.

With good prediction systems, crisis situations can be discovered beforehand. Crises require
preparedness at any moment and the sooner the situation is recognised, the better-prepared decisions
can be taken. Al can especially contribute to surveillance and mapping all aspects of the crisis,
providing situational awareness to responders.

e Challenges

Find a new division of tasks between the human and the system, in accordance with the crisis situation
at hand and acceptable workload for the human.

Preparedness for crisis situations asks for a systematic approach towards crisis types and preparedness
in different responses. Timing is crucial.

5.2.6 Enhanced problem-solving
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e Opportunities

Al offers enhanced problem-solving for issues that at the moment cannot be solved, so that more
complex operations become possible, e.g. with the use of drones.

Al/AA offers new techniques beyond current problem-solving algorithms that are capable of extremely
fast processing of data and information. The logic processes behind the algorithms provide a kind of
intelligence that enhances traditional algorithms. This feature allows new operational problems to be
solved, like conflict detection and planning of large numbers of drones in complex (urban)
environments.

In many complex situations, the objectives of solving an issue are not all in line with each other,
requiring a multi-objective problem-solving technique that considers optimal solutions instead of
always finding the one “best” solution. It may even be that the solution proposed does not rank highest
in the list of optimum solutions, but provides acceptable and safe solutions in the given time for finding
a solution.

A special enhanced problem-solving feature is the prediction that Al systems can deal with the
uncertainty of future situations. This may aid for example the above-mentioned conflict detection and
just as well offers new opportunities in special operational situations. Al/AA offers prediction
techniques that may enhance the safety of the whole aviation system.

e Challenges

Instead of considering the safety of an algorithm, in a complex environment, the safety of the objective
function should be considered. The system will propose solutions, within limited time, that are
considered “optimum” solutions to new complex challenges.

In enhanced problem-solving, the Al system will need to deal with multiple objectives to find a solution.
These objectives may, at some operational level, even be conflicting with each other. In finding an
optimum, it may be possible to end the process of finding an even better solution through presenting
a local optimum. The question becomes who defines the objectives, especially when they evolve over
time and include new objectives. Further, who decides the relative importance of each of the
objectives?

Dealing with uncertainty, especially in predictive behaviour is a characteristic that requires reasoning
with uncertainty. This is a dedicated field in Al with new challenges such as what would be the
uncertainty in situations where decisions are taken, based on this prediction?

5.2.7 Dynamic Airspace Reconfiguration

e Opportunities

Al can support the Dynamic Airspace Reconfiguration (DAR) process by adjusting U-space airspace
safely and efficiently to allow manned aviation to pass through while still maintaining an optimum
volume of airspace to accommodate unmanned traffic. The opportunities mentioned in this section
concern human support in the reconfiguration process.
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The first opportunity is to provide the human decision-maker (e.g. the ATCO or a dedicated human
broker) with options to support the reconfiguration process. For each possible option a motivation can
be provided, e.g. in terms of timing, volume of airspace required and the number of manned and
unmanned vehicles that can be accommodated in the solution.

Another opportunity for an Al system is to provide the means to negotiate between the different types
of aircraft that plan to use the same airspace. Negotiation is an iterative process requiring negotiation
parties to work on proposals and counter-proposals to reach a solution that is agreeable for both. This
often means one might have to extend some concession to get favour in return.

e Challenges

Explanation of reasoning in optimisation problems is a challenging task. The different objectives of the
optimization problem can be given a (numerical) score and then explained to the human operator,
though this is usually not according to the terminology he would use. Furthermore, it will be difficult
to make a good assessment of the value of each of the objectives and compare these with the values
of others.

Negotiation is a separate Al topic that still requires more research. Negotiation takes place in a larger
context, possibly extending the scope of the actual topic of the negotiation. Just as well, the process
requires more than one instance over time. An issue with a solution that was considered yesterday to
be unfavourable for one user might be solved differently to give that user the benefit some other time.

5.2.8 Al and the greening of aviation

e Opportunities

Reducing climate-damaging influences, such as emissions of CO2, NOy, water vapour and condensation
trails, is a challenge also for air traffic and Al-based innovations can help to find solutions that meet
sustainable goals. The analysis of collected data regarding emissions could be translated into patterns
by machine learning and thus into more accurate estimation of environmental impact which is
essential for generating green trajectories.

e Challenges

The generation of green trajectories is a complex computational problem that needs to consider a
large number of parameters, including the still unpredictable weather patterns. The availability of
information is a challenge. Weather phenomena are diverse in terms of complexity, type, duration,
and variability and can occur very differently locally. In order to integrate these into an Al system,
extensive training data is required, which must cover a wide range of weather events as well as traffic
situations.

