
 

 

 

 

Abstract  

The technological landscape has undergone a significant transformation, with the proliferation of 
automated systems capable of analysing complex situations, learning, and making intelligent decisions. 
Driven by advancements in Artificial Intelligence (AI) and Machine Learning (ML), these systems have 
demonstrated their efficacy in cognitive tasks once thought to be exclusive to humans. In the aviation 
sector, integrating higher levels of automation and AI into Air Traffic Management (ATM) operations 
promises improved safety, efficiency, and reliability. This document provides a comprehensive review 
of advanced automation in the EU Digital Strategy for Mobility, particularly focusing on aviation and 
ATM. Despite opportunities such as continuous learning and adaptation, challenges like validating and 
certifying systems, ensuring transparency, and addressing human-centric design concerns persist. 
Maintaining a human-centric approach, as advocated by the EASA AI Roadmap, is crucial for ensuring 
that AI enhances human capabilities rather than replaces them entirely. 
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1 Introduction 

1.1 Purposes of the document 

This document covers deliverables D2.1 (Advanced automation in aviation: current and future 
developments, opportunities and challenges) of the HUCAN project. D2.1 reflects on the output of 
Task 2.1 (Advanced automation and artificial intelligence in transport modes), Task 2.2 (Advanced 
automation in aviation: current developments and future scenarios) and Task 2.3 (Opportunities and 
Challenges identification). This document will serve as one of the inputs to Task 4.1 (Case studies 
introduction: level of automation analysis and certification issues). 

This document covers the OBJ1 - Landscape of advanced automation within the EU Digital Strategy for 
Mobility and Air Traffic Management (ATM) of the HUCAN project, by providing following,  

● review and consolidation the levels of automation taxonomy  
● a comprehensive scientific review of the state-of-the-art of advanced automation in transport 

and Aviation, 
● discussed opportunities to apply advanced automation and Artificial Intelligence (AI) in ATM 
● identify challenges in achieving advanced automation and impact of AI technology  

1.2 Intended readership 

The intended audience for this document is: 

● Single European Sky ATM Research Programme (SESAR) research networks  
○ particularly, projects under the SESAR Joint Undertaking (SJU) flag “capacity-on-

demand and dynamic airspace” 
● EU and national representative regulatory authorities and policymakers 
● Air Navigation Service Providers (ANSPs) and industrial stakeholders 
● academic community 

1.3 Structure of the document 

The report is structured into five chapters.  

The first chapter provides an overview and explains the structure of the document. 

Chapter 2 provides a discussion of the level of automation, which is important for categorising 
automation systems. It discusses various taxonomies available in various fields and, in particular, 
aviation, such as SESAR and European Union Aviation Safety Agency (EASA). It then provides a 
taxonomy that is used in this document and a recommendation to streamline it across different 
entities. After that, this chapter lists the research criteria used to perform the literature survey, which 
includes choices made in including and excluding certain areas. Lastly, the chapter discusses various AI 
methods available and explains different categorizations. It further illustrates the range and variety of 
AI methods. 
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Chapter 3 provides a thorough literature survey of the advancement in different transport modes, 
including air transport, rail transport, road transport, and maritime transport. The chapter starts with 
a discussion of general trends in mobility and then discusses specific trends related to each mode of 
transport in detail. 

Chapter 4 focuses on two main topics related to aviation: airspace optimization and human assistance 
in connection with higher automation. The chapter provides a comprehensive literature survey of the 
current trends and advancements in these topics, which directly relate to the SESAR flagship "capacity-
on-demand and dynamic airspace" and the use cases defined in the HUCAN project. Some of the 
highlights of this chapter include a discussion about technical systems, eXplainable AI and past projects 
in the areas. 

Chapter 5 discusses future opportunities for high aviation automation and its associated challenges. It 
presents the results of the workshop on "Opportunities and Challenges" organised as part of Work 
Package 2. 

Finally, Chapter 6 concludes the document with a summary of the main points covered in the preceding 
chapters.  

1.4 Glossary of terms 

Table 1 Glossary of terms 

Term Definition 
Source of the 

definition 

Advance Automation It refers to the use of a system that, under certain 
conditions, operates without direct human 
intervention. 

ISO/IEC 
22989:2022(en), 3.1.7 

Air Traffic All aircraft in flight or operating on the manoeuvring 
area of an aerodrome. 

ICAO Annex11 - ATS 

Artificial Intelligence “The branch of computer science that deals with the 
development of computer systems capable of 
performing tasks that typically require human 
intelligence. These tasks include learning, reasoning, 
problem-solving, perception, natural language 
understanding, and interaction with the 
environment."  

“Technology that can, for a given set of human-
defined objectives, generate outputs such as content, 
predictions, recommendations, or decisions 
influencing the environments they interact with”. 

[Russell 2010] 

 

 

 

EASA AI Roadmap 2.0 

Air Traffic Management The dynamic, integrated management of air traffic 
and airspace including air traffic services, airspace 
management and air traffic flow management - safely, 

ICAO 4444 - ATM 
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economically and sufficiently - through the provision 
of facilities and seamless services in collaboration with 
all parties and involving airborne and ground-based 
functions. 

High Automation Automation supports the human operator in 
information acquisition and exchange, information 
analysis, action section and action implementation for 
all tasks/functions. Automation can initiate actions for 
most tasks. Adaptable/adaptive automation concepts 
support optimal socio-technical system performance. 

SRIA 2020 

Explainable AI (XAI) Explainable AI refers to the capability of AI systems to 
provide understandable explanations of their 
decisions and actions to human users. It aims to 
enhance transparency, trust, and accountability in AI 
systems by making their internal mechanisms and 
reasoning processes interpretable and 
comprehensible to users. XAI techniques enable users 
to understand how AI systems arrive at their outputs, 
which is crucial for building trust, verifying 
correctness, detecting biases, and identifying 
potential errors or limitations in AI-driven decisions. 

Adadi, A., & Berrada, 
M. (2018). Peeking 
inside the black-box: A 
survey on explainable 
artificial intelligence 
(XAI) 

 

Digital Assistant A concept that includes Artificial Intelligence, and goes 
beyond tools based on machine learning algorithms 
that provide data and information to a human 
operator. 
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2 Scope and methodology 

Over the past decade, the technology landscape has undergone a remarkable transformation, paving 
the way for the expanded role of automation. One of the most significant developments has been the 
evolution of these systems' capabilities to analyse complex situations, learn from them, and make 
intelligent decisions autonomously. This progression has exceeded expectations, as high automation 
systems have demonstrated proficiency in cognitive tasks previously believed to be exclusive to human 
capabilities. The transformation can largely be attributed to recent advancements in Artificial 
Intelligence and Machine Learning technologies, evidenced by applications like ChatGPT, AlphaGo, and 
AlphaFold, to name a few. 

The field of ATM has seen rapid changes and growth, with increased demand and the emergence of 
new players such as Unmanned Aerial Vehicles (UAVs). To address these challenges and meet future 
needs, it is expected that the integration of higher levels of automation in ATM systems will be critical. 
Strategic Research and Innovation Agenda (SRIA) defines high automation as  

“Automation supports the human operator in information acquisition and 
exchange, information analysis, action section and action implementation for all 
tasks/functions. Automation can initiate actions for most tasks. 
Adaptable/adaptive automation concepts support optimal socio-technical system 
performance.” (SRIA 2020) 

By leveraging highly automated systems, the ATM industry can potentially transform how it operates 
with improvements in safety, efficiency, and reliability. Automated systems can analyse large amounts 
of data from various sources, including radar, weather sensors, and flight plans, to provide controllers 
with real-time insights and decision support. With the use of machine learning algorithms, these 
systems can adapt to changing conditions and optimise air traffic flow dynamically, leading to 
smoother operations and fewer delays. Additionally, this technology can assist air traffic controllers 
and pilots by reducing their workload and alleviating stress associated with their responsibilities. 
Furthermore, increasing the levels of automation in ATM systems can augment human capabilities 
rather than replace them entirely, which is clearly expressed in EASA AI Roadmap (EASA, 2023) as a 
human-centric approach. 

Despite the clear benefits and progress made in automation technology, there remain significant 
challenges surrounding the integration of higher levels of automation and artificial intelligence in ATM 
operations. The SIRA for Digital European Sky, issued by SJU, highlights numerous critical issues and 
obstacles. SIRA emphasises the need to concentrate on developing new methodologies for validating 
and certifying advanced automation that ensure transparency, legal compliance, robustness, and 
stability under all conditions while taking into account a future ATM environment that relies on 
multiple AI-based systems of systems, with a focus on human-centred design. 

Aligned with the project's objectives, this research endeavours to facilitate the utilisation of novel 
systems that offer discernible benefits in terms of effectiveness and efficiency. The primary focus of 
this document is to investigate the opportunities and challenges associated with advanced automation 
in the field of transportation, particularly within aviation. These challenges encompass concerns 
related to human-machine interactions and the organisational impact of automation (Lim (2023) and 
Fortunati & Edwards (2022)). Additionally, paramount to the success of these advanced systems is the 
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assurance of security and resilience against cyber threats (Lee (2023)). Striking a delicate balance 
between automation and human involvement, especially in decision-making processes, poses a 
multifaceted challenge (Samad (2023)). The objective of this document is therefore to provide a 
thorough overview of the concrete needs that exist in the transport sector, in particular in the aviation 
sector, for the implementation of advanced automation. The aim is to gain a contextual understanding 
of the requirements for standardising regulatory frameworks and adapting certification methods to 
ensure the safe and responsible use of advanced automation technologies. 

2.1 Level of Automation 

"Automation" is generally described as the use of control systems and information technology to 
minimise the need for human input, particularly in repetitive tasks. Accordingly, "Advanced 
Automation" (AA) (ISO/IEC 22989, 2022) refers to the use of a system that, under certain conditions, 
operates without direct human intervention. These definitions highlight the evolution and 
sophistication of technological systems in reducing human involvement in certain processes, from 
basic automation for repetitive tasks to more advanced automated systems capable of operating 
independently. 

The SESAR research and innovation initiative has been instrumental in supporting air traffic controllers 
and reducing their workload to enhance the efficiency of the Air Traffic Management (ATM) system. 
While there is a shared understanding that the future of ATM will involve higher levels of automation, 
a collective vision is imperative to shape a research roadmap detailing specific actions. In line with this, 
the most recent directives (SESAR, 2020; SESAR, 2023(a); SESAR, 2023(b)) emphasise a comprehensive 
examination of automation characteristics and the establishment of conditions to facilitate its practical 
and scalable implementation, with a keen consideration of certification aspects. 

As evidenced in the literature over time (Sheridan et al., 1978; Parasuraman et al., 2000; Dekker et 
al.,2002; Save et al., 2012) advances in technology have provided increasingly sophisticated ways to 
automate human operator tasks, thereby enhancing human-machine performance within complex 
systems. In this regard, the concept of automation is seen as nuanced, rejecting the binary notion of 
'all or nothing'. Instead, it emphasises the importance of deciding the degree to which a task should 
be automated. Beyond the mere delegation of tasks to machines, the introduction of automation 
implies qualitative changes in human practices. Recognising this, our approach involves considering 
different levels of automation within each function to establish guidelines for effective automation 
solutions.  

Accordingly, in the context of the SESAR level of automation taxonomy (LOAT) approach (SESAR, 2013), 
the key is to determine the degree to which automation should be implemented, recognising a wide 
range of options between these extremes and carefully evaluating the associated advantages and 
disadvantages. Qualitatively, high-level automation support for information acquisition involves 
integrating data from different sources, filtering and highlighting relevant information based on 
predefined criteria visible to the user. Similarly, high-level automated support for information analysis 
assists users in comparing, combining and analysing information items, and triggers alerts when 
attention is required. High-level automated decision-making means that the system autonomously 
generates options and decides on actions, with human notification only on request. Support for the 
execution of action sequences, both automatic and user-initiated, is an integral part of high-level 
automation, enabling monitoring and intervention as required.  
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More recently, the EASA AI roadmap (EASA, May 2023) delves into crucial aspects of artificial 
intelligence (AI) and autonomy within the aviation sector. According to the LOAT approach, the 
roadmap emphasises the importance of adaptivity in the learning process, enabling performance 
improvement through experience, particularly in machine learning contexts like online learning. 

In particular, the new roadmap provides a new perspective on categorising the level of automation 
associated with AI-based technology. There are three scenarios for classifying human interaction with 
machines: human assistance (Level 1), human-AI teaming (Level 2), and advanced automation (Level 3 
AI). Specifically, Level 1 AI supports human augmentation (L1A) or human cognitive assistance in 
decision-making and action selection. Level 2 AI is further subdivided into cooperation (Level 2A) and 
collaboration (Level 2B), characterised by the type of interaction and shared awareness between 
humans and AI-based systems. Level 3 AI introduces distinctions between 3A and 3B, where 3A 
involves supervised automatic decision-making and action implementation, while 3B involves 
unsupervised automatic decision-making and action to support safety, especially in the absence of 
human supervision (EASA, February 2023; EASA, May 2023). 

For the purposes of HUCAN, it is worth to be noted that the classification also introduces the 
distribution of authority (EASA, February 2023), ranging from full authority for the end-user (up to 
Level 2A AI), through partial authority (Level 2B AI), to full authority for the AI-based system (Level 3 
AI). As a result, the Human-AI Teaming (HAT) further classifies the intensity of the interaction, 
distinguishing between cooperation (Level 2A) with a directive approach and collaboration (Level 2B) 
with a focus on joint problem-solving and shared awareness. This nuanced approach provides insight 
into the collaborative dynamics between humans and AI-based systems in aviation operations, taking 
into account different levels of authority and communication requirements. 

In light of the above, for the purposes of HUCAN, advanced automation is intended as the combined 
utilisation of sophisticated technologies, often incorporating AI, machine learning (ML), and robotics, 
to enhance and streamline complex processes in various industries (Baribieri et al., 2022). In this realm, 
automation goes beyond basic, rule-based tasks, supporting the human operator's cognitive capacities 
in information acquisition and exchange, information analysis, action selection and action 
implementation, also exhibiting a higher level of adaptability and autonomy (SESAR, 2020). In this 
regard, AA systems can analyse large datasets, learn from experiences, and make intelligent decisions, 
allowing them to operate in dynamic and unpredictable environments. These systems often involve 
interconnected components, such as sensors, actuators, and computing systems, working together to 
optimise efficiency, reduce human intervention, and achieve higher levels of precision and reliability.  

2.2 Research Criteria 

Within the framework of the HUCAN project, diverse research criteria have been strategically 
employed to guide investigations and analyses. 

The primary aim of this document is to conduct a thorough analysis of the present and future 
applications of advanced automation and AI within various transportation sectors, encompassing 
automotive, trains, ships, and aviation. This analysis seeks to uncover how automated systems and AI 
technologies are currently utilised and planned for implementation across different transport 
domains. The emphasis is on identifying both commonalities and distinctions in the adopted solutions 
while comprehending the operational-level benefits and challenges. In this regard, in the first part of 
the report, the focus is primarily on the European context, aligning with the policy objectives and 
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funding programs advocated by the European Union in the transport sector. Particular attention is 
devoted to developments in the aviation sector, recognising its significance as a focal point for 
advancements in high-level automation. The methodology employed for scoping the literature review 
is structured to leverage insights from previous research initiatives funded under the H2020 and 
HorizonEU programs. The scope encompasses artificial intelligence, advanced automation, mobility, 
and transport, with a territorial focus on the EU and the EEA. 

Subsequently, the attention turns specifically to the aviation sector, building upon the findings related 
to the challenges and opportunities of advanced automation in diverse transportation modes. The 
study aims to delineate the current state of developments and future scenarios of advanced 
automation and AI in the aviation sector. Considerations include SESAR expectations, outcomes from 
prior SESAR exploratory research, and initiatives explored by industry and ANSPs for ATM-related air 
and ground systems in the short, medium, and long term. The research criteria encompass "high level 
of automation in aviation" and "artificial intelligence in aviation," refining the focus on aviation-specific 
contexts, exploring applications of automation and artificial intelligence, and delving into the ATM 
control phase, with a specific focus on the working environment and tasks of air traffic controllers. The 
inclusion of a "project of interest" criterion allows for targeted analysis of specific projects with 
potential impacts on the broader research area. 

Furthermore, a systematic literature review has been conducted. The review process may have 
different biases that can affect the effectiveness of the research: 

✓ Reading before planning (defining a review protocol that specifies the research question being 
addressed) 

✓ Reading everything / read unlinked papers (detect as much of the relevant literature as 
possible) 

✓  Reading outdated version of a paper/book 
✓  Reading but not writing 
✓ Start reading with few resources 
✓ Language bias 
✓ Not keeping bibliographical information 

In order to mitigate the above-cited biases, the review has been performed according to a defined 
process. The process has been set up integrating the specific needs within a typical framework of a 
“systematic literature review”. 

The process includes the following phases: 

a) Planning the review 
b) Conducting the review 
c) Writing the review 

Such phases are executed in cascade and each phase is organised according to a series of steps. 

Planning the review is the first phase agreed among the partners. It has preliminary identified the need 
of the review and then has defined a precise review protocol. The review protocol mainly relies on 
three key aspects: (i) formulate appropriate research questions; (ii) identify the most appropriate 
temporal frame; (iii) identify the sources to consider. 
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The temporal frame has been set equal to the last five years (2018 – 2023). The sources point out 
where to find literature. They have been identified categorising the main purposes of the studies on 
the problem of interest. Apart from the projects, the main considered sources have been Google 
Scholar, Research Gate, Science Direct, AIAA ARC, Journals such as International Journal of Information 
Technology & Decision Making. 

Three major criteria for selection have been fixed: 
● Relevance 

○ To what extent the material covers the research questions? 
○ Does it provide sufficient details to gain a clear picture of the results achieved? 
○ Does it overlap with other research? 

● Authority 
○ Has it been published by a reputable source or is it possible to justify why it is an 

important source? 
● Temporal horizon 

○ Is the material still influential in the field? 
○ Is it keeping up to date with new research? 

2.3 AI Methods 

Advancement in the field of AI is the dominating factor in revolutionising the technology landscape. 
From autonomous driving to language translation and social networking, AI has made higher 
automation possible in almost all domains. The power of AI models and techniques has opened up 
endless possibilities, making it the go-to technology for implementing automation and autonomous 
systems. Therefore, it is important to have an overview of AI technologies and methods. This section 
covers the various methods and techniques available under the AI umbrella. Our aim is to provide an 
overview, with additional references available for those who wish to learn more. 

 

Figure 1 Key characteristics of an AI system (Stefan van Duin, N. B. 2018) 
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AI is a multidisciplinary field that seeks to develop intelligent systems capable of performing tasks that 
typically require human intelligence. These tasks encompass a wide range of domains, including 
problem-solving, decision-making, perception, language understanding, and learning. AI systems use 
computational methods and algorithms to mimic or replicate human cognitive functions such as 
reasoning, learning, planning, and perception. From a technical standpoint, AI can be defined as,  

 "[T]he branch of computer science that deals with the development of computer systems 
capable of performing tasks that typically require human intelligence. These tasks include 
learning, reasoning, problem-solving, perception, natural language understanding, and 
interaction with the environment." (Russell, 2010) 

From an operative standpoint, EASA has defined AI in its AI Roadmap 2.0 as  

“Technology that can, for a given set of human-defined objectives, generate outputs such 
as content, predictions, recommendations, or decisions influencing the environments they 
interact with.” (EASA 2022) 

There are various methods that constitute AI and can be grouped into three broader categories: 
traditional AI, machine learning and evolutionary algorithms. Table 1 provides a short summary of the 
differences in capabilities and nature of each category. 

Table 2 Summary of the differences in AI capabilities and nature of each category 

Characteristic Traditional AI Machine Learning 
Evolutionary 
Algorithms 

Deterministic Yes No No 

Knowledge 
Engineering 

Extensive Not Required Not Required 

Data-Driven No Yes No 

High-Dimensional 
Search 

No Yes Yes 

Adaptable No Yes Yes 

Interpretability High Varies Varies 

Scalable No Yes Yes 

Generalisation No Yes No 

2.3.1 Traditional AI 

Traditional AI, also known as classical AI, is the term referred to pre-modern machine learning 
techniques. The techniques that fall under this category involve explicitly programming rules and logic 
to imitate human intelligence. They were popular methods due to their deterministic nature, high 
interpretability and ease of implementation. Rule-based systems, Symbolic AI, Knowledge Engineering 
and Expert Systems are a few examples in this category. However, these methods exhibit limited 
scalability, adaptability and generalisation capabilities, limiting their ability to model and capture 
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complex processes. Some examples of traditional AI include rule-based systems, symbolic AI and 
Knowledge Representation.  

● Rule-Based Systems 

Rule-based systems operate on predetermined rules and logic, meaning the output is solely 
determined by the input and rules. These systems are deterministic, as they produce the same 
output for the same input each time. Rule-based systems have seen extensive use in air traffic 
control for various applications, including managing aircraft flow by defining strict rules and 
procedures for routing, landing/takeoff sequencing, and aircraft separation (Buchanan, et al 
1984). An example of rule-based system by CANSO “Rule-Based Systems in Air Traffic Control” 
(CANSO 2019) 

● Symbolic AI 
 
Symbolic AI employs symbols and logic to represent knowledge and perform reasoning, 
following deterministic rules for logical deduction and inference. This technique is used in 
flight planning systems, where logical rules and representations of flight constraints are used 
to determine optimal routes, fuel consumption, and flight schedules. “Symbolic AI for Flight 
Planning “ (Bazzan, et al. 2014). 

● Knowledge Representation 

Knowledge representation involves structuring knowledge in a format easily processed by 
computers. Brachman and Levesque's (Brachman, et al. 2004) work provides an insight into 
this area, explaining techniques and frameworks for effective knowledge representation and 
reasoning. 