Since Al itself is part of the solution, it should not be neglected that the use of Al also consumes
resources for computing power, storage and cooling. Renewable energy can reduce the environmental
burden, though measuring the environmental impact of Al in computing and its applications is
currently limited by the lack of recognized standards, consistent indicators and metrics.
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5.2.9 Conclusion

The following table summarises the above-mentioned opportunities and challenges.

Table 8 Summary of Opportunities and Challenges

Efficient data processing

Opportunity Challenge Issue
§Support human decision | Provide information in | Human operators will not be
gmaking meaningful elements to | able to understand the AI
: support the chain from data to | reasoning process if this
information to decision contains merely figures to
compare :

Reasoning with data from | Find the right Al-technique to
different sources, incomplete | process the data
i data, uncertain data or

estimates
Continuous learning and adaptation
Opportunity Challenge Issue
Correct error Do not get stuck in loops Before errors can be corrected,
: they will be made. This can be a
safety issue :
Adapt to new environment Ensure viable and safe solutions | In many situations, the system
: at all times will not be allowed to learn :
through making mistakes :
Adapt to new systems (1) Ensure viable and safe solutions | In many situations, the system
: at all times will not be allowed to learn :
through making mistakes '
Adapt to new systems (2) Operationally  non-functional
5 software must be installed
Adapt to new systems (3) All aircraft will have their “own”
: system different from others
Personalised assistant
Opportunity Challenge Issue
: Support human tasks (1) Build human task models
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Support human tasks (2)

advanced
understand

Profiling requires
algorithms  to
human behaviour

: Support human tasks (3)

Profiling could lead to ethical
and legal issues

Prioritise human tasks

Understand links between tasks
in task models

i Eliminate human errors as early
i as possible

Understand links and
consequences in task models

Long term adaptation between humans and Al

Opportunity

Challenge

Issue

Support  humans in an
environment that changes over
: time

Mapping of human-machine
cooperation necessary

Changing relationship between
;humans and their Al support
: systems

Design the human-machine
interface carefully so that an
intuitive cooperation comes to
place

With learning to control their
tasks, humans will expect a
changing role from advanced :
automation 5

: Human  skill  development
: through cooperation with Al
: systems

Mapping of human-machine
cooperation necessary

Support in crisis management

: Opportunity Challenge Issue
: Support  human in crisis | Find a good division of tasks
situations by taking over part of | between human and Al
gthe routine job according to the situation at
: hand an acceptable workload
for the human
Support in surveillance and | Timing and being prepared for
providing a quick overview of | crisis situations asks for a
Ethe crisis situation systematic approach towards
: crisis types
Enhanced problem solving
Opportunity Challenge Issue
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Solve complex problems (1)

Find multi-objective solutions

Solve complex problems (2)

Dealing with local optimum and

stop searching for “better”
solutions
: Multi-objective optimisation (1) | How to deal with new

objectives. Who defines them?

: Multi-objective optimisation (2)

Who decides the priority of
each objective

: Dealing

: process (2)

context of a larger environment

Al and the greening of aviation

with uncertainty | How to make decisions on | Processing of uncertain

(providing e.g. predictions) uncertain information information :
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6 Summary and Conclusion

6.1 Summary

The aim of this document, "Advanced Automation in Aviation", is to provide an up-to-date overview
of the latest developments and research directions in the use of advanced automation in aviation. The
focus is on the current state of research and the application of advanced automation techniques and
Al in aviation. Current developments and future scenarios of automated systems and Al applications
were examined and the associated opportunities, challenges, and requirements were described.

First, the document discusses the level of automation taxonomies, which is important for the
categorisation of automated systems. Taxonomies from SESAR and EASA, which are relevant in
aviation, are described and a recommendation for the standardisation of this taxonomy for different
institutions is proposed. The research criteria for the following literature review are compiled. In the
next step, the various Al methods available are discussed and the different categorisations are
explained. This will also illustrate the range and diversity of Al methods that could be applied in
aviation.

Next is a comprehensive literature review of automation advances for various modes of
transportation, including air, rail, road, and maritime. After a discussion of general trends in mobility,
specific technical trends in each mode of transportation are discussed in detail. One focus is on support
systems in the areas of ATM and ATC. In summary, the goals of safety, holism, transversality, human-
centeredness and human well-being are at the forefront of automation.

Advanced automation and the use of Al in aviation focus on the two main topics of airspace
optimization and enhanced human support in conjunction with higher automation. A comprehensive
literature review of the current trends and advances in ATM and ATC automation, directly related to
the SESAR flagship "Capacity-on-Demand and Dynamic Airspace" and the use cases defined in the
HUCAN project, is provided based on 13 selected technical articles. The focus here is on dynamic
airspace configuration, human-autonomy teaming and the development of new decision support
systems.