2.3.2 Machine Learning 

The recent growth and progress in AI can be largely attributed to the advancements in machine 
learning techniques and methods. Machine learning is a field that focuses on computer programs' 
ability to learn patterns and relationships from past data, and then use that information to make 
decisions on new and unseen data. Unlike traditional AI, machine learning uses data-driven approaches 
to learn patterns and make predictions without explicit programming of rules. This allows for better 
generalisation, adaptation to new scenarios, and scaling up to larger problems. These methods excel 
at finding solutions in high-dimensional search spaces, allowing them to model very complex problems 
and tasks with ease. However, due to the high dimensionality of the search space, interpreting the 
decision can be challenging. Additionally, these methods can exhibit non-deterministic behaviour due 
to factors such as random initialization or stochastic optimization techniques. These techniques 
include a wide range of algorithms and methodologies, such as neural networks, decision trees, 
support vector machines, and more. 
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Figure 2 Relation between AI, Machine Learning and underlying methods and infrastructure (Stefan van Duin, 
N. B. 2018) 

Machine Learning is further divided into three main learning paradigms, i.e. supervised learning, 
unsupervised learning, and reinforcement learning. In Supervised Learning paradigms, each instance 
of data consists of observations and explicit labels. This approach is similar to learning from examples. 
The learning algorithm takes guidance from the labelled examples and corrects its decision logic. It is 
the most effective way of learning since the target is well-defined. Some examples of supervised 
learning include Deep Neural Networks, Regression, Decision Trees, Transformers and more. However, 
one of the major challenges in supervised learning is generating labelled data, which is expensive to 
collect and requires additional effort. 
On the other hand, unsupervised learning paradigms define techniques to learn from unlabeled data, 
for example, clustering similar data into coherent groups. It allows the power to tap into vast amounts 
of unlabeled data. Examples include K-Means Clustering, Principal Component Analysis, Hierarchical 
Clustering and more. However, the major drawback in this paradigm is the lack of a well-defined target, 
which makes it harder to achieve useful results. Therefore, mostly unsupervised learning techniques 
are used in combination with supervised learning methods, such as feature engineering and additional 
input signals. This combination of unsupervised and supervised learning techniques has been found to 
be quite effective in various applications, including image and speech recognition, natural language 
processing, and recommendation systems. 
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Finally, reinforcement learning is a type of machine learning approach that is based on learning by 
experience. In this learning method, an agent interacts with an environment by taking certain actions 
and receiving feedback from the environment in the form of the next state of the environment and a 
reward. The reward that the agent receives provides feedback about the impact of the action taken by 
the agent, whether it improves the environment or makes it worse. There are several examples of 
reinforcement learning algorithms such as Deep Q-Networks (DQN), Proximal Policy Optimization 
(PPO), and Asynchronous Advantage Actor-Critic (A3C), among others. These algorithms are designed 
to enable the agent to learn from experience to make better decisions in the future. Reward shaping 
is considered a critical process in the learning process as it represents a signal to the agent about what 
it should learn. However, an incomplete reward can lead to unintended behaviour by the agent. 
Therefore, it is essential to design proper reward-shaping techniques to ensure that the agent learns 
the desired behaviour and avoids unintended behaviour. For a thorough understanding, we 
recommend following references. (Murphy, K. P. 2012) (LeCun, et al. 2015) (Goodfellow, et al. 2016) 
(Sutton, et al. 2018). 

2.3.3 Evolutionary Algorithms 

Evolutionary algorithms are a subfield of computational optimization techniques that fall under the 
larger umbrella of AI. These algorithms take inspiration from the principles of natural selection and are 
considered a type of probabilistic optimization tool. Evolutionary algorithms, such as genetic 
algorithms, evolutionary strategies, and genetic programming, are known for their non-deterministic 
nature and their ability to use randomization and selection mechanisms that can lead to varying 
outcomes for the same input or initial conditions. At their core, these algorithms function by 
generating a population of candidate solutions (often represented as individuals or chromosomes), 
and then applying mechanisms such as selection, crossover (recombination), and mutation to evolve 
and refine these solutions over multiple generations. A fitness function determines the quality of the 
intermediate solutions in the selection process and the final solution. Through this iterative process, 
evolutionary algorithms aim to discover optimal or nearly optimal solutions to complex optimization 
problems. They are adaptable, scalable and able to model complex processes as they also find solutions 
in high-dimensional search space. However, they provide limited ease of solution interpretability and 
do not generalise to other problems. The fitness landscape provided by data does not guide the 
evolutionary algorithms' fitness function. It can be considered a strength, allowing it to expand learning 
exploration and, on the other hand, a weakness as it requires much more computational time to reach 
the optimal solution. 

Overall, evolutionary algorithms are a powerful tool for solving complex optimization problems in a 
wide range of fields, including engineering, finance, and bioinformatics. They have proven to be a 
highly effective approach for generating high-quality solutions to difficult optimization problems that 
would be impractical or impossible to solve using traditional optimization techniques. (Dasgupta et al., 
2013) (Bäck et al, 1993).  
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3 Advanced Automation and Artificial Intelligence in transport 
mode 

3.1 Introduction 

The challenges emerging in managing Advanced Automation (AA) greatly depend on the specific 
characteristics of individual sectors. The HUCAN project addresses the social and technical issues 
currently experienced in the certification of advanced automated solutions in aviation and aims at 
developing a holistic methodology and an operational design toolkit to tackle the emerging challenges 
in this realm. However, this technological transformation is driving a transformative phase for the 
whole transport and mobility sector. This section provides an overview of the current research and 
innovation trends in the transport and mobility sector to identify similarities and differences and 
explores the opportunities and challenges associated with the development and implementation of 
these solutions at the operational level. 

3.2 General trends on AA for mobility and transport 

Advanced Automation is a key force in the transformative evolution of industries, improving 
productivity, quality and safety while ensuring competitiveness in the technology-driven landscape. 
This technical section examines the research initiatives driving innovation in intelligent mobility and 
autonomous transport systems, focusing on the integration of AA systems, artificial intelligence and 
robotics. 

Collaboration among academia, industry and government has been instrumental in advancing 
automation. Research focuses on the development of autonomous systems for management, logistics 
and transportation, with a strong emphasis on improving efficiency, sustainability and flexibility. The 
growing emphasis on human-robot collaboration underscores the importance of advanced 
automation systems working synergistically with human operators to improve productivity and safety. 

Considering the scope and the objectives of HUCAN, it is important to stress how the EC recognises AA 
as a crucial driver of the digital transition, not only as a stand-alone challenge but also as an 
indispensable catalyst for achieving specific and overarching sectoral goals (EC Competence Centre on 
Foresight, 2022). By anticipating future mobility trends, the EU aims to create favourable conditions 
for the development and validation of new technologies and services (EC, 2020). More specifically, AA 
in transport and mobility will foster critical sustainability goals, optimising the efficiency of transport 
networks and making a significant contribution to the transition to greener and more environmentally 
friendly transport solutions and infrastructure (EC, 2023) (EP, 2021a) (EP, 2021b). In this regard, the EC 
policy strategy emphasises the importance of enabling testing and experimentation and of making the 
regulatory environment fit for innovation to support the deployment of solutions on the market (EC, 
2020). 

From a research and innovation perspective, academia and industrial stakeholders are intensifying 
efforts in common application trends. In autonomous vehicles, significant strides have been made by 
industry leaders like Tesla and Waymo, showcasing self-driving cars equipped with advanced sensors, 
cameras, and AI algorithms (Iclodean et al., 2023). Similarly, the freight industry is experiencing a 
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transformation with the introduction of autonomous trucks, promising efficiency gains and reduced 
labour costs (Dekhtyaruk, 2023). 

Automation facilitates predictive maintenance, monitoring, and forecasting the maintenance needs of 
vehicles and infrastructure (Giordano, et al., 2022). This approach minimises downtime and enhances 
operational efficiency across various transportation modes. 

Traffic management is witnessing a revolution with advanced automation optimising traffic flow and 
reducing congestion through adaptive traffic signal control systems (Gokasar et al., 2023). The 
integration of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication fosters a 
connected transportation ecosystem, enhancing safety and efficiency on roads (Ahmed et al, 2023). 

Automated ride-sharing services are on the horizon, with companies testing prototypes of 
autonomous taxis. Simultaneously, micro-mobility solutions, such as electric scooters and bikes with 
automated features, are gaining traction in urban areas, catering to the demand for sustainable and 
flexible mobility options (Brodersen et al., 2023). 

Eventually, in the realm of air transport, urban air mobility (UAM) is emerging with developments in 
electric vertical take-off and landing (eVTOL) aircraft poised to revolutionise urban transportation. 
Companies are exploring automated drone delivery systems, presenting innovative solutions for 
transporting goods in diverse urban and remote areas. 

3.3 Specific trends in different transport modes 

While macro trends in AA have a universal impact on the mobility and transport sector, their specific 
manifestations vary between different transport modes. This section presents the different research 
and development (R&D) pathways within each domain, generally mapping the results obtained in the 
main projects funded by the EU under Horizon 2020 and Horizon Europe.  

3.3.1 Air transport 

The aviation industry has seen many technological revolutions, with the smart use of task automation 
to improve the safety, efficiency and accessibility of air travel. The deep integration of AA and AI stands 
out as a pivotal force for the safer enhancement of avionics and efficient management of various facets 
of aviation (EC JRC, 2023).  

In this context, AA and AI-based applications are expected to positively enhance the safety of aircraft, 
including UAVs and drones. In particular, these technologies foster safer prototyping and testing of 
aircraft systems, also contributing to the development of new certification standards (AEROGLASS). In 
the area of urban air mobility (UAM) these solutions further contribute to improving route planning 
techniques (LABYRINTH, SAFEDRONE, MONIFLY, COMP4DRONES, TINDAIR and AURORA) and more 
precise positions of drones and UAS in the U-space (GAUSS), improving sensor performance and 
connectivity protocols (SAFEDRONE, SAFIR-MED and ASSURED-UAM). 

Significant advances are also expected in ATM, particularly through AI and digital tools that can assist 
and support ATC decision-making. These applications can yield major benefits by supporting and 
accelerating decision-making, reducing workload and enabling controllers to focus on critical tasks by 
automating less critical and procedural tasks (MAHALO, PJ16 CWP HMI, FARO and SAFECLOUDS.EU). 



ADVANCED AUTOMATION IN AVIATION 
Edition 01.00 

  

 
 

Page | 25 
© –2023– SESAR 3 JU 

  
 

Researchers are investigating predictive modelling to anticipate safety hazards and collect operational 
data from flights. Researchers are investigating predictive modelling to anticipate safety hazards and 
collect operational data from flights. In this regard, it clearly highlights the importance of storing and 
processing large amounts of operational data to identify patterns and train predictive algorithms for 
increased safety and efficiency in air traffic management (SAFECLOUDS.EU). Particular attention is also 
given to the design of the human-machine interface (HMI) to facilitate seamless collaboration in AI-
assisted decision-making (PJ16 CWP, HAIKU).  

In-flight safety research focuses on the use of advanced sensor technologies and software processing 
techniques to improve overall safety, also envisioning recommended future requirements (PJ11 
CAPITO and ODESSA). More specifically, projects are obtaining intriguing results in improving obstacle 
detection, avoidance and navigation, especially in challenging conditions such as low visibility or 
adverse weather (SENSORIANCE, WINFC and VISION). There is also a coordinated effort to monitor the 
cognitive state of pilots and to assess the impact of highly automated systems on controller 
performance (STRESS and REPS). 

In the area of emergencies, significant research and development efforts are directed towards 
supporting pilot decision-making in emergencies (SAFENCY project) and managing onboard pilot 
incapacitation scenarios (SAFELAND project). Research efforts are also oriented to improving rescue 
capabilities in general aviation emergencies, contributing to a holistic approach to safety in aviation 
emergency scenarios (GRIMASSE). 

Finally, certification projects play a key role in driving innovation in aviation safety. In this phase, one 
of the main goals is to improve the assessment of safety areas for both commercial aviation and 
rotorcraft operations (OPTICS, OPTICS2 and NITROS). They use bottom-up and top-down approaches 
to assess research maturity and potential real-world applications. These projects are refining the 
knowledge management framework, using open databases, curating knowledge for innovative training 
and proposing improved certification processes (ASCOS project). 

These aspects will be further addressed in the second section of this document, with a specific focus 
on AA for airspace optimization and assistance to human operators. 

3.3.2 Rail transport 

The ongoing digital transformation of rail transport offers a unique opportunity to improve safety and 
efficiency. AA, as well as increased computing power, artificial intelligence and high-speed wireless 
connectivity, are driving the adoption of automation in traffic and safety management. This includes 
precise real-time positioning for concepts such as automatic train operation, virtual coupling and train 
platooning (EC JRC, 2023). 

The EU is emphasising a unified approach to railway automation based on the European Rail Traffic 
Management System (ERTMS) system to ensure interoperability. The transition from outdated GSM 
technology to 5G-based solutions for safety-critical communications requires careful management to 
ensure a seamless transition. 

Digitalisation is expected to improve rail safety, but also increases the reliability of infrastructure and 
rolling stock through continuous monitoring and preventive maintenance. Innovative sensor systems 



ADVANCED AUTOMATION IN AVIATION 
Edition 01.00 

  

 
 

Page | 26 
© –2023– SESAR 3 JU 

  
 

strategically placed along the tracks enable real-time health monitoring, early fault detection and 
predictive maintenance. These systems also enhance security by detecting unauthorised intrusions. 

Intelligent infrastructure research focuses on future-proof components and improved track systems. 
Intelligent mobility management initiatives aim to advance automated transport systems within a 
standardised ICT environment. 

Accurate train positioning solutions using advanced GNSS approaches have been developed to cope 
with growing rail traffic. In particular, the use of AA and AI-based solutions is making a significant 
contribution to optimising yard operations (OPTIYARD) and real-time planning solutions to minimise 
delays (ARRIVAL and ON-TIME). Real-time monitoring also optimises network capacity, reduces delays 
and manages disruptions caused by extreme weather conditions (IN2RAIL). 

Finally, data-driven solutions for energy and asset monitoring across the rail system are contributing 
to a significant leap forward in improving the safety, efficiency and technological performance of rail 
transport systems (IN2DREAMS). 

3.3.3 Road transport and mobility 

In road transport, the main research trends focus on human-machine interactions, especially 
forwarding connected and automated vehicles. From the technical standpoint, particular attention is 
devoted to the use of automation safety strategies and testing. Efforts also converge on 
communication standards (EC JRC, 2023). 

Recent research activities on Advanced Driver Assistance Systems (ADAS) focus on improving driver-
vehicle interaction by improving control transfer, testing new sensors and developing algorithms to 
increase system efficiency and reliability. Challenges include the adaptation of ADAS systems to 
different driving conditions and the seamless transfer of control between driver and vehicle. Efforts 
are also focused on assessing driver fitness, fatigue and reaction times to counter risky behaviour and 
reduce the risk of human error (MEDIATOR, ADASANDME, I-DREAMS and FITDRIVE). Testing also 
addresses the seamless transfer of control between driver and vehicle, taking into account the driver's 
state, environmental conditions and accident-prone situations (MEBESAFE).  

Other research has worked on efficient communication among automated systems, drivers and the 
surrounding environment, with significant progress in communication standards and algorithms 
(ENSEMBLE, COSAFE). Sensor systems monitor driver behaviour and enable communication with the 
environment (HADRIAN and SAFER-LC), infrastructure (Vehicle to Infrastructure; V2I), other vehicles 
(Vehicle to Vehicle; V2V) and the vehicle environment (SMARTCARS and SAFE STRIP), in particular for 
the detection of hazardous situations (VI-DAS and DENSE). Some initiatives also focus on improving 
safety through enhanced interactions between automated vehicles and other road users and 
facilitating the integration of automated vehicles (TRANSAID), even providing high-impact 
demonstrations of autonomous minibuses (AVENUE). 

Safety testing tools are increasingly based on virtual environments, incorporating various features in 
digital models of the human body and analysing traffic accident data to develop effective accident 
prevention strategies (SENIOR, SIMUSAFE). Notable projects improve the safety of vulnerable road 
users by enhancing dedicated in-vehicle active safety systems and contribute to safer urban planning 
(PROSPECT, SAFE-UP, XCYCLE, HANDSHAKE). 
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Finally, some research projects focus on vehicle automation as well as NTM systems and digital 
infrastructure for Coordinated, Connected and Automated Mobility (CCAM), addressing network 
prioritisation and traffic orchestration strategies as well as user needs and requirements and human 
factors issues related to road transport automation and integrated mobility solutions (CONDUCTOR, 
SINFONICA, ORCHESTRA, FAME). 

3.3.4 Maritime transport 

Significant progress has been made in the field of maritime safety, through technological innovation 
and policy improvements (EC, 2020) (EC JRC, 2023). 

A key step towards smarter and safer maritime transport is the implementation of the EU VTMIS. This 
interoperable system will enhance maritime traffic and transport, improving safety, efficiency and 
response to incidents. Technologies such as external and hull inspections by drones complement this 
system, streamlining the inspection process and emphasising operational issues over documentation. 

Several projects have made a significant contribution to maritime safety, with significant technological 
improvements for streamlined ship inspections (SAFEPEC FP7), early warning systems in maritime 
radar surveillance (RANGER) and a collision avoidance solution using advanced sensors (SAFENAV) 
by developing a prototype using historical and real-time data. Other research initiatives developed e-
navigation solutions to improve information sharing in the maritime sector (EFFICIENTSEA 2).  

On the other hand, researchers also explored AA and AI-based solutions to improve evacuation 
procedures. Research to enhance smart life jackets, also incorporating wristbands and augmented 
reality applications aims to redefine evacuation procedures for passenger ships for enhanced 
situational awareness (SAFEPASS). Significant progress has been made in technologies for tracking 
passengers and crew during emergency evacuations: localisable life jackets, wristbands with 
integrated functionalities for specific passenger groups, including localisation radars for people on 
board lifeboats, people counting handheld devices and intelligent decision support systems 
(LYNCEUS2MARKET). AI and AR solutions in a massive evacuation vehicle (MEV) are being tested to 
better support evacuation procedures. 

The projects analysed are in line with policy objectives and focus on vessel traffic monitoring, accident 
investigation and safety data management. To reduce the number of accidents at sea, continued 
research and innovation are essential, in particular for the integration of sensing, tracking and routing 
solutions into ships and monitoring systems. Certification procedures, crew training and regulatory 
requirements for innovative equipment require further attention. 

3.4 Opportunities and challenges 

The research on AA and AI-based solutions promises to significantly improve the safety and resilience 
of transport and mobility, reducing the environmental impact of travel and better meeting the users’ 
needs and societal expectations. 

The analysis of current trends in AA and AI-based solutions in transport and mobility reveals four 
general drivers: safety, resilience, sustainability and acceptability.  
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• Safety is a ubiquitous requirement in research and innovation activity on transport and 
mobility, generally addressing all immediate challenges concerning the safe development and 
implementation of automation and digitalisation for transport. 

• Resilience is a complementary requirement for society to function, as human activities, 
including commuting and recreation, and supply chains depend on transport. In this context, 
investments in AA and AI tend to focus on strengthening the resilience of EU transport in times 
of crisis and improving the cyber-robustness of digital systems. 

• Sustainability is a key focus, leveraging AI-driven route planning to create greener transport 
solutions, reducing emissions, and enhancing fuel efficiency for traditional vehicles. Initiatives 
also promote the adoption of AI-driven technologies in public transport, including CCAM 
solutions. 

• Human-centric innovation, covers the projects aimed at addressing the needs and 
requirements of users about the AA and AI systems under development. This research 
generally includes human factors, reskilling and upskilling, and user experience, both from an 
operator and traveller perspective. 

Against this background, the analysis of the state of the art and the main SRIAs emphasised three key 
transversal themes, likewise technological feasibility, standardisation and certification and just 
transition and acceptability. Accordingly, the priorities can be mapped as follows: 

• Technical and technological challenges mainly concern: 
o Data harmonisation, generally encompassing the issues concerning the quality of data 

– and, as a consequence, sensor technologies – and connectivity (accessibility issues 
will be addressed in the standardisation); 

o Infrastructure digitalisation, including all the infrastructure enhancement, 
development and maintenance aimed to improve compatibility with AA- and AI-based 
concepts; 

o Vehicles automation, empowering vehicles and functions able to enhance mobility 
safety and security, supporting users’ needs in critical situations and reducing the 
number of incidents; 

o Networks management, developing AA- and AI-based systems able to optimising the 
transport and mobility networks capacity and efficiency; 

o Cybersecurity, ensuring the resilience of connected and automated parts and systems 
of vehicles and infrastructures against cyber threats. 

• Standardisation and certification challenges generally address: 
o General and sectoral regulatory frameworks, providing rules to safely address the 

specific needs of new technologies development, testing and deployment (e.g. data 
governance and accessibility, risk management and protection by design);  

o Standardisation, developing shared technical and industrial standards to ensure 
consistency and interoperability, especially at transnational level; 

o Certification programme, fostering the design of certification processes able to 
effectively validate the innovative requirements of AA- and AI-based systems, ensuring 
trustworthiness over time 

• Just transition and acceptability challenges, eventually, encompass: 
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o Workforce training and new job creation, ensuring adequate upskilling and reskilling 
programmes to smooth the transition for the workers mostly affected by the 
technological innovation, also creating new jobs in fully automated and connected 
mobility systems and services; 

o Ethical and social impact assessments, promoting a proactive approach to vehicles, 
infrastructures and services envisioned since the early stages of design, also taking 
into account accessibility, fairness, social well-being and environmental impacts; 

o Encourage smart urban planning and mobility, prioritising smart, sustainable and 
integrated mobility systems and fostering users’ behavioural changes.  

3.5 Takeaway messages  

The development and implementation of solutions based on advanced automation and intelligence in 

the mobility and transport sector reveal interesting commonalities, despite the specific differences 

between the different transport modes. In particular, the range of opportunities in terms of safety, 

security and environmental impact transcends individual modes, highlighting their cross-cutting 

nature. In light of the above, these are the main takeaway messages: 

● Safety as a priority of all the transport modes: 
○ Solutions based on advanced automation and intelligence in mobility and transport 

share commonalities despite mode-specific differences. 
○ Opportunities in safety, security, and environmental impact extend across individual 

transport modes, emphasising their cross-cutting nature. 

● Holistic approach to sector challenges: 
○ Addressing challenges in the sector requires a comprehensive approach. 
○ Research and development of new technologies should consider both technical 

requirements and societal needs to minimise the impact on workers, users, and 
society. 