The document presents a detailed literature survey on current developments in the field of human
assistants and some elements of current research on key aspects of these support systems. These
include human-machine interaction, again human-Al teaming, trust, explainability, task assignment,
and performance metrics. Human assistants thus represent a cross-cutting topic for all areas for which
a theoretical framework for taxonomy, research, classification, and benchmarking is required. The
functioning of the human assistant system loaded with high automation requires human trust in the
system. A detailed discussion covers various traits of establishing trust in the automation systems.
Additional emphasis was put on the effect of Al systems and their ability to generate human-
understandable explanations (overview of the field of explainable Al and how it could be established).

Another important objective in this work package was to analyse the impact of automated systems
and Al on aviation. The project focused on identifying the key opportunities and challenges, with a
particular focus on the human factor and safety issues. To achieve this goal, a workshop was organised
to collect and discuss "opportunities and challenges".
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In the workshop, ten explicit opportunities and five challenges were identified by the participants in
connection with the smart automation of functions and processes in aviation. The opportunities
include, for example, more efficient data processing, systems that learn during operations and can
adapt to the behaviour of air traffic controllers, thus enabling improved problem-solving behaviour
and even crisis management in the long term, and the establishment of dynamic airspace adaptation
for different air traffic carriers.

The challenges identified include weather phenomena, for example, which pose particular challenges
for self-learning systems due to their high meteorological and traffic-related parameter variability.
Efficient data processing also poses a challenge, as high data quality is required. If a support system is
personalised, a fair balance between automation and human involvement must be ensured in addition
to legal aspects. The use of Al represents a new way of recognising and combating cyber attacks.
However, Al also offers new opportunities to carry out these attacks and thus jeopardise air traffic
safety.

Automated systems that can analyse complex situations, learn and thus make decisions in new
situations will change aviation forever in the near future. These systems show amazing performance
in cognitive tasks and, through their integration, promise a higher level of automation in both air traffic
management (ATM) and air traffic control (ATC) in order to achieve a higher level of safety, efficiency
and reliability. This document provides an overview of ideas and current research on automation in
aviation. Despite the opportunities presented by automated continuous learning and adaptation,
challenges remain on both the technical and human side that need to be addressed by all stakeholders
in order to successfully establish advanced automation.

6.2 Conclusion

One of the main goals of this WP is to collect opportunities and challenges regarding the application
of high automation and Al in ATM systems. Another main gap was to suggest a unified LOAT taxonomy.
The following are major conclusions from this document:

1. HUCAN high automation approach targets two main aspects of Human-Al teaming (HAT),
cooperation with a directive interaction and collaboration with a focus on joint problem-
solving and shared awareness.

2. To support human decision-making, information must be provided in a meaningful way to
support data acquisition to decision making. To make Al decisions understandable to humans,
emphasis should be put on the explainability of Al decisions.

3. Furthermore, automation should be able to identify possible errors (even human errors) to
adapt to evolving situations.

4. Adaptability to high automation solutions to new environments and systems is essential for
viable and safe solutions.

5. There is a clear opportunity for Al power to model complex problems with the ability to learn
from multi-objective targets. However, special care should be taken in defining learning
objectives for the Al algorithms, to have a holistic coverage of the problem.
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List of acronyms

Table 9 List of acronyms

Acronym Description

AA Advanced Automation

ATC Air Traffic Control

Al Artificial Intelligence

AMAN Arrival Manager

ANSP Air Navigation Service Provider

ARGOS ATC Real Ground-breaking Operational System
ATCO Air Traffic Controllers

ATM Air Traffic Management

CTA Cognitive Task Analysis

CWA Cognitive Work Analysis

DA Digital Assistant

DMAN Departure Manager

EASA European Union Aviation Safety Agency

EEA European Economic Area

eVTOL electric vertical take-off and landing

EU European Union

HAT Human Autonomy Teaming

HITL . Human-in-the-Loop

HMI Human Machine Interface

ICAO International Civil Aviation Organization

KPI Key Performance Indicator

LOAT level of automation taxonomy

ML Machine Learning

KPI key performance indicator

SESAR Single European Sky ATM Research Programme
SJU SESAR Joint Undertaking (Agency of the European

i Commission)
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SRIA Strategic Research and Innovation Agenda
TMA : Terminal Manoeuvring Area
UAM : Urban Air Mobility
UAV Unmanned Aerial Vehicles
WP Work Package
XAl . Explainable Al
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