● Transversal research and development: 
○ A transversal approach to research and development is crucial for tackling sector 

challenges effectively. 
○ Analysing main challenges underscores the importance of considering the broader 

implications and interconnectedness of new technologies. 

● Human-centred approach to new technology regulation: 
○ Policy guidelines emphasise the need for a regulatory framework tailored to the 

specificities of advanced automation and intelligence in transport. 
○ Encouraging a holistic and interdisciplinary approach, the policy aims to strike a 

balance between technological progress and societal well-being. 

● Balancing innovation and societal well-being: 
○ The regulatory, normative, and certification framework should be adapted to the 

unique characteristics of advanced automation and intelligence. 
○ This approach seeks to ensure that the deployment of innovations benefits both 

industry stakeholders and the wider community while minimising negative societal 
impacts. 
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4 Higher Automation and AI in aviation 

4.1 Introduction 

Automated systems and AI-supported technologies receive an increasing focus in aviation. For this 
domain, a comprehensive literature survey of the actual trends and advancements in these topics is 
provided to give an overview on state-of-the-art such as the current methods and technologies which 
are being planned, developed or already applied. The objective is to identify similarities and differences 
of the adopted solutions and the benefits and challenges placed at operational level. 

For purposes of the project, this literature survey focuses on airspace optimization and human 
assistance in connection with higher automation as these aviation-related topics cover the four case 
studies that are used to support the design and the validation of the holistic and unified approach to 
certification. The four case studies defined by HUCAN are: 

• UC1# - Dynamic Airspace Sectoring 
o Purpose: Improvement of middle airspace utilisation obtained by means of dynamic 

optimization of the airspace sector configuration. 
o Objective: Dynamically define and apply the best allocation of elementary sectors for 

the optimization of air traffic controllers (ATCOs) workload, sector capacity and flow 
management. 

• UC2# - AI-Powered Digital Assistant in Terminal Manoeuvring Area (TMA) 
o Purpose: Enhance runway efficiency by optimising aircraft routing, ensuring 

adherence to procedures, and preventing potential conflicts. 
o Objectives: 

a) Assigning the quickest routes to aircraft while minimising approaching queue 
length and adhering to International Civil Aviation Organization (ICAO) spacing 
rules. This is achieved by modifying flight paths from FCFS strategy, increasing 
runway capacity and throughput. 

b) Maximising adherence to CDO procedures, with environmental impact 
reduction. 

c) Ensuring continuous CDR functionality (safety increased) by proactively 
identifying possible LOS, defined as simultaneous violations of horizontal 
distances (<5 NM) and vertical distances (<1000 ft), and taking appropriate 
actions to prevent them (by Reinforcement Learning technique). 

d) Workload reduction for ATCO and Pilot. 
e) Reduction of fuel consumption. 

 

• UC3# - Dynamic Airspace Reconfiguration Service for U-Space 
o Purpose: Dynamic U-Space volumes definition and information exchanges between 

ATM and U-space. 
o Objective: Tool and AI Application dynamically support ATCOs in shaping, 

activating/deactivating U-Space volumes to UAS traffic for management of priority 
operations, emergencies, of manned aviation in U-Space, with benefits in optimization 
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of U-Space as well as controlled airspace, increase of safety levels and ATCO workload 
reduction. 

• UC4# - Dynamic Allocation of traffic between ATCO and system 
o Purpose: Improvement of upper airspace utilisation by means of dynamic allocation 

of traffic between the ATCO and ATC Real Ground-breaking Operational System 
(ARGOS). 

o Objectives: Dynamically support the ATCOs in managing the traffic in the sector, by 
means of issuing operational clearances to safely handle basic traffic situations and 
aid controllers in handling complex traffic situations. ARGOS has 3 modes of use. Two 
of them will be taken into account in HUCAN: the autonomous management of the 
traffic by ARGOS in specific circumstances and the hybrid management of the traffic 
between the ATCO and the ARGOS system (dynamic allocation of traffic). 

These case studies map the challenges that are in the SRIA as are particularly associated with 
certification issues. They cover different aspects of the capacity-on-demand concept, address different 
kinds of airspaces (i.e., middle airspace, TMA, U-space), and are based on different technologies and 
kinds of algorithms (both deterministic and non-deterministic AI-powered ones). Finally the case 
studies will be used to feed and validate the theoretical research, to design and test the certification 
method and to produce and validate guidelines for certification. 

Accordingly, the scope of this literature survey is focused on airspace optimization and human 
assistance covering these HUCAN case studies and includes the control-centre (TMA, lower, upper 
airspace), the tactical phase and the ad-hoc phase (between 2 minutes to 2 hours before flight). The 
working places of tower and airport controllers as well as the pre-tactical planning phase (between 2 
and 12 hours before flight) are not considered. 

4.2 Airspace Optimization 

Work on optimising airspace and associated procedures has been carried out in recent years with two 
main objectives. One was to improve traffic flows by adapting main flight routes or sector shapes. 
Secondly, the work has focussed on the integration of various aircraft systems. The focus here was on 
the integration of UAVs into conventional airspace.  

To classify the different approaches to airspace adaptation and route optimisation, the literature 
researched was divided into different groups. These include Dynamic Airspace Configuration, Human-
Autonomy Teaming, and Planning System Development (Figure 3).  
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Figure 3 Classification of Literature survey of Airspace Optimization 

Table 3 Overview of the literature survey, with types, subtypes and title 

Classification Sub-classification Type Title 

Dynamic Airspace 
Configuration 

Dynamic Sectoring 

Survey 
Automatic Airspace sectorization: A 
Survey 

Method 

Dynamic airspace sectorization for 
flight-centric operations 

3D airspace design by evolutionary 
computation 

Evaluation 

Validating Dynamic Sectorization for 
Air Traffic Control due to Climate 
Sensitive Areas: Designing Effective Air 
Traffic Control Strategies 

U-space & ATC 
Integration 

Concept 

On the Impact of UAS Contingencies 
on ATC Operations in Shared Airspace 

Collaborative ATM-U-space interface 

Autonomous System Method 

Optimization-Based Autonomous Air 
Traffic Control for Airspace Capacity 
Improvement 

Automated Flight Planning of High-
Density Urban Air Mobility 

Trust & Acceptance A Methodological Framework of 
Human-Machine Co-Evolutionary 
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Human- 
Autonomy 
Teaming 

Method & 
framework 

Intelligence for Decision-Making 
Support of ATM 

An Explainable Artificial Intelligence 
(xAI) Framework for Improving Trust in 
Automated ATM Tools 

Planning System 
Development 

ML/AI core 
Methods & 

model 
development 

Data-Driven Approach Using Machine 
Learning for Real-Time Flight Path 
Optimization 

A Multi-task Learning Approach for 
Facilitating Dynamic Airspace 
Sectorization 

Automation 
Evaluation 

Evaluation 
Scoring Mechanism for Automated 
ATC Systems 

4.2.1 Dynamic Airspace Configuration 

Dynamic sectorization refers to the short and medium-term adaptation of sectors to current or 
expected traffic volumes. The aim is to adapt the boundaries of sectors in such a way that air traffic 
can be managed efficiently without compromising safety. The scientific literature describes various 
methods of how sector boundary optimisation could work. 

4.2.1.1 Automatic Airspace sectorization: A Survey (Flener et al., 2013) 

In the realm of air traffic management, the paper "Automatic Airspace sectorization: A Survey", 
authored by Pierre Flener and Justin Pearson from the Department of Information Technology at 
Uppsala University, Sweden, published in 2013, stands as a pivotal exploration into the intricate world 
of airspace sectorization. 

The survey provides a thorough examination of the concept of airspace sectorization, a critical 
component in air traffic management, aimed at minimising a cost metric while adhering to geometric 
and workload constraints. With a focus on algorithmic aspects, the paper targets experts in the field. 

Distinguishing between airspace sectorization and configuration, the survey underscores the tactical 
nature of airspace sectorization. Configuration, described as a (pre-)tactical action, is contrasted with 
sectorization, which is either strategic or (pre-)tactical based on inputs. The absence of temporal 
aspects in sectorization, unlike configuration, presents challenges in reusing models. The paper serves 
as a technical overview for air traffic control (ATC) and ATM experts, emphasising algorithmic aspects 
and excluding realism evaluations. 

The survey introduces classification criteria, categorising approaches into graph-based and region-
based models. It classifies frequency as static or dynamic and explores input and output granularity, 
dimensionality, constraints, workload categories, constraint types, and cost functions. The technology 
section discusses various algorithm design methodologies and optimisation technologies, including 
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hybrid approaches. Test scales and data types for evaluating airspace sectorization tools are also 
outlined. 

Table 4 Airspace sectorization classification criteria provided in (Flener,P. & Pearson, J. 2013) 

Name Description 

Approach Graph-based model 

Region-based model 

Frequency Static: strategic or pre-tactical 

Dynamic: tactical at pre-determined times 

Input Granularity Mesh of blocks 

ATC functional Blocks (AFBs) 

Elementary Sectors 

Control sectors 

Area of Specialisation (AOS) 

Air Traffic Control Center (ATCC) 

Output Granularity functional airspace Blocks (FABs) 

Elementary Sectors 

Control sectors 

Area of Specialisation (AOS) 

Air Traffic Control Centre (ATCC) 

Cost Function Coordination cost: total cost of coordination between sectors 

Transition cost: cost of switching from old to new sectors 

Workload imbalance: impact of resulting sectors on workload balance 

Number of sectors: the total number of sectors should be minimised 

Entry points: minimise total entry points into resulting sectors 

Technology Stochastic local search (SLS) 

Constraint programming (CP) 

Mathematical modelling (MP) 
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Global optimization (GO) 

Evolutionary algorithms (EA) 

Computational geometry 

Ad hoc algorithm design 

Encompassing 16 approaches from 1998 to 2011, the survey provides a comprehensive overview of 
algorithmic methods for automatic airspace sectorization. 

The conclusion stresses the need for further modelling in airspace sectorization to align with Functional 
Airspace Blocks (FABs) and address operational constraints. Implementing airspace optimizations that 
alter control sectors is acknowledged, with emphasis on the associated heavy costs in training and 
potential infrastructure changes in Air Traffic Control Centres (ATCCs). Transition costs are highlighted, 
requiring careful planning for changes in airspace design. The survey recommends increased use of 
constraints in computation processes, advocating for mature optimisation technologies such as 
Constraint Programming (CP) and Mathematical Programming (MP). The separation of concerns 
between modelling and solving is deemed crucial for flexible exploration in an evolving field like 
sectorization. 

4.2.1.2 Dynamic airspace sectorization for flight-centric operations (Gerdes et al, 2018) 

In the scope of air traffic management, the paper "Dynamic airspace sectorization for flight-centric 
operations" [1], authored 2018 by Ingred Gerdes, Annette Temme and Michael Schultz from the 
German Aerospace centre, Braunschweig, Germany, shows a possibility to dynamically adapt sectors 
to main traffic routes in order to optimise the efficiency of airspace.  

The aim of the work was to create a suitable fast and efficient continuous airspace sectorization that 
can react to current traffic flows and efficiently support the controller even in unusual traffic situations. 
This approach bridges the gap between structured and unstructured airspace designs and will 
therefore be a fundamental key element for the efficient management of future urban airspace. The 
approach is so dynamic that it could also react to different traffic flows over the course of a day with 
a variable adjustment of the sector boundaries. The scalable approach follows the requirements of air 
traffic by bundling traffic patterns, identifying areas with high traffic density and providing an efficient 
planning and control structure to support airspace operators and users. 

To ensure a more efficient allocation and a harmonised distribution of workload, the paradigm of 
traffic flow determined by the airspace structure ('flow follows structure') has been transformed into 
a dynamic approach in which the structure is adapted to the traffic flow ('structure follows flow'). The 
benefits of dynamic sectorization can include improved capacity utilisation through flexible use of 
airspace and better distribution of the workload for air traffic controllers. 
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Figure 4 Generation of sector structure depending on task load in (Ingrid et al. 2018) 

Different parameters for the structure of sectors are stored in a chromosome set. The main flight 
routes were extracted from DDR2 data sets of EUROCONTROL and summarised using a fuzzy clustering 
method. The airspace was initially constructed as a Voronoi diagram, which already contained the 
corresponding centre points. 

 

Figure 5 Example for the overlapping sectors (blue areas, the darker, the more sectors overlap) and the SBBs 
(bordered by red lines) (Ingrid et al. 2018) 

An evolutionary algorithm then performed the optimization over several generations, creating a 
population with a predefined number of solutions for the given problem, where each solution is 
encoded as a sequence (chromosome) of parameters (genes) describing a possible problem solution. 
As in nature, solutions between two chromosomes can be mixed or mutated by crossover. An 
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evaluation function decided after each generation which chromosomes were the most suitable for the 
next generation. 

4.2.1.3 3D airspace design by evolutionary computation (Delahaye, et al. 2008) 

In the scope of air traffic management, the paper "3D airspace design by evolutionary computation", 
authored 2008 by Daniel Delahaye and Stephane Puechmorel from Ecole Nationale de l'Aviation Civile 
(ENAC), Toulouse, France, the used genetic algorithm stands in the foreground, not the tactical 
optimization of the air space to optimise the traffic flows or controller's workload [2]. 

This paper from basic research presents an airspace-cutting method which synthesises balanced 
sectors with minimum flow cut. It shows a way to divide an airspace into meaningful sectors that must 
obey various boundary conditions. These include convexity, minimum distances from route crossing 
points to sector boundaries, minimum dwell times of aircraft in sectors and the specification of sector 
boundaries running vertically in space. The approach chosen to generate sectors, which must always 
be designed in such a way that there are no gaps between them, is an evolutionary algorithm that uses 
techniques of inheritance, mutation, selection and recombination (crossover) inspired by nature to 
find (near) optimal solutions to complex problems. The modifiable parameters are encoded on 
chromosomes and only evaluated after each generation using a fitness function. It was shown that 
even with very large airspaces and hypothetical 1000 sectors, the algorithm very quickly produces good 
results that meet all boundary conditions.  

From an actual point of view, the results from the paper are not suitable for operational use, where 
en-route sectors are to be dynamically adapted to current demand. Instead, very large airspace could 
be created in this way according to the required criteria on the basis of a complete reorganisation. Due 
to formatting errors, some equations are difficult and sometimes impossible to read. 

4.2.1.4 Validating Dynamic Sectorization for Air Traffic Control due to Climate Sensitive Areas: 
Designing Effective Air Traffic Control Strategies (Ahrenhold et al, 2023) 

The study titled "Validating Dynamic Sectorization for Air Traffic Control due to Climate Sensitive Areas: 
Designing Effective Air Traffic Control Strategies", authored by Nils Ahrenhold, Ingrid Gerdes, Thorsten 
Mühlhausen, and Annette Temme from the German Aerospace Centre (DLR) Braunschweig, Institute 
of Flight Guidance, explores the application of dynamic sectorization in air traffic control to address 
challenges posed by climate-sensitive areas. Published in 2023, the research focuses on validating the 
effectiveness of dynamic sectorization strategies, aiming to balance the workload of air traffic 
controllers amid changing traffic patterns influenced by climate-related considerations. This summary 
provides an overview of the key findings, methodologies employed, and implications for enhancing air 
traffic management in response to dynamic environmental factors. 

 

Figure 6 Overview of the dynamic sectorization approach taken (Ahrenhold, et. al 2023) 

In this feasibility study, the application of dynamic sectorization in the context of air traffic control to 
cope with climate-sensitive areas is examined. Dynamic sectorization serves as a means to balance the 
workload of air traffic controllers in response to changing traffic patterns. A multi-objective 
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optimization system analyses traffic flow and determines time-dependent sectorizations, integrated 
into a radar display. The use case involves climate-sensitive areas causing changes in traffic flow. 

The study evaluates the developed solution through Human-in-the-Loop (HITL) tests with air traffic 
controllers. A controller assistance system in a dynamic airspace sectorization environment is 
compared with traditional working methods. The validation shows that the solution is highly applicable 
according to controllers' assessments, yet emphasising the need to adapt current procedures and 
define new aspects more precisely. 

The methodology includes the application of a three-stage approach for dynamic sectorization, 
incorporating Fuzzy Clustering, Voronoi Diagram, and Evolutionary Algorithms. Two defined scenarios 
are used to test the system's performance, including a climate-sensitive scenario with changes in traffic 
flow due to contrail restrictions. 

The results of HITL experiments show that the DAS approach is effective without unrealistic behaviours 
in the simulation. Air traffic controllers rate the system's performance as realistic, with no safety 
concerns or increased workload. Suggestions for improving controller guidelines are made, including 
naming conventions and visual guidelines. 

In the conclusion, it is emphasised that the study represents an initial feasibility study and clear 
responsibilities are necessary for sector adjustments. Recommendations for dealing with specific 
situations and initial guidelines for using dynamic sectorization are developed. Future steps include 
adjusting the evaluation function based on controller feedback and extended feasibility tests with 
interacting controllers. The method could also be expanded to the 3D airspace to enable horizontal 
and vertical sector management. 

4.2.1.5 On the Impact of UAS Contingencies on ATC Operations in Shared Airspace (Teutsch, et al. 
2023) 

In the publication "On the Impact of UAS Contingencies on ATC Operations in Shared Airspace" from 
March 2023, the authors J. Teutsch, C. Petersen, G. Schwoch, T. J. Lieb, T. Bos and R. Zon share findings 
of simulations for the SESAR Industrial Research Project AURA, which were carried out by the Royal 
Netherlands Aerospace Centre, NLR, together with partners from the German Aerospace Centre, DLR. 

It is expected that these new airspace users will extend their operations and share available airspace 
with manned traffic. Dynamic Airspace Re-configuration (DAR) has been considered as one of the 
enablers for the integration of unmanned and manned traffic in such non-segregated airspace. 

AURA investigates requirements for an interface between ATM-controlled airspace and highly 
automated U-space airspace for large numbers of unmanned aircraft. The project defined AUSA, an 
ATM U-space Shared Airspace, which is a generic type of airspace that can be delegated to contain 
both ATC and U-space controlled airspace volumes and identified the flow of information between 
actors, roles and services (ANSP, CISP: Common Information Service Provider, USSP: U-space Service 
Providers). Operational Environment, Human Performance Challenges and DAR are described in this 
paper. 
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Figure 7 Surveillance Display used for DAR Manager and ATCO - Active (Solid) and Planned DAR (Dashed) 
(Teutsch, et. al 

The AURA concept follows the principle to be in line with existing research activities and regulatory 
framework developments in Europe and is set between phase U3 (U-space advanced services) and U4 
(U-space full services) of the SJU. 

Results of described simulations: 

• An introduced DAR Manager role and the designed working position supported and improved 
ATC operations. 

• Negotiations between the DAR Manager and air traffic controllers, will only be possible if there 
is enough lead time (several minutes) to prepare for airspace changes. 

• Emergency requests that require immediate action should be communicated to the affected 
controllers immediately by the system. 

4.2.1.6 Collaborative ATM-U-space interface (López et al, 2023) 

In the preprint “Collaborative ATM-U-space interface” from October 2023, the authors M. M. López, 
M. C. Gutiérrez published a concept within the AURO project led by Indra. By developing a concept of 
operations and validating an identified set of selected information-exchanges services between ATM 
and U-space systems by identifying the requirements for USpace information exchange with ATM 
through SWIM, the foundations were laid for the integration of the new entrants in the current and 
future air traffic environment. 
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Figure 8 Information exchange services architecture from between ATM and U-space (López, et al. 2023) 

The proposed solution focused on the generation of a common ATM-U-space interface by identifying 
an initial set of basic services considering the relevant information needed to be exchanged so as to 
permit and guarantee the interoperability between both systems, avoiding airspace fragmentation and 
allowing safe drones’ operations into controlled airspace. The exchange shall ensure the necessary 
information is available to the related stakeholders in order to enable coexistence of ATM and U-space 
traffic. 

The Assessment of Validation Objectives regarding U-space operations in controlled airspace takes into 
account: 

• Operational acceptability of roles, tasks and operations.  

• Technical feasibility of support. 

• Suitability of the ATM-U-space interface for the different solution architectures. 

• Impact on human performance. 

• Impact on overall safety of U-space operations in controlled airspace. 

• Different operating concepts in terms of missions, operational procedures, information 
exchanges and architecture configurations. 

The findings of the validation regarding airspace optimization are: 

• Information exchanges between ATM and U-Space (and vice versa) for sharing new volumes 
definition (dynamic U-space Airspace reconfiguration means U-space airspace volumes 
modifications). 

• Findings regarding human performance challenges: 

• The controller workload was hardly impacted by the activity of this interface. Tasks can be 
performed efficiently and safely. 

• Situational awareness remains at high levels, but HMI needs to be improved to minimise 
controller interventions. 
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4.2.1.7 Optimization-Based Autonomous Air Traffic Control for Airspace Capacity Improvement 
(Başpınar et al, 2020) 

In the 2020 publication, "Optimization-Based Autonomous Air Traffic Control for Airspace Capacity 
Improvement", Barış Başpınar and Hamsa Balakrishnan from the Massachusetts Institute of 
Technology in Cambridge, USA, collaborated with Emre Koyuncu from Istanbul Technical University, 
Turkey. The paper responds to the increasing demand in air traffic by introducing an innovative 
autonomous ATC system rooted in optimization. The study aims to cope with the rising demand in air 
travel through highly automated assistance. 

The core of the paper lies in introducing an optimization-based autonomous ATC system with a specific 
focus on determining airspace capacity. The study highlights the critical role of predicted trajectories 
in the decision-making process and underscores the significance of simulating aircraft movements to 
estimate airspace capacity accurately. 

To achieve accurate trajectory predictions, the paper model’s aircraft dynamics and guidance 
procedures. These models simulate aircraft movements, contributing to the overall predictive 
capability of the proposed ATC system. 

Predicted trajectories emerge as pivotal components influencing decision-making, and the simulation 
of aircraft movements is crucial for creating a traffic environment conducive to estimating airspace 
capacity accurately. 

The interventions of an air traffic controller are defined as a set of manoeuvres suitable for real air 
traffic operations, providing a human-compatible touch to the autonomous system. 

The decision-making process of the designed ATC system relies on Integer Linear Programming (ILP). 
ILP is constructed through a mapping process, discretizing airspace with predicted trajectories and 
enhancing the temporal performance of conflict detection and resolution. 

The paper introduces a method for estimating airspace capacity using the proposed ATC system. The 
procedure involves constructing a stochastic traffic simulation reflecting the structure of the evaluated 
airspace. 

Validation of the approach is conducted using real air traffic data for en-route airspace, ensuring the 
practical applicability and reliability of the proposed ATC system. 

The study concludes by showcasing the effectiveness of the designed ATC system in managing air 
traffic, even under higher density conditions than current air traffic scenarios. It also concludes by 
acknowledging that the proposed system, though depicted as fully autonomous, can also function as 
a semi-autonomous system for decision support by human air traffic controllers. The decision on the 
autonomy level rests with authorities, who can choose based on stakeholder preferences and other 
factors. The scalability and applications of the system are highlighted, with the ILP formulation 
enabling scalability for large-scale ATM scenarios. The benefits and drawbacks are discussed, 
emphasising high scalability, easy integration into existing ATM systems, and the use of realistic models 
to avoid operational hazards. Future research directions are suggested, focusing on expanding the 
method to handle different multi-agent systems and exploring alternative complexity metrics, 
constructing a detailed wind model, and improving the aircraft model for more accurate trajectory 
predictions. 
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4.2.1.8 Automated Flight Planning of High-Density Urban Air Mobility (Tang et al, 2021) 

In the realm of advancing urban air mobility, the paper "Automated Flight Planning of High-Density 
Urban Air Mobility", authored by Hualong Tang and Yu Zhang from the Department of Civil and 
Environmental Engineering, alongside Vahid Mohmoodian and Hadi Charkhgard from the Department 
of Industry and Management Science Engineering, all affiliated with the University of South Florida, 
USA, presents a pioneering exploration into the intricacies of automated flight planning systems. 
Published in 2021, this research delves into the challenges and requirements posed by the burgeoning 
field of high-density urban air mobility, aiming to provide scalable, safe, and autonomous solutions. 

The study proposes an Automated Flight Planning System (AFPS) to address the anticipated higher 
density of AAM operations. The AFPS components, including the Low-Altitude Airspace Management 
System (LAMS) and Low-Altitude Traffic Management System (LTMS), aim to provide scalable, safe, 
and autonomous solutions. 

To meet the demands of high-density operations, the paper recommends third-party service providers 
for air traffic management and introduces the AFPS. The components of AFPS involve innovative 
technologies like LiDAR data for 3D map generation and the visibility graph method for nodal network 
construction. 

The LTMS focuses on designing conflict-free 4D trajectories based on flight requests, considering 
system cost and equity among operators. The Nash Social Welfare Program (NSWP) is introduced to 
maintain fairness among different operators in case of service provided to multiple UAM operators.  

A case study in the Tampa Bay area in Florida serves to demonstrate the operability of AFPS, 
showcasing conflict-free UAM operations through animations. The paper also discusses tactical 
operational decisions for electric vertical takeoff and landing (eVTOL) vehicles, emphasising a shift 
from traditional flight planning. 

The literature review outlines current challenges in airspace design, the UAM corridor concept 
proposed by FAA, the visibility graph method, conflict detection methods, trajectory deconfliction 
approaches, and the importance of flight equity in U-space services. The proposed AFPS is presented 
as a solution, aiming to generate nodal networks that avoid obstacles in low-altitude urban airspace. 
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Figure 9 Workflow described (Tang, et al. 2021) 

Experiment results include the comparison of models and solvers, analysis of optimality and 
trajectories, model comparison, flying time analysis, solution differences, system costs, Operators' 
Unfair Benefit Ratios (UBRs), and computation time. The conclusion emphasises the development and 
components of AFPS, the importance of fairness principles, the LTMS fairness demonstration, the 
success of the case study, and ongoing research and future directions. 

The study acknowledges ongoing research areas, including additional conflict resolution strategies, 
integration of strategic and tactical planning, applicability to other types of AAM, modification of cost 
functions, consideration of weather patterns, and integration of battery monitoring into operational 
decisions. 

4.2.2 Human Autonomy Teaming 

Human Autonomy Teaming (HAT) refers to the interaction of people with automatic or semi-automatic 
systems (Lyons et al. 2021). Depending on the activity and trust in the systems, the acceptance of 
people in particular is a challenge for support system development in a professional and safety-critical 
environment. 

4.2.2.1 A Methodological Framework of Human-Machine Co-Evolutionary Intelligence for 
Decision-Making Support of ATM (Hu, 2020) 

The study “A Methodological Framework of Human-Machine Co-Evolutionary Intelligence for Decision-
Making Support of ATMs”, authored by X. B. Hu proposes a methodological framework of human-
machine co-evolutionary intelligence (HMCEI) for decision making support of ATM. As long as an AI 
method aims to compete and replace human controllers, it will be confronted with the difficulty of not 
being accepted by human controllers. To address this dilemma, this paper proposes a new thinking 
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about applying AI methods, i.e., an AI method should be developed in such a way to assist human 
controllers, but never in the way of competing and replacing human controllers. 

Although the study is about any implementation, the proposed approach to make artificial intelligent 
(AI) methods more acceptable in ATM might be an enabler for LOAT level 2. 

4.2.2.2 An Explainable Artificial Intelligence (XAI) Framework for Improving Trust in Automated 
ATM Tools (Hernandez et al, 2021) 

The paper “An Explainable Artificial Intelligence (XAI) Framework for Improving Trust in Automated 
ATM Tools” by C. S. Hernandez, S. Ayo and D. Panagiotakopoulos, describes the basis of an XAI Trust 
framework in order to address the gap between research and implementation solutions within an ATM 
environment. It highlights current guidelines and recommendations by regulators for trustworthy AI 
and addresses what constitutes trust in AI automated solutions in ATM for end users through an AI 
Trust Survey answered by stakeholders of the Fly2Plan project. 

4.2.3 Planning System Development 

Tactical and pre-tactical planning systems for air traffic controllers have been developed for over thirty 
years. Arrival (AMAN) and Departure Managers (DMAN), for example, are in use at many international 
airports and can now be purchased commercially and customised for the respective airports. For upper 
airspace, there are en-route managers that support the organisation of airspace. While these systems 
were previously based on deterministic algorithms, initial attempts have been made in recent years to 
develop AI-based air traffic controller support systems. The aim is to simulate controller behaviour 
more realistically in different situations and thus also improve the HAT. 

4.2.3.1 Data-Driven Approach Using Machine Learning for Real-Time Flight Path Optimization 
(Kim et al, 2022) 

The pursuit of efficient in-flight replanning amidst changing weather conditions has led to the 
development of an automated framework explored in the paper titled "Data-Driven Approach Using 
Machine Learning for Real-Time Flight Path Optimization", authored by Junghyun Kim, Cedric Justin 
and Dimitri Mavris from the Georgia Institute of Technology, Atlanta, Georgia, along with Simon 
Briceno from Jaunt Air Mobility, Atlanta, Georgia, published in 2022. This study addresses the 
challenges faced by airlines due to flight delays caused by convective weather. The study sets out to 
create an automated solution leveraging supervised and unsupervised machine learning techniques 
along with a graph-based pathfinding algorithm. The primary objective is to minimise operational costs 
for airlines by generating optimised flight paths. 

The challenges of manual in-flight replanning and existing limitations in solutions like NASA's Traffic 
Aware Planner prompt the need for an advanced approach. The study advocates for the integration of 
AI to enhance flight planning, filling the gap in real-time weather optimization. The proposed 
automated framework utilises supervised machine learning for wind regression, unsupervised 
machine learning for short-term convective weather forecasting, and optimised flight path generation 
based on designated points. 

The paper provides a comprehensive overview of the proposed methodology, which involves a data-
driven approach for precise and frequent in-flight replanning. Leveraging supervised machine learning, 
a hybrid algorithm for wind modelling is introduced, encompassing Multilayer Perceptron (MLP), 
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Support Vector Regression (SVR), and Gaussian Process (GP) techniques. Unsupervised machine 
learning techniques, specifically DBSCAN, are employed for short-term convective weather modelling. 

 

Figure 10 Methodological overview of the proposed solution (Kim, et. al 2022) 

Flight path optimization, based on designated points, incorporates a hybrid method combining the A* 
search algorithm with a Free-Flight approach. The approach addresses various assumptions, such as 
constant aircraft speed during the en-route phase and the representation of convective weather by 
polygons incurring high penalty costs when penetrated by an aircraft. 

Two comprehensive case studies on Delta Airlines flights under varying weather conditions validate 
the effectiveness of the proposed framework. The first case study demonstrates a minimal difference 
between the real and simulated flight times, indicating the reliability of the developed system. The 
second case study, conducted during heavy weather, reveals a significant reduction in simulated flight 
time, showcasing the potential benefits of the framework in adverse conditions. 

The study concludes by presenting three distinct approaches to flight path optimization, all rooted in 
machine learning for wind regression, weather forecasting, and path optimization at designated 
points. The statistical analysis of real flight data emphasises that the proposed framework consistently 
generates flight routes reducing flight time by up to 2%. The developed system empowers US airlines 
to conduct more accurate and frequent flight path optimizations, with further opportunities for 
improvement highlighted through the integration of additional operational constraints. 

4.2.3.2 A Multi-task Learning Approach for Facilitating Dynamic Airspace Sectorization (Zhou et 
al, 2022) 

The publication “A Multi-task Learning Approach for Facilitating Dynamic Airspace Sectorization” 
authored by W. Zhou, Q. Cai, S. Alam proposes a multi-task learning (MTL) approach which is able to 
predict sector traffic flow and airspace capacity simultaneously using a shared neural network 
architecture. Specifically, the proposed model predicts the demand-capacity imbalance and identifies 
the opportunity for sector split/merge implementation. This method is a promising approach but 
needs to be validated. 
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4.2.3.3 Scoring Mechanism for Automated ATC Systems (Movila, 2023) 

In the scope of air traffic management, the Bachelor thesis "Scoring Mechanism for Automated ATC 
Systems", authored 2023 by George-Daniel Movilă from Escola d'Enginyeria de Telecomunicació i 
Aeroespacial de Castelldefels, Universitat Politècnica de Catalunya, Barcelona, Spain, describes a 
scoring system for quantitative assessment of an upper airspace controller support system. The scoring 
mechanism focuses on providing a scoring function that evaluates both the operational safety and the 
efficiency of the trajectories proposed by MUAC’s ARGOS (EUROCONTROL 2023). 

MUAC's ARGOS system is designed to improve the situational awareness of air traffic controllers, 
reduce their workload and enable an increase in capacity in certain situations. The scoring mechanism 
of this thesis focused on providing a scoring function that evaluates both the operational safety 
(Decreasing Score, D-Score) and the efficiency of the trajectories proposed by ARGOS (Increasing 
Score, I-Score). In the author's opinion, automatic scoring should always be used in aviation where 
decisions are made automatically. However, the proposed evaluation system only works offline on the 
basis of log files from simulations. 

The scoring mechanism developed can contribute directly to the automation of air traffic control. 
Firstly, the mechanism can ensure that the automated air traffic control systems make correct 
decisions, as the algorithm evaluates the software according to how closely its decisions match human 
decision-making standards. This reduces the likelihood of errors and increases safety. Furthermore, 
the scoring mechanism provides a way to also assess the performance of automated systems and 
evaluate the system's ability to handle different types of traffic situations. Finally, the developed 
scoring provides continuous feedback that can help the system improve its performance after each 
update. Finally, specific metrics allow detailed insights into the performance of the safety-critical air 
traffic control systems. 

A disadvantage of the scoring mechanism is that no upper limits are available for certain metrics. These 
limits could define whether the deviation from the optimal scenario is still acceptable or should be 
discarded. As an example, an extended scoring could identify any situation in which an aircraft deviates 
significantly from its planned course and should be checked by the automatic system or a controller. 
By adjusting the weighting of existing metrics, or adjusting them directly, it could be achieved that they 
better reflect the overall performance of the system. 

The thesis suggests that scoring mechanisms should not only take data from one system, but also use 
information from other independent sensors or sources where possible. The paper uses examples to 
show where and how ARGOS could be modified to improve the informative value of scoring. The 
scoring calculation includes the following 17 parameters: 

1. Violation of separation standards (separation infringement) 

2. Penetration of a Temporary Segregated Area 

3. Trigger of a short-term conflict alarm 

4. Not respecting horizontal safety buffers after HDG 

5. Not respecting vertical safety buffers after reaching CFL 

6. Not respecting vertical safety buffers prior to reaching CFL 

7. Flights outside the controlled airspace 

8. Flights that exit through other points than specified in flight plan 

9. Too frequent clearances given to a flight 
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10. Turns too high used to solve conflicts 

11. Flown more than 5% above the shortest distance 

12. More than 3% of the flown distance prior to Top of Descend not cleared to the cruising level 

(ECL) 

13. Horizontal deviation from the exit point 

14. Vertical deviation from the exit point 

15. Instructions given to other points than the ones specified in the flightplan 

16. Flights that do not reach the planned cruising level 

17. Flights arriving too early at the transfer flight level 

Most parameters are not calculated, but contain a fixed value that is added to or subtracted from the 
score when the situation in question occurs. 

From the author's point of view, the objectives of the project were achieved. It was shown that even 
a simple scoring algorithm can be implemented for a complex system and thus its performance can be 
tested. The scoring mechanism is not limited to ARGOS from MUAC, as other automated systems such 
as the Advanced Autoplanner (AAP) or Skyler (an artificial intelligent air traffic controller agent) could 
also use it for validation. 

The scoring mechanism focuses on providing a scoring function that evaluates both the operational 
safety and the efficiency of the trajectories proposed by ARGOS. In the author's opinion, automatic 
scoring should always be used in aviation where decisions are made automatically. The mechanism 
can ensure that the automated air traffic control systems make correct decisions, as the algorithm 
evaluates the software according to how closely its decisions match human decision-making standards. 
Furthermore, the scoring mechanism provides a way to also assess the performance of automated 
systems and evaluate the system's ability to handle different types of traffic situations. 

4.3 Assistant to Human  

Assistant to humans in aviation has progressed along the path of automation to support human in 
performing complex tasks. In recent years, the Human Assistant or digital assistants, with the 
increasing effectiveness of artificial intelligence, and other new automation technologies have been 
foreseen as the next expected steps for adoption across the aviation sector. From IR facial recognition 
and fever detector AI thermal cameras at airports, new technologies and digital assistants are 
increasingly expected to help streamline processes and assist in safety and efficiency improvements 
across aviation. Intelligent monitoring and assistance supporting the safety critical role of pilots on the 
flight deck, and aiding ATC to enable greater capacity and more efficient flight paths are also being 
suggested.  

The State of the art on Digital Assistants (DA), aside from the specific current development reported 
in section 3.2.2 in the aviation domain, is a very extended topic including different backgrounds and 
different expertise and domains of knowledge. DAs include different dimensions such as trust, 
transparency, reliability, and the interaction with humans that can be considered transversal to any 
domain. Additionally, considering elements from different research domains can trigger a cross-
fertilisation amongst the different sectors, and support the definition of a rigorous framework of 
definitions, attributes, dimensions of DAs in general and this can ease the standardisation, and also 
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the benchmark amongst the different applications. The extension of the research topics underpinned 
implies a question: Which are the most relevant aspects for the state of the art on Human Assistant?  

Wondering about this, the present work starts with observing the variety of terms that can be related 
to the Human Assistant. It provides a theoretical framework from the literature supporting a potential 
classification of the research and of the applications. Then it analyses the dimensions of man-machine 
interaction and human-AI teaming. Considering the previous analysis of the literature, what comes up 
is that aside from the interesting application of AI techniques that can be more and more challenging, 
to enable DAs, at least the following aspects should be investigated: Task Division and Allocation, 
Collaboration and Cooperation, Elements of trust, Explainability, and Performance Measures.  

The current status of DA in Aviation is represented by different recent projects (listed in section 3.2.2). 
These conclude that in providing proof of concepts of DA in the flight deck, in the control tower, at the 
airport and in Advanced Air mobility scenarios, DA will address specific research questions, from 
Understanding the effectiveness of Artificial Intelligence in performing specific tasks, to investigating 
Explainability, or AI Design Assurance or Human-AI teaming dimensions. 

DAs are based on AI and design assurance must be studied for the different techniques. Data 
management is part of AI and therefore also part of DAs. On the other hand, the impact of DAs on 
humans, as well as the benefit that can be derived from their adoption and the costs, including their 
impact on safety culture, have to be investigated. The question is if we are facing simple new tools or 
if we are looking at a revolution in the sector.  

4.3.1 Human Assistant  

The development of a good Taxonomy enables the definition of a comprehensive state of the art. It is 
a basic step that allows us to understand the completeness and the accuracy of the work. In the next 
sections, the lack of taxonomies explains how the domain can be very extended, explaining the issues 
of coverage and providing a justification for the identified research topics to understand the current 
status and to address opportunities and challenges. Indeed, in spite of defining the funding elements 
of the state of the art, the research on taxonomies can be by itself part of the state of the art to set 
the basis for the next work in the HUCAN project where a referenced taxonomy enables a sound work. 

Human Assistance currently takes many forms and adopts in both industry and academic arenas a 
variety of category names, using some combination of “automated”, “digital,” “smart,” “intelligent”, 
“personal,” “agent,” and “assistant” (Grochow, 2020). 
Generally speaking, the “assistant” can be digital tools, software agents, chatbots taking the form of 
robots, or simply having an interface on a computer. There isn’t a general consensus on a 
comprehensive taxonomy, due also to the fact that different domains are involved with different 
heritages.  

A digital tool is intended as something that can automatically perform specific tasks and that can be 
based or not on Artificial Intelligence.  

In (Sánchez, 1997) “An agent is a software process that acts on a user’s behalf, performs particular 
functions autonomously and realises goals. An agent is versatile in changing environments and works 
in a team. Members of that team have complementary specialists or duplicates” intending it as an 
autonomous software entity that can interact with its environment.  
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The Agent concept goes beyond the digital tool supporting a specific human task and looks at Artificial 
Intelligence to support the human in a dynamic environment. Agents in Artificial Intelligence can be 
categorised into different types based on how agent’s actions affect their perceived intelligence and 
capabilities, such as: Simple reflex agents; Model-based agents; Goal-based agents; Utility-based 
agents; Learning agents and Hierarchical agents.  
  
Chatbots typically interact with users via text, though images are now a common feature of Chatbot 
interactions and there are a number of ‘bots with speech capabilities. This conversational capacity has 
been key to their success, as it reflects a consumer trend – the move away from voice-based channels 
and the embracing of chat-based channels. 
Whereas a Chatbot focuses on a relatively narrow range of issues, a Digital Agent could be asked to do 
anything. 
The literature defines a Digital Assistant as a concept that includes Artificial Intelligence, and goes 
beyond tools based on machine learning algorithms that provide data and information to the human 
operator. Instead, it’s more like a colleague that interacts and “converses” with its human counterpart. 
This introduces the idea of Human-Artificial Intelligence teaming.  

Such a definition adds a new perspective to the level of assistance that on the one hand is reflected by 
the taxonomies of automation and autonomy and on the other hand overlooks collaboration and 
cooperation and classifies the object with respect to the interaction with humans.  

The literature provides a great variety of taxonomies on the basis of different dimensions. In (Grochow, 
2020) an extensive review is proposed. The taxonomies are defined on the basis of: 

● The task content of human activity that is used for assistant design instead of identifying 
classification criteria. 

● The technology and features of design such as communications mode, direction of interaction, 
adaptivity, and embodiment (virtual character, voice), and so forth. 

● The degree of the perceived intelligence and capability such as simple reflex agents, model-
based reflex agents, goal-based agents, utility-based agents, and learning agents. 

● The end-user view of “work output,” and while this approach uses a somewhat subjective 
measurement scale, the intention is to extend the work incorporating objectives (see Figure 
1)  

  

 
Figure 11 The levels of Assistant on the basis of the output (Grochow, 2020). 

Finally, robots considered as assistants are well classified. According to the degree of their intelligence, 
robots can be divided into two categories: functional robots and intelligent robots. Before the advent 
of intelligent robots, robots were primarily referred to as functional robots, whose main purpose was 
to perform actions that humans would not want to do or cannot do on their own. They were treated 
as tools to improve work efficiency and emancipate humans from manual labour and simple mental 
labour. Intelligent robots were invented to meet the demands of human intelligence, such as 
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intelligence quotient (IQ) and emotional quotient (EQ). They are on turn divided in cognitive robots, 
understanding robots, interactive robots, and autonomous robots (Ren at Al., 2020) 

In spite of a generally agreed taxonomy on the human assistant, it is relevant to note that the human 
assistant is also defined in terms of the human machine interaction that may play a huge role in the 
success of the assistant.  

Humans interact with computers in many ways, and the interface between the two is crucial to 
facilitating this interaction. HCI is also sometimes termed human–machine interaction (HMI), man-
machine interaction (MMI) or computer-human interaction (CHI) (Bansal et al., 2018), but the 
literature offers other ways reported in the table below.  

Table 5 Different terms for man machine interaction 

Term Acronym 

Man Machine Interaction MMI 

Human Machine Interaction HMI 

Human Agent Interaction HAI 

Human Computer Interaction HCI 

Computer Human Interaction CHI 

Human Machine Collaboration HMC 

Human Machine Cooperation HMC 

Human Machine Teaming HMT 

Man–machine interaction is described as an interaction and communication between human users 
and machines in a dynamic environment through several interfaces. Ever since humans started to build 
tools, there was the interaction between the humans and the machines. This interaction has evolved 
over time. Initially, before the Second World War, people were adjusted to fit machines. In other 
words, humans were trained to use the machines. However, in the Second World War, new equipment 
was developed so quickly that it was hard to sufficiently train humans. Therefore, the need for a 
systematic analysis and synthesis of the interaction between humans and machines arose. The history 
of Human–machine interaction can be split up into four time zones. First, in the years 1940 to 1955, 
developers tried to find the limits of human possibilities. New equipment was designed such that 
human controllers would just be able to deal with it. From 1955 to 1970, things advanced. At this time, 
researchers tried to model humans like machines and design products accordingly. Around 1970, 
electronics were advancing. Then, from 1970 to 1985, this technology was used to automate many 
tasks, which normally required humans. The human ended up being the controller and began 
becoming the supervisor. This has advanced much more since 1985 (Krupitzer et al., 2020).  

HCI was first used in 1976, and it was popularised by the book, The Psychology of Human Computer 
Interaction published in 1983. In 1992, a HCI curriculum was developed by Hewett and other leading 



ADVANCED AUTOMATION IN AVIATION 
Edition 01.00 

  

 
 

Page | 51 
© –2023– SESAR 3 JU 

  
 

HCI educators to serve the needs of the HCI community. In CES 2008, Bill Gates emphasised the role 
of natural user interface and predicted that the way in which HCI will bring a radical change in the next 
few years. Thereafter, HCI researchers expounded the definition of a natural HCI by employing 
different approaches (Bansal et al., 2018). 

The Association for Computing Machinery (ACM) defines human–computer interaction as "a discipline 
that is concerned with the design, evaluation, and implementation of interactive computing systems 
for human use and with the study of major phenomena surrounding them". A key aspect of HCI is user 
satisfaction, also referred to as End-User Computing Satisfaction. It goes on to say: "Because human–
computer interaction studies a human and a machine in communication, it draws from supporting 
knowledge on both the machine and the human side. On the machine side, techniques in computer 
graphics, operating systems, programming languages, and development environments are relevant. 
On the human side, communication theory, graphic and industrial design disciplines, linguistics, social 
sciences, cognitive psychology, social psychology, and human factors such as computer user 
satisfaction are relevant (Grochow, 2020). 

Desktop applications, internet browsers, handheld computers, and computer kiosks make use of the 
prevalent graphical user interfaces (GUI) of today. Voice user interfaces (VUI) are used for speech 
recognition and synthesising systems, and the emerging multi-modal and Graphical user interfaces 
(GUI) allow humans to engage with embodied character agents in a way that cannot be achieved with 
other interface paradigms. An extensive literature providing the current status of research in such 
fields is provided in (Bansal et al., 2018), (Ren at Al., 2020) (Krupitzer et al., 2020) 

The process of HMI can be divided into the following four steps according to the collection, 
transmission and analysis of data: (1) the sensor collects the environment and input signals, (2) the 
signal is converted into data, (3) the data is transmitted to the processing centre (4) interaction and 
collaboration. 

As stated in (Damacharla et al., 2018) HMT can be defined as a combination of cognitive, computer, 
and data sciences; embedded systems; phenomenology; psychology; robotics; sociology and social 
psychology; speech-language pathology; and visualisation, aimed at maximising team performance in 
critical missions where a human and machine are sharing a common set of goals. 

(Salas et al., 1992) define a team as “… an interdependent group of members, each with their own 
roles and responsibilities, that come together to address a particular goal “ 

Chapter 2 of (National Academies of Sciences, Engineering, and Medicine, 2022) presents relevant 
perspectives on human-AI teaming as a step beyond human-AI interaction. Teams are created to 
perform a variety of tasks that require the coordination of multiple interdependent individuals, and 
this definition does not require all team members to be human. Further, the performance of a team is 
not decomposable to, or an aggregation of, individual performances. This description emphasises the 
interdependence of team members. 

A human-AI team is defined as “one or more people and one or more AI systems requiring 
collaboration and coordination to achieve successful task completion” (Cuevas et al., 2007). AI systems 
may play a variety of roles, ranging from decision-support tools to assistants, collaborators, coaches, 
trainers, or mediators. Within the human-AI teaming the human has to be in charge of the team, for 
reasons that are both ethical and practical. Not only are humans legally and morally responsible and 
accountable for their actions, but they also function more effectively when their level of engagement 
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is high. While it is assumed that human-AI teams will be more effective than either humans or AI 
systems operating alone, in the committee’s judgement this will not be the case unless humans can 
(1) understand and predict the behaviours of the AI system; (2) develop appropriate trust relationships 
with the AI system; (3) make accurate decisions based on input from the AI system; and (4) exert 
control over the AI system in a timely and appropriate manner. 

Chapter 3 of (National Academies of Sciences, Engineering, and Medicine, 2022) addresses the most 
relevant dimensions of human-machine teaming: mental models, communication and coordination, 
and social intelligence.  

Mental models are “mechanisms whereby humans are able to generate descriptions of system purpose 
and form, explanation of system functioning and observed system states, and predictions of future 
states”. 
A shared mental model is a consistent understanding and representation, across teammates, of how 
systems work (i.e., the degree of agreement of one or more mental models). A shared mental model 
includes models of the technology and equipment, models of taskwork, models of teamwork, and 
models of teammates. 

A team mental model is a mental model of one’s teammate(s) that provides an understanding of 
teammates’ capabilities, limitations, current goals and needs, and current and future performance. 
Shared mental models within teams also contribute to the development of shared situation awareness. 

Communication and coordination are essential for teamwork, given teamwork’s interdependent 
nature. Team cognition can in fact be characterised as communication and coordination processes in 
addition to knowledge or shared models because team cognition involves more than just knowledge. 

Communication can be verbal or nonverbal and can take place through various modalities, such as 
voice or text. Much progress has been made toward the creation of AI that understands natural human 
language; however, natural language processing remains a challenge for human-AI teaming. 
Moreover, natural language, with all its ambiguities, may not be the language of choice for effective 
teaming.  

Communicating in a common language is just one requirement for effective teamwork. 
Communication also needs to be accurate and directed to the right team member at the right time or, 
in other words, coordinated. Effective teamwork requires “orchestrating the sequence and timing of 
interdependent actions”. 

Human teammates can make use of social intelligence for effective teaming. They can understand the 
beliefs, desires, and intentions of fellow teammates by developing a theory of mind (i.e., by observing 
their teammates’ behaviours and ascribing mental states to them). There have been recent efforts 
directed toward providing AI with social intelligence such as the Defense Advanced Research Project 
Agency’s (DARPA) ASIST program, for example, though this may resemble a theory of behaviour more 
than a full theory of mind (Sandberg, 2021). 

4.3.1.1 Collaboration and cooperation 

Among the many types of interactions that can take place between human and machine, there are 2 
that may seem very similar: collaboration and cooperation. 
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In a collaboration, there is no a priori roles distribution, but a spontaneous roles distribution depending 
on the interaction history. In contrast, cooperation occurs when different roles are ascribed to the 
agents prior to the beginning of a task and this distribution is not questioned until its completion. While 
in collaboration the agents work on an even basis, cooperation has an uneven distribution of subtasks 
or roles during the task. Cooperating agents work towards the same end and need each other to 
complete the task but are not equal. In fact, cooperation is characterised by an asymmetric behaviour 
(Jarrassé et al., 2012). 
 
In particular, collaboration can be seen under 3 different perspectives: the organisational perspective, 
the relationship perspective, and the interaction perspective. They correspond to different levels of 
deployment in human-machine collaboration, considering how humans and machines are organised, 
how they work together, and how they interact with each other. Specifically, the organisational 
perspective cares about forming the human-machine team organisations and solving task allocation 
problems. The relationship perspective analyses acceptance, trust, and dependence of human and 
machine on each other. Finally, the interaction perspective is mainly about designs of communication 
to foster mutual understanding and bilateral interventions via physical and mental interfaces (Xiong et 
al., 2022). 

 
Figure 12 Perspectives on human-machine collaboration (Xiong et al., 2022) 

A clear distinction is made in the “EASA Concept Paper: guidance for Level 1 & 2 machine learning 
applications”: 

● Human-AI cooperation: cooperation is a process in which the AI-based system works to help 
the end user accomplish his or her own goal.  
The AI-based system works according to a predefined task allocation pattern with informative 
feedback to the end-user on the decisions and/or actions implementation. The cooperation 
process follows a directive approach. Cooperation does not imply a shared situational 
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awareness between the end user and the AI-based system. Communication is not a paramount 
capability for cooperation.  

● Human-AI collaboration: collaboration is a process in which the human end user and the AI-
based system work together and jointly to achieve a common goal (or work individually on a 
defined goal) and solve a problem through a co-constructive approach. Collaboration implies 
the capability to share situational awareness and to readjust strategies and task allocation in 
real-time. Communication is paramount to share valuable information needed to achieve the 
goal, to share ideas and expectations.  

In the EASA guidance, the distinction is useful to split the Level 2 of the AI applications 
(human/machine teaming) in 2 sub-levels: 

● Human-AI cooperation: Level 2A AI. 
● Human-AI collaboration: Level 2B AI. 

 
Figure 13 Human AI Teaming concept overview (EASA 2023) 

4.3.1.2 The Theoretical framework in Risky Decision Making 

Risky decision-making refers to the problem of making choices without knowing the exact 
consequences (Bier et al., 1999). In a typical risky scenario, the user has to deal with several choices, 
and each choice involves multiple possible outcomes. Thus, likelihoods and consequences are two 
critical dimensions to characterise the outcome of such a decision (Bedford & Cooke, 2001). In these 
kinds of scenarios, it is possible to notice cognitive biases in human decisions, and the use of simple 
heuristics to reach a solution (Kahneman & Tversky, 1979). Human-machine teaming for risky decision-
making opens to many questions. For example, who should be assigned with which tasks, including 
cognition, judgement, and decision, and under what principles? How can a machine understand human 
decision-makers’ values and behaviours and prescribe both normatively correct and subjectively 
acceptable solutions? 



ADVANCED AUTOMATION IN AVIATION 
Edition 01.00 

  

 
 

Page | 55 
© –2023– SESAR 3 JU 

  
 

 
The opportunities for human-machine collaboration in risky decision-making can be characterised on 
the levels of uncertainty involved. 

• On the one hand, when the decision task features low uncertainty, the research opportunities 
are mainly algorithm-centred, which lie in the effective utilisation of the computing power of 
machines (Patel et al., 2019). 

• On the other hand, when the decision task is associated with higher uncertainty, the research 
opportunities become human-centred. High uncertainty makes many patterns in past data 
unaccountable, thus, the required complexity of algorithms increases to model and predict 
such data, and issues of overfitting and “black box” become vital (Topol, 2019; Amann et al., 
2020). 

Furthermore, in decision tasks with high uncertainty, the research opportunities lie in human–machine 
collaboration centred for two reasons. First, humans are vulnerable to various cognitive biases, and 
their capabilities of information processing are limited, whereas machines can calibrate biases and 
handle mass data in a consistent and normatively correct way. When human and machine judgments 
have disparity, machines should be able to explain why the human judgments are wrong. Second, 
machines are unable to handle highly uncertain and rare cases well. By contrast, humans can use 
intuition and experience to adapt to new situations and quickly learn and generalise reasoning across 
tasks. 
 
In order to promote Human-Machine Collaboration in risky decision-making processes, the work of 
Xiong et al. (2022) proposes 3 challenges on how to organise Human-Machine Teams, enhance each 
other’s capabilities, and facilitate mutual understanding and humans’ trust in machines. 
 
Challenge 1: Developing a more dynamic and flexible human-machine team organisation.  
Designing the human-machine team organisation mode to make decisions under risk. Humans and 
machines undertake different roles in the environment and tasks with different levels of variability, 
uncertainty, and complexity (Daugherty & Wilson, 2018). The challenge can be divided into 3 parts. 

• Applying a dynamic task allocation strategy to respond to dynamic characteristics and to 
support the combined performance. For specific risky decision-making tasks, human-machine 
teams may encounter multiple environment uncertainty risk levels and exhibit dynamic 
behaviours (Bier et al., 1999). 

• Determining a fair distribution of the responsibilities in human-machine teams in risky 
decision-making. Risky decision-making always presents a number of negative outcomes.  

• An appropriate accountability distribution in a human-machine team can affect acceptance 
and facilitate a beneficial human-machine relationship (Flemisch et al., 2012). Humans usually 
tend to blame the machine for the same mistake and negative outcomes (Dietvorst et al., 
2015). This tendency would be more severe in risky decision-making with more uncertain 
negative outcomes. 

To overcome Challenge 1, the following research questions must be considered. 
(1) How should the human-machine team be organised and what are the criteria to decide which one 
(human, machine, or human-machine collaboration) holds the authority in risky decision-making? 
(2) How should tasks between human and machine decision-makers, including cognition, judgement, 
and decision, be assigned? How can dynamic task allocation based on task requirements and the 
characteristics of human and machine decision-makers be achieved? 
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(3) What are the criteria to decide who should be accountable for the decision outcomes in human-
machine teams in risky decision-making? How does a different accountability distribution impact the 
human-machine collaboration performance? 
 
Challenge 2: Employing machines to help overcome humans’ undesirable behaviours effectively 
(hence enhancing the human decision-maker) in risky decision-making.  
Existing studies pay more attention to how machines assist humans for better decision-making than to 
leveraging machines to discover and correct human cognitive and behavioural limitations in risky 
decision-making. We break down the challenge into four parts. 

• Determining the capability boundary of humans in risky decision-making. The capability 
boundary of humans is scoped by human cognitive and behavioural limitations in risky 
decision-making (Blumenthal-Barby et al, 2015). 

• Developing adaptive machine design to support in overcoming or intervening humans’ 
multiple limitations. 

• In risky decision-making, behaviours of human decision makers, as well as multiple limitations 
in cognition and behaviour, are affected by multiple dynamic and uncertain factors (Cokely et 
al, 2009; Ordóñez et al, 2015). 

• Evaluating the collaborative decision-making process objectively and subjectively. Evaluating 
the collaborative decision-making process can help understand the collaborative process and 
move the machine design and human-machine collaborative design forward (Damacharla et 
al, 2018). 

To overcome Challenge 2, the following research questions are taken into account. 
(4) What are human cognitive and behavioural limitations in risky decision-making? How can these 
limitations and their impacts be understood and modelled? 
(5) How can machines provide normatively correct solutions for human cognitive and behavioural 
limitations? What impacts do different contexts or tasks have on human cognitive and behavioural 
limitations? In which way can machines be designed and developed to help overcome these limitations 
adaptively? 
(6) What indicators can best describe and quantitatively evaluate the collaborative decision-making 
process? 
 
Challenge 3: Developing communication and interface design to support mutual understanding and 
trust in human-machine teams.  
Communication and information sharing have a critical role in achieving an understanding of intentions 
and behaviours and creating an effective human-machine team (Chen et al., 2018; Edmonds et al., 
2019). More specific challenge details are described below. 

• Design for intention identification and alignment. The identification, understanding, and 
alignment of respective goal(s), value(s), and intention(s) in a human–machine team can 
improve the efficiency and performance of Human-machine collaboration (Schaefer et al., 
2017). 

• Effective behaviour identification and monitoring of behavioural limitations in risky decision-
making. When the capability boundary is known, monitoring and identifying the human’s 
irrational behaviours or behaviours due to cognitive limitations are critical for the intervention 
toward the human (Damacharla et al., 2018). 

• Appropriate intervention designs to overcome inconsistency in capabilities and behaviours in 
human-machine teams. When decisions of the human and machine decision-makers are 
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inconsistent or capability/behaviour limitations arise, appropriate intervention can effectively 
prevent possible negative outcomes (Daugherty and Wilson, 2018). 

• Interaction design and evaluation considering human perception and understanding of 
machines. The physical interface has developed to be adaptive and algorithm dependent; 
more variables in the mental interface, such as trust and acceptance, should be considered to 
facilitate effective human–machine collaboration in risky decision-making (Dubois and Le Ny, 
2020). 

To overcome Challenge 3, we pose the following research questions for consideration. 
(7) How do machines express their intentions, capabilities, and behaviours in risky decision-making? 
What behavioural indicators can represent human intentions? In which way can a human–machine 
team effectively align the goal, value, and intention? 
(8) What behavioural indicators can represent the underlying cognition of human decision-making? 
How can machines identify and collect those indicators? 
(9) How does a machine explain its decision-making rules? How does a machine understand humans’ 
decision-making rules? How could the machine implement the intervention in an acceptable way? 
(10) How can influencing factors in human–machine collaboration be modelled in risky decision-
making? How can these models be embedded in algorithms behind the interaction interface? 

 
Figure 14 Challenges for Human-Machine Collaboration in risky decision-making (Xiong et al., 2022) 

4.3.1.3 Task division and allocation  

Effective human–machine (agent) interaction requires the appropriate allocation of indivisible tasks 
between humans and machines. Task allocation, recently also referred to as function allocation, 
decides which agent does what in a team. It represents an enabler for a successful interaction being a 
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main topic of research in human-automation interaction (Ponti et al., 2022), especially when machines 
exhibit high levels of intelligence and autonomy. The topic is part of human-computer interaction and 
includes a large body of literature in different fields, including cognitive engineering and human 
factors. Function allocation covers human–human function allocation, team design, and human–
automation function allocation. It is traditionally conducted as part of the human systems integration 
(HSI) process used during the design of complex systems (MILSTD-46855A, 2011) (Roth et al, 2019). 

4.3.1.3.1 Classification of Task allocation methods  

Consider different types of function allocation methods, such as fixed (static allocation) or dynamic 
(dynamic allocation). In static allocation, the functions allocated to the human and machine members 
are static and don’t change based on situational factors. Dynamic allocation and reallocation of tasks 
between humans and machine agents involves integrating adaptive automation based on situational 
factors. It also includes the provision for human team members to seamlessly reassign tasks among 
themselves. 

Multi-agents and human–agent task allocation methods can be classified into the following types: 

• homogeneous agent-based is a task allocation method typically undertaken in structured 
environments, where all of the agents and tasks are of the same type and any agent can 
perform any task. Homogeneous task allocation is based on the assumption that all agents and 
performances across agents are identical, which is why these methods are usually applicable 
to multi-agent teams and not human–agent teams. 

• capabilities-based is a task allocation method considering the heterogeneity of agents, 
commonly seeking to match the capabilities or types of agents with task demands. 
Heterogeneous agents vary in their capabilities, operating areas, and communication 
capabilities MABA-MABA (men-are-better-at, machines-are-better-at) is known as a classical 
theory outlining the general strengths of humans and machines and has been used as a basis 
for function allocation. 

• capacity-based (or adaptive automation) is a task allocation method relying on human 
capacity information (e.g., workload, fatigue) to aid in the allocation of tasks (or level of 
automation control), aiming at keeping capacity in acceptable ranges. 

4.3.1.3.2 Approaches for task allocation 

A prominent approach used for years to decide which tasks are better performed by machines or by 
humans has been the HABA-MABA (“Humans are better at, Machines are better at”) list firstly 
introduced by Fitts (1951). This list contains 11 “principles” recommending the functions that are 
better performed by machines and should be automated, while the other functions should be assigned 
to humans. Although researchers differ in what they consider appropriate criteria for task allocation, 
the influence of Fitts’s principles persists today in the human factors’ literature.  
 

https://www.nature.com/articles/s41599-022-01049-z#ref-CR29
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Figure 15 Fitts list (Fitts, 1951). 

However, the HABA–MABA approach suffers from the clear limitation that the lists of what humans 
versus machines are better at can become quickly outdated as technologies continue to improve. In 
2022 SEI (SEI, 2022) has identified a new list considering the AI-powered machine.  

 
Figure 16 New Fitt's list (SEI, 2022) 

Another limitation in the MABA approach is that by integrating the machine in performing a task, new 
tasks are created for the human who now has to interact with the technology (e.g., entering inputs, 
engaging/disengaging the automation, monitoring, etc.). These new tasks (e.g., monitoring system 
states and functioning) may, ironically, require what the Fitts report originally stated humans are bad 
at doing—namely, tasks requiring vigilance and little activity. 

Another relevant approach for task allocation is represented by the Level of Automation (LoA) 
framework addressed in each sector. LoA frameworks incorporate taxonomies that specify which 
aspects of cognitive performance are being addressed (e.g., gathering the information, interpreting 
the information, generating solutions, deciding on action, taking an action), and the level of 
automation presumed. Much of the focus of LoA research is on understanding the impact of different 
LoA on human situation awareness, workload, complacency, trust, and ability to take over when 
automation fails. 

(Roth et al., 2019) highlights that a major concern with the LoA approach as guidance to system 
designers is that tasks are described at too high a level of classification (e.g., information integration, 
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decision, action). As a consequence, it limits the range of options for how work might be organised 
across the human and automated agents. 

Cognitive Task Analysis (CTA) and Cognitive Work Analysis (CWA) methods are well suited for 
identifying and analysing the full range of demands of the work domain. CTA methods typically 
leverage knowledge of domain experts. CWA is an integrated set of analytic tools intended to 
represent the cognitive demands of work and the requirements to effectively support work 
performance. Work domain analyses are often conducted using an abstraction hierarchy (AH) 
representation of the goals, constraints, and functional means available to achieve the goals at 
different levels of abstraction. 

Recent works have emphasised the importance of designing systems that enable more fluid 
distribution and redistribution of work to accommodate changing demands (Naikar, 2018); (Naikar & 
Elix, 2016); (Naikar, Elix, Dâgge, & Caldwell, 2017). Studies have shown that while team members may 
have formally defined roles and command structures, in practice, the allocation of tasks and leadership 
roles are more fluid, responding to the local demands of the situation. Accordingly, the idea is to 
analyse and design systems to support the functions that individuals and automated agents could, in 
principle, take on. 

Interdependency analysis tools that represent both the human and the automated agent, the work to 
be performed, and the relationships between the human and the automated agent throughout the 
work have been provided. In analysing interdependencies, the tools consider not only new tasks 
emerging when automation is introduced (e.g., new monitoring tasks) but also ways that each agent 
can support the other agent in performing their tasks (e.g., a robot may need the help of a human to 
navigate around certain obstacles). 

(Malone, 2018) proposes the concept of a Collective Intelligence further elaborating the need to 
allocate functions of cognitive processing, information flow, and task coordination beyond the scope 
or capability of individuals. 

(Ali et al., 2022) proposes an interesting allocation method based on trust in both existing and novel 
tasks arriving at unknown times being different from task scheduling problems in which a set of tasks 
is known in advance such that they can be sequenced. Here trust is the willingness of the trustor to be 
vulnerable to the actions of the trustee. 
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Figure 17 Flowchart with the main ideas of the artificial trust-based task allocation method for a team 
consisting of one human and one robotic agent. (Ali et al., 2022) 

The process starts with an incoming task (black dot) defined by a set of task capability requirements. 
In this case, the incoming task is defined by two capability dimensions. The trust in each agent is 
computed using the capabilities belief distribution of that agent. The task reward and agent costs are 
computed using the task requirements. The expected total reward for each agent is computed using 
trust in the agent, task reward, and agent cost. The agent that maximises the expected total reward is 
allocated the task. The outcome of the task is observed as a success or a failure, which is used to update 
the capabilities belief distribution of the agent that executed the task. The process continues for each 
incoming task. In such method: 1) tasks are represented by the levels of capabilities required to 
successfully execute the task, and agents are represented by the levels of capabilities they possess; 2) 
trust in an agent to execute a new task can be reasoned about by considering the similarity between 
the new task capability requirements with existing tasks; 3) the belief in an agent’s capabilities is 
updated over time as task outcomes are observed, either as successes or as failures; 4) the capabilities 
of an agent aren’t known beforehand; 5) Task outcomes are not assumed to be strictly successes or 
failures, making them stochastic; 6) Task allocation is done using the robot’s opinion (but the allocation 
can be done also by a third party). 

Additionally, (Roth et al., 2019) highlights a set of factors that designers have to consider in designing 
a man-machine team:  

• The need for coherence in the set of tasks that humans are assigned (i.e., avoiding “leftover” 
allocation). 

• The need to avoid workload spikes as well as excessively low workload during long durations. 

• The need to avoid situations where people are assigned responsibility for system outcomes, 
but the machine agent is assigned authority to automatically take action (i.e., avoiding 
authority/ responsibility mismatches). 

• The need to avoid overly rigid (and unworkable) function allocations that lead to workarounds 
and disuse. 

• The need to avoid brittle automation that is not reliable and/or fails abruptly when outside its 
boundary conditions. 
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• The need to avoid automation that results in excessive and untimely interruptions. 

(Ali et al., 2022) addresses the following interesting dimensions of Task allocation: Novel tasks, 
Unknown and Dynamic Agent Capabilities, Negotiation and Fairness.  

4.3.1.3.3 Novel tasks 

Novel tasks that the human-robot team has not experienced before may occur, especially in dynamic 
situations. Part of the challenge in allocating novel tasks has to do with the difficulty in representing 
and characterising tasks. Very recent works address some approaches, but further research is needed 
since knowing the correct levels of capabilities to represent a task is a limitation of the current 
research.  

4.3.1.3.4 Unknown and Dynamic Agent Capabilities 

Agents on a human-robot team may be unfamiliar with the capabilities of their teammates if they have 
had limited interaction. A human can estimate the capabilities of another agent through interactions. 
Capabilities may grow through practice or training. Capabilities may also diminish if they are used 
infrequently or with fatigue. These concepts can have a great impact when dealing with AI-powered 
machines since on the one hand they stress the relevance of assuring training of the team to increase 
the acceptance and on the other hand they require a process of re-tuning of the machine after a 
potential degradation of performance. 

4.3.1.3.5 Negotiation and Fairness 

An agent may, for their own reasons, disagree with the agent responsible for task allocation. When 
such disagreements occur, agents will need a way to negotiate the allocation of a task until they reach 
a consensus. To start, the task allocation method will need to determine whether there are any 
disagreements among agents. One idea could be to simply request input when an agent disagrees with 
the allocation of a task. Once it is determined that disagreements between agents are present, how 
agents will negotiate and whether one agent will have the ultimate authority will have to be 
considered. 

4.3.1.3.6 Metrics 

(Sachendra Yadav, 2023) highlights that an important aspect of task allocation is to measure the 
effectiveness and efficiency of the adopted strategy. Identify the strengths and weaknesses of the 
strategy.  

Measuring the effectiveness of a function allocation strategy in a human-AI team can be done through 
several metrics: 

• Workload: Assess the workload of both human and AI agents to ensure it is balanced and 
manageable. 

• Stability of the Work Environment: Evaluate how well the function allocation strategy adapts 
to changes in the work environment. 

• Mismatches Between Responsibility and Authority: Identify any discrepancies between the 
responsibilities assigned to an agent and their authority. 

• Incoherency in Function Allocations: Look for any inconsistencies or conflicts in the allocation 
of functions. 

• Interruptive Automation: Measure the extent to which automation interrupts human work. 
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• Automation’s Boundary Conditions: Determine the conditions under which automation 
performs effectively. 

• Function Allocations Limiting Human Adaptation to Context: Assess whether the function 
allocation strategy restricts human adaptability to changes in context. 

• Workflow Performance: Evaluate how well the function allocation strategy supports the 
overall performance of the workflow. 

4.3.1.4 Elements of Trust  

Trust is a subjective and abstract concept (Li et al., 2023), and is closely related to the fields of sociology 
and psychology. The definition of trust can vary significantly due to differences in the field of study, 
the specific objects and subjects being considered, and the contextual factors involved (Jøsang & 
McAnally, 2005). Therefore, there is no unanimous consensus on a single, widely accepted definition 
of trust. Typically, researchers define trust according to the specific scenario they are studying and 
identify the factors that influence it. Depending on the context, different forms of definition have been 
used. For example, in security (Internet of Things framework), trust can be understood as a relationship 
between nodes within a network. It can be defined as the subjective probability or possibility of one 
node exhibiting the desired behaviour as perceived by another node (Sfar et al., 2018). If the actions 
and behaviours of node B align with the expectations of node A, it can be said that node A trusts node 
B. In the context of node interactions, trust can be described as follows: Node B may be considered 
trustworthy by node A if node A believes that node B will strictly adhere to the expected and required 
behaviour. 

Though there are many competing definitions of trust (Kaplan et al., 2023), there has not been a 
consensus on one specific definition of the concept (Sheridan, 2019). Trust has been examined through 
meta-analyses in relation to other forms of technology, such as automation (Schaefer et al., 2016) and 
robots (Hancock et al., 2011); (Hancock et al., 2021), and through systematic review (Hoff & Bashir, 
2015). 

There are different definitions not only in different research fields, but also in the same context. An 
overview of user trust definitions and influencing factors in human-AI interaction has been conducted 
(Bach et al., 2022). 23 articles have been analysed: 7 articles provided trust definitions; 8 articles 
conceptualised trust, but did not define it, and the remaining 8 articles neither defined nor 
conceptualised trust.  

Concerning the articles that gave a definition of trust, 4 of them used Mayer’s (Mayer et al., 2006) trust 
definition ((Foehr & Germelmann, 2020); (Glikson & Woolley, 2020); (Lin et al., 2019); (Thielsch et al., 
2018)), 2 of them used Lee and See’s (Lee & See, 2004) trust definition ((Hoffmann & Söllner, 2014); 
(Zhou et al., 2020)), 1 article developed its own definition in combination with different works (Yan et 
al., 2013). 

The concept of trust is typically used in the technological environment. In the analysed articles, revised 
definitions are taken from the fields of sociology and psychology. The definitions are adapted 
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depending on the objective of the research. Thus, there is the need to give an unambiguous definition 
that can be used in the context of the Human-Machine Interaction.  

Once the definition of trust has been established, there is a need to look for what elements can 
increase and/or decrease the human operator's trust in the AI-enabled system. A growing number of 
researchers argue that fostering and maintaining user trust is the key to calibrating the user-AI 
relationship, achieving trustworthy AI and further unlocking the potential of AI for society.  

According to “EASA guidance for Level 1 & 2 machine learning applications”, one of the main 
contributors in increasing the trust is explainability. As an example, if the explanation is warning the 
end user about the malfunction of the AI based system, the explanation will not positively influence 
the end user’s trust in the system. Other influencing factors highlighted by the EASA guidance are: 

● End user’s general experience, belief, mindset, and prior exposure to the system.  
● The maturity of the system. 
● The end user’s experience with the AI-based system, whether the experience is positive and 

there is a repetition of a positive outcome. 
● The AI-based system knowledge on the end user’s positive experience regarding a specific 

situation.  
● The predictability of the AI-based system decision and whether the result expected is the 

correct one. 
● The reinforcement of the reliability of the system through assurance processes. 
● The fidelity and reliability of the interaction: 

o interaction will participate in end user’s positive belief over the AI-based system’s 
trustworthiness;  

o weak interaction capabilities, reliability, and experience can have a strong negative 
impact on the belief an end user may have in the trustworthiness of the whole system. 
It can even force him or her to turn off the system.  

Figure 18 Definition of Trust in various literature studies 
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There are several factors that can influence the trust. They can be divided into 3 categories: factors 
related to the human user (the trustor), factors related to the AI-system (the trustee), and the 
contextual factors, related to the interaction between trustee and trustor, and the task to be 
performed. Furthermore, human-related factors can be divided into “users’ abilities”, such as 
situational awareness and task performance, and “personal characteristics”, such as demographic 
information. AI-related factors can also be divided into “performance-related items”, such as 
reliability, and “attributes”, such as communication style. Contextual antecedents have here been 
related either to the “team”, such as shared tenure, or “team tasking”, such as difficulty. 
The analysis showed that human factors, AI factors and shared contextual factors are significant 
predictors of trust. Within each subcategory, multiple variables have both reported positive and 
negative influences on trust (Kaplan et al., 2023). Many of these have to do with the specific interaction 
between one single human user and a specific AI system. 

Table 6 List of factors influencing trust in AI 

Factors affecting trust 

Human (Trustor) AI (Trustee) Contextual 

User abilities 
Personal 

characteristic 
Performance-
related items 

Attributes Team Team tasking 

Competency/ 
Understanding 

Expectancy 

Expertise 

Operator 
performance 

Prior 
experience 

Workload 

Age 

Attitude 
towards AI 

Comfort with 
AI 

Culture 

Education 

Gender 

Personality 
traits 

Propensity to 
trust 

Satisfaction 

Dependability 

Performance 

Predictability 

Reliability 

AI personality 

Antropo-
morphism 

Appearance 

Behaviour 

Communicatio
n 

Level of 
automation 

Reputation 

Transparency 

Communicatio
n 

Interaction 
frequency 

Shared mental 
models 

Tenure 

Risk 

Task 
complexity 

Task type 

Monitoring factors that may influence trust in the AI system is undoubtedly important, but it remains 
a passive activity. It can be productive to identify which procedures can actively influence operator 
confidence. With this objective in mind, the study conducted by Bach et al. has taken into account 23 
articles, from which were identified 3 main themes: socio-ethical considerations (8 articles), technical 
and design features (12), and user characteristics (22). 

4.3.1.4.1 Socio-ethical considerations influencing user trust 

An important task to enhance user confidence is the preparation and adaptation of the environment 
in which a system is to operate (Lee et al., 2021). This is because the development of AI-enabled 
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systems is typically faster than the readiness of human users, and this mismatch might lead to low user 
trust. Some possible solutions to set up mechanisms in place to foster, maintain, and recover user trust 
(Binmad et al., 2017), might be, for example, ensuring user data protection, promoting high-quality 
user interactions and solution-oriented technical support. It was also suggested that user trust was 
likely to increase over time (Elkins & Derrick, 2013). Therefore, building and maintaining open 
communications with users, for example, by requesting ongoing feedback of an AI-enabled system 
being used, can be useful to increase user trust. 

4.3.1.4.2 Technical and design features influencing user trust 

During the development of a virtual agent whose task is to assist and communicate with a user, the 
following technical and/or design features were found to increase trust: 

1. Anthropomorphism and human-like features, especially benevolent features (e.g., smiling, 
showing interest in the user) in an AI-enabled system. 

2. Immediacy behaviours in which the AI-enabled system could create and project a perception 
of physical and psychological closeness to the user. 

3. Social presence of the AI-enabled system (Morana et al., 2020); (Weitz et al., 2021). 
4. Integrity of the AI-enabled system (i.e., repeatedly satisfactory task fulfilment) (Höddinghaus 

et al., 2021). 
5. Supporting text/speech output when communicating with users. 
6. Providing users with texts rather than a synthetic voice (Law et al., 2021). 
7. A lower vocal pitch of the AI-enabled system. 

Specifically, for AI/ML and automated algorithms, the following technical and/or design features were 
found to influence user trust: 

1. Explanations and information regarding how the algorithm worked, AI’s actions (Barda et al., 
2020), (O’Sullivan et al., 2019), reflections of AI reliability, model performance (Zhang & 
Hußmann, 2021), feature influence methods, risk factors to predictive models, contextual 
information and interactive risk explanation tools (baseline risk and risk trends). 

2. Correctness of AI/ML predictions. 
3. AI/ML integrity. 

In Thielsch et al., it was found that system reliability (dependability, lack and correctness of data, 
technical verification, distribution of the system) and the quality of the system information (credibility) 
influenced user trust. If an information system used a website to interact with users, multimedia 
features, security certificate/logo, contact information, and a social networking logo were found to be 
important for user trust (Sharma, 2015). 

4.3.1.4.3 User characteristics influencing user trust 

User characteristics can be divided in user inherent characteristics, user acquired characteristics, user 
attitudes and user external variables. 

User inherent characteristics (personality traits and gender) 

It was observed that personality traits of the users can influence predictive decision-making and trust 
in AI-enabled systems (Zhou et al., 2020). The study used the big five personality traits (Gosling et al., 
2003) and found that Low Openness traits (practical, conventional, prefers routine) had the highest 
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trust, followed by Low Conscientiousness (impulsive, careless, disorganised), Low Extraversion (quiet, 
reserved, withdrawn), and High Neuroticism (anxious, unhappy, prone to negative emotions). A user 
interface was suggested to include modules to identify and inform user personality traits to users. This 
would allow users to be aware of how their personality traits influenced their decision-making when 
interacting with an AI-enabled system. Moreover, women were more likely to trust an AI-enabled 
system (Morana et al., 2020). 

User-acquired characteristics (user experiences and educational levels) 

A previous experience with a provider or a producer of an AI-enabled system can influence user trust. 
Positive experiences with a system allowed the user to be rooted deeply in the provider’s or producer’s 
ecosystem, enabling the transfer of such trust to other systems from the same provider or producer.  
Generally, users without a college education were less likely to trust an AI-enabled system than those 
with a college education (Elkins & Derrick, 2013). The study also found that trust increased over time 
along with growing familiarity with the system, including when the initial trust level in the AI-enabled 
system is relatively low. 

User attitudes (user acceptance and readiness, needs and expectations, judgement and perceptions) 

User acceptance and readiness of an AI-enabled system were found to be key determinants of user 
trust ((Foehr & Germelmann & Germelmann, 2020); (Khosrowjerdi, 2016); (Klumpp & Zijm, 2019); 
(Smith, 2016)). Two studies suggested that addressing challenges such as artificial divide (Klumpp & 
Zijm, 2019) and user uncertainties (Hoffmann & Söllner, 2014) were fundamental for promoting user 
acceptance and readiness. The first study defined the artificial divide as the ability or lack thereof to 
cooperate successfully with AI-enabled systems. The study outlined that users might be divided by 
their motivation (e.g., intention to use) and technical competence toward AI-enabled systems. The 
study highlighted the importance of analysing artificial divide elements (e.g., rejection of an AI-enable 
system) and addressing challenges properly (e.g., early-stage user involvement, training, enhanced 
user experience and empowerment) to foster user trust and prevent mistrust. 

The second study suggested that user uncertainties had to be addressed by identifying and prioritising 
the uncertainties and their antecedents in relation to a specific AI-enabled system, improving user 
understandability, sense of control, and information accuracy. 

User needs and expectations of AI-enabled systems included user intention to use an AI-enabled 
system (Khosrowjerdi, 2016), relevance of technical system quality (e.g., reliability) and information 
quality (e.g., credibility) to users (Thielsch et al., 2018), as well as usefulness of an AI-enabled system 
to its users (Foehr & Germelmann, 2020). In general, user expectations of an AI-enabled system might 
not be aligned with the intention of the system’s investors and developers (Lee et al., 2021). This might 
result in the system being operated in a way that was unforeseen by investors or developers, hitting 
and missing the target user expectations. The mismatch between user expectations and experiences 
was suggested to be a risk to user trust and needed to be addressed, especially when users were 
heavily dependent on specific AI-enabled systems. 

For user judgement and perceptions, the key elements found to be affecting user trust in an AI-enabled 
system included perceived credibility (e.g., expertise, honesty, reputation, and predictability), risk (i.e., 
likelihood and severity of negative outcomes), and ease of use (e.g., searching, transacting and 
navigating) ((Corritore et al., 2012); (Foehr & Germelmann, 2020)) as well as perceived benevolence, 
integrity and transparency ((Elkins & Derrick, 2013); (Höddinghaus et al., 2021)). Importantly, it was 
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found that the relatability a user felt to an AI-enabled system determined the user’s trust in the system 
((Thielsch et al., 2018); (Zhang & Hußmann, 2021)). 

Figure 19 Influencing factors of trust 

User external variables (initial interactions, user interactions, cognitive load levels, time and usage) 

When an AI-enabled system was introduced to a potential user through the user’s close relatives, 
friends or partner, the potential user typically used this opportunity to collect information regarding 
the system’s benevolence, ability, and integrity (Foehr & Germelmann, 2020). Importantly, initial trust 
was likely to be fostered as well. In review-based recommender systems, the quality of user 
interactions on an AI-enabled system’s platform was found to be a determinant of user trust ((Duffy, 
2017); (Lin et al., 2019)). Creating an effective environment where users were willing to exchange social 
support and share high-quality reviews was suggested as crucial to foster and maintain user trust. 
Another important determinant of user trust was the user’s cognitive load when interacting with an 
AI-enabled system (Zhou et al., 2020). When under a low cognitive load, the user was more willing to 
trust a system enabled by a greater availability of the user’s cognitive resources which allowed more 
confidence and willingness to analyse and understand the AI-enabled system. 

One study found that user trust increased as more time was spent interacting with an AI-enabled 
system (Elkins & Derrick, 2013), likely as a result of understanding the system better and thus 
perceiving it had greater integrity. 

Finally, usage was suggested as a reliable predictor of user trust; the more a user used an AI-enabled 
system, the more they trusted the system.  

Trust is one of the foundational attitudes within human interaction and without it, many important 
social bonds would be jeopardised. Without a minimal amount of trust in others, we would become 
paranoid and isolationist because of fear of deceit and harm (O'Neill, 2003). 
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The placement of trust in someone often requires a belief about their trustworthiness, but the two are 
not synonymous. Being trustworthy helps in gaining trust but is neither necessary nor sufficient. 
Deceivers can attract others' trust, so “Misplaced trust” is common enough. The trustworthy can be 
denied others’ trust, so “Misplaced Mistrust” is also common enough. 

It is possible to take into account three dominant trust paradigms to analyse if AI can be something 
that has the capacity to be trusted (Ryan, 2020): 

• The rational account, in which the trustor is making a logical choice, weighing up the pros and 
cons, when determining whether to place their trust in the trustee; it is a rational calculation 
of whether the trustee is someone that will uphold the trust placed in them. 

• The affective account, that states the trustor places a confidence in, and belief in, the goodwill 
of the trustee. There is an “expectation that the one trusted will be directly and favourably 
moved by the thought that someone is counting on him”. 

• The normative account, that implies the trustee’s actions will be grounded on what he ought 
to do. 

In order to evaluate whether the definition of trust is respected, it is possible to see if a set of 
characteristics are met: 

1. ‘A’ has confidence in ‘B’ to do ‘X’. 

2. ‘A’ believes ‘B’ is competent to do ‘X’. 

3. ‘A’ is vulnerable to the actions of ‘B’. 

4. If ‘B’ does not do ‘X’ the ‘A’ may feel betrayed. 

5. ‘A’ thinks that ‘B’ will do ‘X’, motivated by one of the following reasons: 

a. Their motivation does not matter (rational trust). 

b. ‘B’s’ actions are based on a goodwill towards ‘A’ (affective trust). 

c. ‘B’ has a normative commitment to the relationship with ‘A’ (normative trust). 

According to these characteristics, it can be noticed that AI can meet only the first three requirements. 
Furthermore, the first three requirements describe the rational account, thus the trust in AI can be 
seen more as a sort of reliance. 

Concerning the fourth characteristic, the author highlights the difference between betrayal and 
disappointment. Betrayal closely relates to the confidence placed in, and confidence of, the trustee. 
Disappointment is the appropriate response when someone simply relied on someone or something 
to perform a task. We feel disappointed by those we rely on but feel betrayed by those we trust. The 
exclusion of betrayal is incompatible with the normative and affective accounts of trust, but non-
necessarily the rational account of trust. 

In conclusion, AI is not a thing to be trusted. The rational account of reliability does not require AI to 
have emotion towards the trustor (affective account) or be responsible for its actions (normative 
account). 
One can rely on another based on dependable habits, but placing a trust in someone requires they act 
out of goodwill towards the trustor. This is the main reason why human-made objects, such as AI, can 
be reliable, but not trustworthy, according to the affective account. 
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In the normative account, the trustee must be held responsible for its actions, which AI cannot. 
Whereas, reliable AI places the burden of responsibility on those developing, deploying and using these 
technologies. 

4.4 Explainable Artificial Intelligence (XAI) 

The effectiveness of an AI-powered system is greatly limited by the machine’s inability to explain its 
decisions and actions to human users. 

Automated decision-making systems always raise transparency and accountability issues. However, 
since the approval of the European General Data Protection Regulation (Reg. EU 2016/679) these 
problems have been addressed from a different perspective. The GDPR, indeed, rephrased and 
strengthened the individual prerogatives related to a “right to an explanation”, implicitly elevating the 
standards of compliance for systems involving opaque models and logics. Accordingly, researchers and 
companies started to develop new AI frameworks, putting more emphasis on the aspect of 
accountability related to these aspects 

The need for XAI has to be seen considering 5 perspectives (Saeed, W. et al., 2023) 

 
Figure 20 The five main perspectives for the need for XAI (Saeed, W. et al., 2023) 

• Regulatory perspective: Black-box AI systems are being utilised in many areas of our daily lives, 
which could be resulting in unacceptable decisions, especially those that may lead to legal 
effects. Thus, it poses a new challenge for the legislation. The European Union’s General Data 
Protection Regulation (GDPR) is an example of why XAI is needed from a regulatory 
perspective. These regulations create what is called the ‘‘right to explanation”; 

• Scientific perspective: XAI can be helpful to reveal the scientific knowledge extracted by the 
black-box AI models, which could lead to discovering novel concepts in various branches of 
science; 

• Industrial perspective: Regulations and user distrust in black-box AI systems represent 
challenges to the industry in applying complex and accurate black-box AI systems. It can help 
in mitigating the common trade-off between model interpretability and performance, 
however, it can increase development and deployment costs; 
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• Model’s developer perspective: XAI can be used to understand, debug, and improve the black-
box AI system to enhance its robustness, increase safety, and minimise or prevent faulty 
behaviour; 

• End-user and social perspectives: to understand if the system serves what it is designed for 
instead of what it was trained for. Figure 2 schematizes well the needs of accomplishing such 
perspective, due to its tight correlation with trust.  

 
Figure 21 Synthesised framework for XAI research from a user perspective (Haque, A. B, et al., 2023) 

In 2015, the Defence Advanced Research Project Agency (DARPA) launched a four-year research 
program on the topic with two main goals. The first one was to create machine learning techniques 
producing models that can be explained (their decision-making process as well as the output), while 
maintaining a high level of learning performance. The second goal was to convey a user-centric 
approach, in order to enable humans to understand their artificial counterparts. 

Accordingly, the research topics around Explainability, first addressed by DARPA, then largely 
recognized by the scientific community ground on the following key questions (DW, 2019): 

i) how to produce more explainable models  
ii) how to design explanation interfaces  
iii) how to understand the psychological requirements for effective explanations. 

4.4.1 XAI Terminology 

The first issue towards developing the ground knowledge of Explainability of Artificial Intelligence is 
the range of interchangeable terms used to describe some desired characteristics of an AI. 

This includes (The Royal Society, 2019; Degas, A., et al., 2022):  

• Interpretability, implying some sense of understanding how the technology works intending a 
property of an explanation; 

• Transparency, implying some level of accessibility to the data or algorithm, indicating also the 
ability to be understandable to humans considering three kind of transparent models; 
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o “simulatable” models have the capacity to make humans understand their structure 
and functioning entirely; 

o decomposable models can be decomposed into individual components, i.e., input, 
parameters and output, and their respective intuitions; 

o algorithmically Transparent models behave “sensibly” in general with some degree of 
confidence. 

• Justifiability, implying there is an understanding of the case in support of a particular outcome;  

• Contestability, implying users have the information they need to argue against a decision or 
classification; 

• Understandability, often termed as Intelligibility, implying a model that helps a user realise its 
functions. In other words, how the model works without any requirement of further 
explanation for the model’s internal operations on the data; 

• Comprehensibility, which has been used to define the ability of an ML model to represent its 
learned knowledge to humans in an understandable way. Clearly, the prior terms differ from 
the second on representing the internal operations on the data and the knowledge acquired 
from the data. 

Above all, the term “Explainability” implies that a wider range of users can understand why or how a 
conclusion was reached. 

Explainable AI (XAI) explains the inner process of a model i.e., used to provide the explanation of the 
methods, procedures and output of the processes and that should be understandable by the users. 

DARPA adopted the term ‘‘Explainable AI’’ (XAI).  

 
Figure 22 XAI Concept (DARPA-BAA-16-53, 2016) 

According to (EASA, 2022) AI Explainability is defined as the  

“Capability to provide the human with understandable, reliable, and relevant information with 
the appropriate level of details and with appropriate timing on how an AI/ML application 
produces its results”.  

For EASA, different perspectives under which Explainability has to be studied lead to two different 
types of explainability: Development & post-ops explainability and Operational explainability.  
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4.4.2 XAI Principles and Attributes  

The National Institute Standard Technology (NIST) in 2021 has introduced four principles (Phillips, P. 
et al., 2020) (Figure 1) to which an Explainable artificial intelligence (XAI) system has to adhere:  

 

Figure 23 Illustration of the four principles of explainable artificial intelligence according to (Phillips, P. et al., 
2020) 

• Explanation: A system delivers or contains accompanying evidence or reason(s) for outputs 
and/or processes. By itself, the explanation principle is independent of whether the 
explanation is correct, 

• informative, or intelligible. This principle does not impose any metric of quality on those 
explanations; 

• Meaningful: A system provides explanations that are understandable to the intended 
consumer(s). This principle encompasses different perspectives – which are the intended 
target user of the explanation, what information people will find important, relevant, or useful, 
which is the needed prior knowledge and experiences to understand the explanation; 

• Explanation Accuracy: An explanation correctly reflects the reason for generating the output 
and/or accurately reflects the system’s process. Explanation accuracy is a distinct concept from 
decision accuracy. It mustn’t be confused with Decision accuracy referring to whether the 
system’s support to decision is correct or incorrect. The explanation may or may not accurately 
describe how the system came to its conclusion or action. Additionally, explanation accuracy 
needs to account for the level of detail in the explanation. For some target audiences and/or 
purposes, simple explanations could be sufficient for other could not. 

• Knowledge Limits: A system only operates under conditions for which it was designed and 
when it reaches sufficient confidence in its output. The Knowledge Limits principle states that 
systems identify cases in which they were not designed or approved to operate, or in cases for 
which their answers are not reliable.  

According to NIST Explanation are characterised by the following attributes: 

• Purpose is the reason why a person requests an explanation or what question the explanation 
intends to answer; 

• Style describes how an explanation is delivered:  

o level of detail as a range, from sparse to extensive 
o degree of interaction between the human and machine: 
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▪ declarative explanations - the system provides an explanation, and there is no 
further interaction  

▪ one-way interaction - explanation is determined based on a query or question 
input to the system  

▪ two-way interaction - a conversation between people. The person can ask 
clarifying questions, or provide new avenues of exploration, and the machine 
answers 

o Explanation format- visual and graphical, verbal, and auditory or visual alerts. 

4.4.3 XAI Taxonomy  

Various taxonomies are proposed for XAI. In (Speith, T., 2022 and Schwalbe, G., et al., 2023), based on 
extensive research, an XAI taxonomy is built considering different approaches: 

• The functioning-based approach, meaning the way an explainability method extracts 
information from an ML model  

 
Figure 24 XAI taxonomy according to the Functioning based approach proposed by Samek and Muller 

(Speith, T., 2022) 

• The result-based approach takes the result of an explainability method as the essential 
constituent for its classification 

 
Figure 25 XAI taxonomy according to the Result based approach proposed by McDermid et al (Speith, T., 

2022) 

• The conceptual-based approach splits up the classification of explainability methods into 
several distinct conceptual dimensions such as: stage (ante-hoc vs. post-hoc), applicability 
(model-agnostic vs. model-specific), and scope (local vs. global). Such an approach has been 
integrated with other dimensions such as those linked to the output format distinguishing 
numerical, rules, textual, visual, and mixed. The stage represents the period in which a model 
generates the explanation for the output it provides. The stages are ante-hoc and post-hoc. 
Ante-hoc methods generally consider generating the explanation for the output from the very 
beginning of the training on the data while aiming to achieve the optimal performance. Post-
hoc methods comprise an external or surrogate model and the base model. The base model 
remains unchanged, and the external model mimics the base model’s behaviour to generate 
an explanation for the users. The post-hoc methods are again divided into two categories: 
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Model-agnostic and model-specific. The model-agnostic methods are applicable to any AI/ML 
model, whereas the model specific methods are confined to particular models. 

• The mixed based approach joins the previous ones. An example is reported in Figure 7 

 
Figure 26 XAI taxonomy according to the mixed based approach (Speith, T., 2022) 

After scanning more than 200 scientific articles published on XAI, Vilone and Longo deduced that the 
scope of explainability can be either global or local (Degas, A., et al., 2022).  

In (Degas, A., et al., 2022) another classification of XAI is proposed, which seems to complement the 
functioning-based approach: 

● Descriptive XAI: The system should be able to provide to all users the detailed description and 
rationale of the action to be taken.  

● Predictive XAI: The XAI should be able to determine the ‘what if’ conditions or in other words, 
provide information to all stakeholders what will be the consequences of the actions that will 
be taken.  

● Prescriptive XAI: The induced AI functions will, in addition to the above information, be able 
to suggest/propose the appropriate actions and options along with an appropriate explanation 
such that stakeholders can decide on the next course of actions. In the above scenario, the 
user can use the XAI prediction to assess the efficiency of potential actions—‘what if’. XAI 
prescription will provide sufficient information to enable the user with immediate action to 
perform without testing them. One of the most recent work (Schwalbe, G., et al., 2023) 
presents a comprehensive taxonomy considering an increased number of dimensions 
including the task and other elements of the explanator (Figure 27)  
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Figure 27 Overview of a complete taxonomy (Schwalbe, G., et al., 2023) 

4.4.4 XAI Methods 

The international community has developed a very broad range of different methods and approaches.  
Holzinger, A. et al., 2020, proposes an overview of the chronology of development of successive 
explanatory methods (see Figure 8) and a useful discussion on the basic ideas and the current 
limitations of the analysed methods.  

 
Figure 28 Chronology of the development of successive explanatory methods (Holzinger, A. et al., 2020) 
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In the table below are reported useful links for some of the most used XAI methods.  

Table 7 Explainable AI Methods list and repositories 

XAI method GitHub Repo 

LIME (Local Interpretable Model Agnostic 
Explanations) 

https://github.com/marcotcr 

Anchors https://github.com/marcotcr/anchor 

GraphLIME https://github.com/WilliamCCHuang/GraphLIME 

LRP (Layer-wise Relevance Propagation) https://github.com/chr5tphr/zennit 
https://github.com/albermax/innvestigate 

Deep Taylor Decomposition (DTD) https://github.com/chr5tphr/zennit 
https://github.com/albermax/innvestigate 

Prediction Difference Analysis (PDA) https://github.com/lmzintgraf/DeepVis-PredDiff 

TCAV (Testing with Concept Activation Vectors) https://github.com/tensorflow/tcav 

XGNN (Explainable Graph Neural Networks) https://github.com/divelab/DIG/tree/dig/bench
marks/xgra 
ph/supp/XGNN 

SHAP (Shapley Values) https://github.com/slundberg/shap 

Asymmetric Shapley Values (ASV) https://github.com/nredell/shapFlex 

Break-Down https://github.com/ModelOriented/DALEX 

Shapley Flow https://github.com/nathanwang000/Shapley-
Flow 

Textual Explanations of Visual Models https://github.com/LisaAnne/ECCV2016 

Integrated Gradients https://github.com/ankurtaly/Integrated-
Gradients 

Causal Models No Github Repo 

Meaningful Perturbations https://github.com/ruthcfong/perturb 
explanations 

EXplainable Neural-Symbolic Learning (X-NeSyL) https://github.com/JulesSanchez/X-NeSyL, 
https://github.com/JulesSanchez/MonuMAI-
AutomaticStyleClassification 

(Degas, A., et al., 2022) proposed a rigorous review of the XAI methods, used in the last five years in 
ATM applications.  

https://github.com/tensorflow/tcav
https://github.com/nredell/shapFlex
https://github.com/ModelOriented/DALEX
https://github.com/ankurtaly/Integrated-Gradients
https://github.com/ankurtaly/Integrated-Gradients
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Figure 29 XAI methods with associated types of explanations (N: Numeric, R: Rules, T: Textual, V: Visual), stage 
(Ah: Ante-hoc, Ph: Post-hoc), scope (L: Local, G: Global) of explainability, and the design spaces (P: Prediction, 
O/A: Optimisation/Automation, A: Analysis, M/S: Modelling/Simulation) (Degas, A., et al., 2022) 
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(Schwalbe, G., et al., 2023) proposed another rigorous review of the XAI methods independent of the 
application domain that goes through the three strategies proposed by the DARPA program: deep 
explanation, interpretable models and model induction.  

Further analysis on the methods is provided in (Holzinger, A. et al., 2020), a complete book of a 
conference where the term XXAI means beyond the Explainable AI.  

An interesting summary of limitations of the current “explainers” is reported in (Swamy, V. et al., 2023). 
Post-hoc approaches are most commonly investigated, and they don’t impact the model accuracy and 
don’t require additional effort during training. Local, instance-specific post-hoc techniques such as 
LIME and SHAP have been effectively utilised in a variety of models. Counterfactual explanations have 
been used in numerous classification tasks. Each of the post-hoc XAI solutions presented above, among 
many others not mentioned, have weaknesses for deployment in a real-world setting. The 
computational time, especially with SHAP, LIME, or counterfactual generation, is in the tens of 
minutes; not real time enough for users. In most cases, there is no measurement of trust or confidence 
in a generated explanation. The actionability and human-understandability of the explanation is based 
on the input format. As human-centric tasks often use tabular or time series data, their subsequent 
explanations are often not concise, actionable or interpretable. Lastly, the consistency of the 
explanations is not intrinsically measured; generating an explanation for the next step in the time 
series could vary greatly from the previous step. Several explainability methods could produce vastly 
different explanations with different random seeds. 

Less research has focused on in-hoc methods. 

4.4.5 XAI main Toolboxes  

The international community has developed a very broad range of different methods and approaches 
and here we provide a short concise overview to help engineers but also students to select the best 
possible method. Figure 10 shows some of the most popular XAI toolboxes (Holzinger, A. et al., 2020). 
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Figure 30 Number of stars on GitHub for the most popular repositories (Holzinger, A. et al., 2020) 

While these repositories focus on the explanation task, the new Quantus toolbox proposed in 
(Hedström, A., et al., 2022) offers a collection of methods for evaluating and comparing explanations. 

XAI for reinforcement learning tasks There are some studies specifically focusing on explanations in 
tasks solved by reinforcement learning. One is that by (Puiutta E, 2020.) It reviews more than 16 
methods specific to reinforcement learning in a beginner-friendly way. Comparable and more recent 
surveys on the topic are by Heuillet et al (2021) and (Vouros, 2022). 

XAI from a HCI perspective When humans interact with AI-driven machines, this human-machine-
system can benefit from explanations obtained by XAI. DARPA program structure anticipated the need 
for a grounded psychological understanding of explanation, summarising psychological theories of 
explanation to assist the XAI developers and the evaluation. The concept of user-centric XAI requires 
a highly interdisciplinary perspective. This is based on fields such as computer science, social sciences 
as well as psychology in order to produce more explainable models, suitable explanation interfaces, 
and to communicate explanations effectively under consideration of psychological aspects. Figure 11 
illustrates a top-level descriptive model of the XAI explanation process (Gunning, D et al., 2021) 

 

Figure 31 Psychological model of explanation. Yellow boxes illustrate the underlying process, the green 
boxes illustrate the measurement opportunities and the white boxes illustrate potential outcomes (Gunning, 

D et al., 2021) 

The work initiated by DARPA has been further developed. Hence, by now there are several surveys 
concentrating on XAI against the background of human-computer interaction (HCI). The survey in 
(Ferreira JJ, et al., 2020) is slightly longer, and may serve as an entry point to the topic for researchers. 
(Schwalbe, G., et al., 2023) highlights different works exploring the concept of explanations and 
explainability concluding that: (a) (local) explanations should be understood contrastively, i.e., they 
should clarify why an action was taken instead of another; (b) explanations are selected in a biased 
manner, i.e., do not represent the complete causal chain but few selected causes; (c) causal links are 
more helpful to humans than probabilities and statistics; and (d) explanations are social in the sense 
that the background of the explanation receiver matters. Other works rigorously develop a taxonomy 
for evaluating black-box XAI methods with the help of human subjects with concrete suggestions for 
study design. Very recent work on XAI metrics is provided by (Mueller ST, et al., 2021.) where concrete 
and practical design principles for XAI in human-machine-system and several relevant XAI metrics are 
recapitulated. 
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DARPA studies on such aspects (Gunning et al., 2021) were blocked by the recent pandemic, but the 
main conclusions on such aspects were: 

• Users prefer systems that provide decisions with explanations over systems that provide only 
decisions. Tasks where explanations provide the most value are those where a user needs to 
understand the inner workings of how an AI system makes decisions. 

• To improve user task performance, the task must be difficult enough that the AI explanation 
helps (PARC, UT Dallas). 

• User cognitive load to interpret explanations can hinder user performance. Combined with the 
previous point, explanations and task difficulty need to be calibrated in order to improve user 
performance.  

• Explanations are more helpful when an AI is incorrect and are particularly valuable for edge 
cases 

• Measures of explanation effectiveness can change over time.  

XAI from the evaluation perspective. Another hot research topic around XAI are metrics for measuring 
the quality of explanations for human receivers. In 2017, Doshi-Velez and Kim proposed a base work 
on XAI metric categorization (Doshi-Velez et al., 2017). DARPA proposed metrics as well (DW, 2019) 

 
Figure 32 Measure of Explanation proposed by DARPA (DW, 2019) 

(Schwalbe et al., 2023) collects from other surveys latent dimensions of interpretability with 
recommendations and proposes a classification metrics into: 

● Functionally grounded: Faithfulness fidelity soundness or causality, Completeness, or 
coverage, Localization accuracy Overlap, Accuracy of the surrogate model, Architectural 
complexity, Algorithmic complexity, Stability or robustness, Consistency, Sensitivity, 
Expressiveness or the level of detail; 

● Human grounded: Interpretability or comprehensibility, Effectiveness, (Time) Efficiency, 
Degree of understanding, Information amount; 

● Application grounded: Satisfaction, Persuasiveness, Improvement of human judgement, 
Improvement of human-AI system performance, Automation capability, Novelty.  
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A full focus on metrics for evaluating XAI methods is set in the recent work by (Zhou J, et al., 2021).  

4.4.6 XAI from Explanation Interface perspective (Chromik et al., 2021) 

The DARPA program distinguishes between the explainable model and the explanation user interface 
disentangling the ML model behaviour analysis from communicating it to the user. DARPA classified 
the interfaces according to the terms reported in the figure below.  
 

 
Figure 33 Explanation Interface types (Gunning, D et al., 2021) 

(Chromik, M., et al., 2021) defines an XAI Explanation interface with the term XAI user interface (XUI) 
as the sum of outputs of an XAI system that the user can directly interact with. Most XAI research 
focuses on computational aspects of generating explanations while limited research is reported 
concerning the human-centred design of the XUI. Google's People+AI Guidebook2 presents case 
studies of explanations integrated into mobile apps. The relevant point highlighted in literature is that 
“…explainability can only happen through interaction between human and machine..”. In (Chromik, M., 
et al., 2021) is argued that different types of interaction of AI with Human lead to different type of 
explanation interface proposed that on turn identify further research subtopics: 

• Interaction as (Information) Transmission - this interaction is 
mainly about unidirectional XUI presents users with accurate or 
complete explanation about AI behaviour; 

• Interaction as Dialogue – XUI allows a cycle of communication 
of inputs/outputs by the computer and perception/action by a 
human; 

• Interaction as Control Built on control theory XUI feeds control 
signals from the ML model to the human controller (feedback). 
These inform the controller how to change parameters of the ML 
model or its data so that the model adjusts its behaviour 
(feedforward); 

• Interaction as Optimal Behaviour: XUI provides explanations for 
training humans to have better interactions with AI, for example, 
when they face erroneous AI systems or exhibit misconceptions 
caused by cognitive biases. It is divided in research that (i) 
examines limitations that occur during the interaction with an XAI 
and (ii) designs interactions to better moderate these limitations; 
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• Interaction as Experience - XUI emphasises managing the 
expectations and preferences of users about the AI. It centres 
around the explanatory goals of trust; 

• Interaction as Embodied Action XUI is built on theories from the 
computer-supported cooperative work (CSCW) community, 
such as mutual goal understanding, pre-emptive task co-
management and shared progress tracking. XUIs which are not 
only about understanding AI agents (interaction as 
transmission), but which enabled them to also influence the 
agents' actions; 

• Interaction as Tool Use - XUI is built on Activity theory where the 
system influences the mental functioning of individuals and 
facilitates the learning from AI.  

4.5 Performance Measures 

In addition to the key performance indicator (KPI) defined SESAR Performance Framework other 
metrics have been proposed in the literature. As long as we do not completely replace humans with 
unmanned autonomous systems the best choice is human machine teaming or collaboration, but such 
teaming comes with its own set of challenges. Metrics are crucial to accurately and effectively measure 
human-machine teaming (HMT) across multiple fields. As stated in (Damacharla et al., 2018), to be 
deemed as an HMT, a team should contain at least one human and one machine/intelligent system 
and they propose to define HMT as a combination of cognitive, computer, and data sciences; 
embedded systems; phenomenology; psychology; robotics; sociology and social psychology; speech-
language pathology; and visualisation, aimed at maximising team performance in critical missions 
where a human and machine are sharing a common set of goals. The machines that take part in an 
HMT must belong to one of the following categories: unmanned aerial vehicles (UAVs), unmanned 
ground vehicles, AI robots, digital assistants, and cloud assistants. Following this approach, metrics can 
be related to human, machine and team. 

4.5.1 Human metrics 

Human-metrics measure different human aspects such as system knowledge, performance, and 
efficiency that can be used to evaluate a human agent in an HMT. Situational awareness (SA) is 
measured by monitoring task progress and sensitivity to task dynamics during execution. The degree 
of mental computation estimates the amount of cognitive workload an operator manages to complete 
a task (Steinfeld et al., 2006), (Sammer et al., 2007). The accuracy of a mental model of an operator 
depends on interface comprehensiveness and simplicity in addition to control and compatibility a 
machine provides. Attention allocation measures the attention an operator pays to a team’s mission 
and the operator’s ability to assign strategies and priorities of tasks dynamically. The metric also 
considers an operator’s degree of attention over multiple agents. It is measured using eye tracking, 
duration of eye fixations to an area of interest, and task completion rate, while attention allocation 
efficiency is measured using wait times (Pina et al., 2008), (Crandall et al., 2007). Intervention frequency 
is the frequency with which an operator interacts with the machine (Harriott et al., 2014). As per the 
literature, operators’ intervention frequency is also known as intervention rate or percentage requests. 
Stress can be physical or mental. However, both may indicate the operator’s workload and are 
measured in two ways. First, researchers perform sample testing of humans’ stress hormones, such as 
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cortisol and catecholamine, which are found in blood, saliva, and urine samples (Rapolienė et al., 
2016). Second, researchers can perform a detrended fluctuation analysis of a human’s heartbeat 
(Yazawa et al., 2013).  

Human safety metrics involve evaluation of the risk posed to the human life while working near 
machines, for example, the location of the machine relative to the human. Human factor studies 
suggest that humans can establish the best cooperation with a machine through a 3D immersive 
environment (Corbillon et al., 2017). In (Forouzandehmehr et al., 2013) and (Saad et al., 2016), 
researchers suggest that humans can be more effective when the environment and goals are in their 
best interest. Other human performance attributes such as psychomotor processing, spatial 
processing, composure and perseverance are important to improve the team cohesion through human 
performance enhancement.  

4.5.2 Machine metrics 

Machine-level metrics related to HMT cope with efficiency, performance and accuracy. In particular, 
machine self-awareness, or the degree to which a machine is aware of itself (limitations, capacities), is 
a precursor to reducing the human cognitive load and measured based on autonomous operation time, 
the degree of autonomy and task success (Steinfeld et al., 2006), (Gorbenko et al., 2012). Instead, 
unscheduled manual operation time may either be an interruption period in the current plan execution 
or an unexpected assigned task (Schreckenghost et al., 2010). Neglect tolerance (NT) is interpreted in 
various ways, such as machine performance falling below expectation, time to catch-up, the idle 
period, or operation time without user intervention. State metric helps track the machine or plan state 
based on four dynamic states: assigned, executed, idle, and out of the plan. Robot attention demand 
(RAD) is a measure of the fractional ‘‘task time’’ a human spends to interact with a machine. Fan out 
(FO) is a measure of how many robots with similar capabilities a user can interact with simultaneously 
and efficiently and is the inverse of RAD (Abou Saleh, 2010). Interaction effort (IE) is a measure of the 
time required to interact with the robot based on experimental values of NT and FO and is used to 
calculate RAD (Abou Saleh et al., 2010), (Crandall et al., 2005). 

4.5.3 Team metrics 

Mission assignment and execution is the key focus of team metrics. Task difficulty represents the 
mental load a particular task generates (Greitzer et al., 2005). The task difficulty metric for a machine 
depends on FO and requires three factors for measurement: recognition accuracy, situation coverage, 
and critical time ratio of a machine (Glas et al., 2011). Recognition accuracy is the ability of the machine 
to sense its I/O parameters. Situation coverage (SC) is the percentage of situations encountered and 
accomplished by the robot. SC is defined based on plan and act stages of the mission. Critical time ratio 
is the ratio of time spent by a robot in a critical situation to the total time of interaction (Glas et al., 
2011). Network efficiency is the rate of flow of information between the human and the machine and 
determines the efficiency of interaction. It also influences time taken for scheduled and unscheduled 
manual operations, accuracy of mental computation, negligence tolerance, and human-machine ratio 
(Harriott et al., 2014). Four well-known subclasses of false alarms are true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) (Elara et al., 2010). While false alarms measure complex 
communication between humans and machines in a team, people may ignore false alarms. A human 
factor study presented a trade-off between ignoring false alarms and misses and concluded that alarms 
are strongly situation dependent (Meyer et al., 2001). Some other team metrics that can be used in 
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effective interactions are hits, misses, automation bias and misuse of automation or metrics based on 
application scenario (Doisy et al., 2014). Robustness measures the ability of the team to adapt to the 
changes in task and environment during task execution (Shah et al., 2007) while productivity measures 
productive time compared to total invested time. Task success ratio indicates the number of 
completed versus allocated tasks (Schreckenghost et al., 2010).  

4.5.4 Metrics classification 

According to the review (Damacharla et al., 2018), metrics can be functionally classified in four classes: 
efficiency, time, mission and safety. Metrics to evaluate efficiency will give the observer the required 
V&V to tune each agent to operate with maximum efficiency (e.g. attention allocation, decisions 
accuracy, mental workload). Time metrics provide data related to the time taken for different 
operations by machine, human, and team, and these metrics are very important in decision-making 
and performance and status determination (e.g. neglect tolerance, critical time ratio, autonomous 
operation time). Mission metrics measure attributes related to a task such as planning (e.g. reliability, 
trust, total coverage). Safety metrics measure the agent and mission safety during task execution (e.g. 
risk to human, general health, critical hazard). Another class of metrics, termed as applied metrics, 
deals with the practicality and research on metrics and is divided into research (e.g. fatigue, stress, 
situation awareness) and non-research (e.g. false alarms, team productivity, task success) metrics. 

Subjective metrics (SM) are used to measure abstract qualities based on human perception. These 
metrics may include feedback or judgement from observers (superiors or experienced professionals), 
for example, self-feedback, evaluation, or ratings. These metrics are measured using scales rating from 
experts. 

Objective metrics (OM) are task-specific tools, functions, and formulae to measure task performance 
quantitatively. OM are developed to measure an activity that can be changed, customised, or 
expressed by a value for comparison. Finally, some metrics can be measured in real-time, others can 
be evaluated only after the accomplishment of the mission. 

4.6 Current Development in Aviation 

4.6.1 Projects in the last five years 

The following table represents the summary of projects that have dealt with Artificial Intelligence and 
with Digital Assistants in the last five years. Most of them are funded under the SESAR Program, fewer 
under Horizon Europe. Very few projects were recovered that were developed in extra-European 
Countries. Sic projects address Digital Assistant and Human-Ai teaming aspects. 

 Project 
name 

Startin
g date 

Endin
g 

date 

Coordinati
ng entities 

Summary 

SESAR 
JU 

First 
projects 

MALORCA 01-04-
2016 

31-
03-
2018 

Deutsches 
Zentrum 
für Luft- 

The project proposed a 
general, cheap and effective 
solution to automate the 
speech recognition, 
adaptation and 
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und 
Raumfahrt 

customization process to 
new environments, taking 
advantage of the large 
amount of speech data 
available in the ATM world.  

INTUIT 01-03-
2016 

28-
02-
2018 

Nommon 
Solutions 
and 
Technologi
es 

The purpose of the project 
was to explore the potential 
of visual analytics, machine 
learning and systems 
modelling techniques to 
improve the understanding 
of the trade-offs between 
ATM Key Performance Area 
(KPAs), identify cause-effect 
relationships between Key 
Performance Indicators 
(KPIs) at different scales, and 
develop new decision 
support tools for ATM 
performance monitoring 
and management. 

DART 17-06-
2016 

19-
06-
2018 

Ecole 
Nationale 
de 
l’Aviation 
Civile 
(ENAC) 

The project aimed to 
understand the suitability of 
applying big data techniques 
for predicting multiple 
correlated aircraft 
trajectories based on data 
driven models and 
accounting for ATM network 
complexity effects. 

ARTIMATIO
N 

01-01-
2021 

31-
12-
2022 

Malardalen
s 
Universitet 

The project has introduced 
innovative AI methods to 
predict air transportation 
traffic and to optimise traffic 
flows based on the domain 
of explainable artificial 
intelligence. ARTIMATION 
aimed to ensure safe and 
dependable decision 
support, focusing on 
transparent AI models that 
include visualisation, 
explanation and 
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generalisation with 
adaptability over time. 

Other 
projects 

TAPAS 01-06-
2020 

30-
11-
2022 

Centro de 
Referencia 
Investigaci
on 
Desarrollo 
e 
Innovacion 
ATM 
(CRIDA) 

The main objective was to 
provide a set of principles 
and criteria which pave the 
way for the deployment of 
AI/ML-based technologies in 
ATM in a safe and 
trustworthy manner. 
eXplainable Artificial 
Intelligence (XAI) 
techniques, together with 
Visual Analytics, can help to 
explore trade-offs between 
efficiency of AI 
implementations and the 
suitability for deployment in 
specific applications. 

MAHALO 01-06-
2020 

30-
11-
2022 

Deep Blue The project aimed to design 
an automated AI, ML and 
deep neuronal learning-
based explainable system 
for problem solving 
between aircrews and air 
traffic controllers. Trained 
by the individual operator, 
the machine had the 
purpose to be able to inform 
the operator what it has 
learnt. This will increase 
capacity, performance and 
safety. In particular, 
MAHALO has investigated 
the impact of transparency 
(how much the AI is able to 
explain why it took a specific 
decision) and conformity 
(how much the decision 
taken by the AI is similar to 
the one a controller would 
choose). 
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AISA 01-06-
2020 

30-
11-
2022 

Universitat 
Linz 

The project aimed to 
investigate the effect of 
distributed human–machine 
situational awareness in en-
route air traffic control 
operations and also explore 
the opportunities it entails. 
To this end, the project was 
not focused on automating 
isolated individual tasks but 
has developed an intelligent 
situationally aware system.  

ASTAIR 01-09-
2023 

28-
02-
2026 

Ecole 
Nationale 
de 
l’Aviation 
Civile 
(ENAC) 

ASTAIR (Auto-Steer Taxi at 
AIRport) will develop an AI-
enabled tool to support a 
wide variety of ground 
procedures aimed 
at optimising resources, and 
enhancing the safety and 
efficiency of a wide range of 
airside operations at the 
airport. 
The project will use AI to 
prompt actions, such as 
providing clearances to 
vehicles on the airport 
aprons and taxiways 
according to optimal routes 
and managing fleets of 
autonomous tugs to further 
enhance ground capacity. A 
key focus of ASTAIR will be in 
optimising humans and AI 
interaction by tailoring 
intelligent systems to 
operators' modus operandi, 
ensuring logical consistency 
across manual and 
automated control. 

SESAR 
3JU 

Connecte
d and 

Automate
d ATM 

CODA 01-09-
2023 

28-
02-
2026 

Deep Blue The CODA project involves 
developing a system in 
which hybrid human-
machine teams 
collaboratively perform 
tasks. Specifically, the 
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project will show how a 
system could adapt to 
specific situations and react 
accordingly by using 
advanced adaptable and 
adaptive automation 
principles that will 
dynamically guide the 
allocation of tasks. The 
system will assess the 
operator's cognitive status, 
use current traffic data to 
foresee the future tasks that 
the operator will need to 
perform in the future, and 
calculate the impact of those 
tasks in terms of cognitive 
complexity. With this 
information, the system will 
predict the future mental 
state of the operator and 
will act accordingly by 
developing an adaptive 
automation strategy. 

HYPERSOLV
ER 

01-06-
2023 

30-
11-
2025 

Neometsys The project aims to develop 
an HyperSolver based on 
advanced Artificial 
Intelligence Reinforcement 
Learning method with 
continuous reassessment 
and dynamic updates, i.e. an 
holistic solver from end-to-
end, covering the whole 
process to manage, density 
of aircraft, complexity of 
trajectories, interactions 
(potential conflict in 
Dynamic Capacity Balancing 
timeframe) of trajectories, 
conflict of trajectories at 
medium-term and conflict of 
trajectories at short-term. 
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ISLAND 01-06-
2023 

31-
05-
2026 

Eurocontro
l  

The project includes the 
industrial research aimed to 
create and use airspace 
capacity, in combination 
with targeted and effective 
demand and/or capacity 
measures. The project 
exploits the latest 
advancements in artificial 
intelligence and machine 
learning, to supply a variety 
of supporting toolsets to 
ATM stakeholders that 
enable rapid exploration of 
options for the deployment 
of capacity-on-demand 
solutions, whenever and 
wherever required. The 
benefits include increased 
en-route capacity and 
improved cost-efficiency of 
ATS provision, without 
compromising the current 
safety levels. 

Capacity-
on-

demand 
and 

dynamic 
airspace 

FASTNet 01-06-
2023 

31-
05-
2026 

Indra 
Sistemas Sa 

The project proposes 
solutions that contribute to 
the evolution of ATM 
aviation into an integrated 
digital ecosystem 
characterised by distributed 
data services. It aims at 
further enhancing the 
airports and network 
integration in tactical, pre-
tactical and strategic 
planning through the 
development of two 
solutions: 
-Enhanced AOPs-NOP 
Tactical planning, with the 
inclusion of an “airport-to- 
airport(s)"" AOP to AOP 
collaborative planning 
process and the use of 
artificial intelligence. 
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- AOP-NOP Strategic and 
pre-tactical planning. 

KAIROS 01-06-
2023 

31-
05-
2026 

Intelmet 
Solutions 

KAIROS will improve the 
quality of meteorological 
information provided to the 
aviation community through 
the use of artificial 
intelligence. By producing 
accurate digital weather 
forecasts at longer lead 
times, aviation stakeholders 
will be in a better position to 
mitigate the impacts of 
weather on their operations. 
The project will integrate 
live weather information 
from AI forecasts with 
existing decision support 
tools and platforms to 
assess the operational 
benefits to several end-
users. 

AI4HyDrop 01-09-
2023 

28-
02-
2026 

Universitet
et i Sorost-
Norge 
(USN) 

With an increasing number 
and diversity of potential 
drone operations, managing 
the airspace to 
accommodate these drones 
will become an increasingly 
sophisticated task, 
especially in densely 
populated urban areas 
encompassing restricted 
zones with dynamic 
environmental and 
operational influences. Due 
to the associated higher 
probability of conflicts, and 
ultimately collisions, such 
areas require management 
of dedicated structured 
airspace, operations, and 
services to help mitigate 
these potential hazards. 
A holistic framework is 
necessary to create an 
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effective and efficient flow 
of information between the 
various capabilities in order 
to systematically organise 
the airspace usage. 
AI4HyDrop evaluates the 
various stakeholder needs, 
delivering validated 
concepts, defining a 
methodology for an airspace 
structure organisation and 
associated U-space services. 
The framework considers 
the information from other 
services such as 
meteorological and 
separation provision, which 
can then be used for flight 
planning approval process, 
prioritisation. In addition, 
essential elements such as 
surveillance and 
contingency planning can be 
addressed. The framework 
incorporates various AI 
based tools and associated 
information flows necessary 
to address the complexity, 
safety and scalability 
required for implementing 
such U-space services.  

Aviation 
green 
deal 

SynthAIR 01-09-
2023 

28-
02-
2026 

Sintef  The project aims to respond 
to the scarcity of relevant 
data for aviation and the 
inherent limitations of AI 
models in handling diverse 
datasets. The main idea is to 
learn a model from multiple 
datasets and generate 
synthetic data that 
accurately represents new, 
unseen datasets, through 
the groundbreaking concept 
of the Universal Time Series 
Generator (UTG). 
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Artificial 
Intelligen

ce for 
aviation 

TRUSTY 01-09-
2023 

28-
02-
2026 

Malardalen
s 
Universitet 

Remote digital towers 
represent one of the last 
innovations in aviation, 
offering remote traffic flow 
and capacity management 
for airports. While 
conventional control tower 
host operators have direct 
visual oversight of runways 
and taxiways, digital towers 
exploit video transmission to 
provide the same vital 
information. This 
advancement enables the 
provision of airport air traffic 
services (ATS) from virtually 
anywhere, promising 
significant enhancements in 
operational efficiency and 
safety by augmenting 
controller situational 
awareness. 
In today's era, artificial 
intelligence and machine 
learning are offering 
automated and faster 
solutions in many industries, 
bringing the industry to a 
more advanced stage.  

ASTRA 01-09-
2023 

28-
02-
2026 

Universita 
ta Malta 

Nowadays, tactical Air 
Traffic Control (ATC) 
hotspots are only identified 
up to around 20 minutes in 
advance. The aim of ASTRA 
is to bridge the gap between 
the Flow Management 
Position (FMP) and the 
planner Controller Working 
Position (CWP) by 
developing a AI-based tool 
for FMP personnel which 
can predict and resolve 
hotspots earlier than today, 
before they are within the 
scope of the sector planner. 
The objectives of the project 
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are to: develop an FMP 
function to predict hotspots 
at least 1 hour in advance, 
and to propose strategies to 
resolve them; develop 
Human Machine Interface 
(HMI) concepts to allow 
interaction between 
operators and the tool; and 
demonstrate and validate 
the tool by conducting 
human-in-the-loop Real-
Time Simulations (RTS) in a 
representative operational 
environment. 

JARVIS 01-06-
2023 

31-
05-
2026 

Collins 
Aerospace 
Ireland 

The project addresses the 
increasing complexity of the 
entire aviation ecosystem 
(aircraft, air traffic control – 
ATC, airports), through the 
introduction of a Digital 
Assistant (DA) that, by 
teaming with its human 
counterpart (pilots, ATC 
operators, airport 
operators), support the 
execution of tasks to ensure 
safe and profitable 
operations in complex 
scenarios. JARVIS 
Consortium aims at 
developing and validating 
three ATM solutions: an 
Airborne DA (AIR-DA), an 
ATC-DA and an Airport DA 
(AP-DA). The AIR-DA will 
increase the level of 
automation in the flight deck 
and thanks to AI-based 
actions will act as enabler 
towards reduced crew 
operations and single pilot 
operations. The adoption of 
the AIR-DA will allow pilots 
to deal with complex 
scenarios without 
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compromising safety, 
security, while reducing the 
pilot workload. The ATC-DA 
will increase the level of 
automation in control 
towers, where 
environmental KPIs and the 
capacity management of 
airspace will benefit from 
the adoption of AI-based 
technologies. Finally, the AP-
DA will increase the level of 
automation in airports, 
enhancing safety and 
security for intrusion 
detection scenarios. 

DARWIN 01-06-
2023 

31-
05-
2026 

Honeywell 
Internation
al 

DARWIN’s ambition and 
vision is to develop 
technology enabling AI 
based automation for 
cockpit and flight operation 
as a key enabler for SPO 
(Single Pilot Operations) and 
demonstrate the same (or 
higher) level of safety with 
same (or lower) workload as 
operations with a full crew. 
The system will consist of 3 
core enabling technology 
layers: 1) Trustworthy 
Machine Reasoning 
Platform will provide 
capabilities for rule-driven, 
transparent, and 
explainable decision aiding 
or decision making. 2) 
Human-AI Collaboration 
layer will be implemented 
on top of the Reasoning 
Platform. 3) Pilot State and 
Taskload Monitor will 
provide data to the 
collaboration layer and 
automation to adaptively 
react. 
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Horizo
n 

 HAIKU  2022 2025 Deep blue Human AI teaming 
Knowledge and 
Understanding for aviation 
safety – European-funded 
project aimed at enhancing 
Human-AI teaming for 
future aviation systems in 
the 2030C timeframe 
(https://www.haikuproject.
eu/). HAIKU has six human-
centric AI use cases, two 
each in the air traffic, cockpit 
and airport sectors, where 
prototype Digital Assistants 
will be developed. HAIKU 
aims to explore human-AI 
interactions and teaming in 
dynamic and realistic 
simulations of operational 
flight scenarios. 
Three main research 
questions will be addressed: 
• What is the recommended 
human-AI relationship for 
each of the different AI 
applications in aviation? 
• What does it mean for AI 
to be explainable and hence 
trustworthy in each of these 
applications? 
• How do we best teach AIs, 
via human-in-the-loop AI 
learning for each of the 
potential aviation 
applications? 
The following main outputs 
are foreseen: 
1. New Human Factors 
design guidance and 
methods (‘HF4AI’ 
Capabilities) on how to 
develop safe, effective and 
trustworthy Digital 
Assistants for Aviation 
2. A set of aviation use cases 
– controlled experiments 
with high operational 
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relevance – illustrating the 
tasks, roles, autonomy and 
team performance of the 
Digital Assistant in a range of 
normal and emergency 
scenarios 
3. New safety and validation 
assurance methods for 
Digital Assistants, to 
facilitate early integration 
into aviation systems by 
aviation stakeholders and 
regulatory authorities 
4. Continuous engagement 
with relevant stakeholders - 
e.g. policy makers, 
professional associations, 
passengers associations and 
general public – to deliver 
Guidance on socially 
acceptable AI in safety 
critical operations, and for 
maintaining aviation’s 
strong safety culture record. 

  SafeTeam 1 July 
2022 

30 
June 
2025 

Fundacion 
instituto de 
investigaci
on innaxis 

Safe Transition to Digital 
Assistants for Aviation - The 
goal of the project SafeTeam 
is to progress on the human 
factors aspects of the use of 
digital assistants to aviation, 
including a deeper 
understanding on the 
technology and processes 
that will facilitate the 
adoption of AI tools and 
integration into operations, 
enhancing human cognitive 
abilities and potentially 
automation. SafeTeam is not 
purely concerned with the 
technical development of AI 
applications for aviation but 
rather focuses on those 
aspects and characteristics 
of integrating such digital 
assistance / AI tools that will 
ensure efficient and safe 
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interaction with human 
operators. The efficiency / 
accuracy of the ML 
algorithms and AI solutions 
is of course of relevance to 
the research, but the core 
objective of SafeTeam is to 
facilitate the transition to 
digital assistants and 
ultimately AI-run operations 
from a Human Factors and 
safety perspective. The 
project will also look into 
approval and certification 
issues, concretely on aspects 
related to the human ability 
to operate sophisticated AI 
tools and explainability of AI 
operations. The project's 
main goal of developing new 
human-machine interaction 
concepts will run along 
important technical 
challenges required to reach 
TRL6, demonstrating several 
concrete use cases in 
relevant environments 
placing human operators at 
the core of the research. 
Particularly, leveraging the 
past work done on data 
infrastructures, the 
SafeTeam project will 
provide relevant 
environments integrated 
with the use cases, to be 
able to demonstrate the 
different ML algorithms and 
the human interactions with 
the enhancing awareness or 
automation case studies 
presented. 

  Digital 
Assistant: 
Introducing 

2018 2020 Civil 
Aviation 
Authority 

This year at the Singapore 
Airshow, AIR Lab unveiled its 
latest Proof-of-Concept that 
aims to revolutionise the 
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Speech 
Recognition 

of 
Singapore 

working ways of air traffic 
controllers – the Digital 
Assistant. Developed in 
close collaboration with Civil 
Aviation Authority of 
Singapore (CAAS), Thales 
and the Agency for Science, 
Technology and Research 
(A*STAR), Digital Assistant 
leverages speech 
recognition technology to 
automate processes and 
streamline operations, 
eliminating the need for 
manual data entry of 
commands. 
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4.6.2      Opportunities and Challenges 

Opportunities 

1) The application of new technologies and interdisciplinary research brought by the introduction 
of the human-centric concept and HMI design focuses on sustainability and resilience. 

2) Improvement of workers' well-being. 
3) Improve the relationship between human and machine collaboration. 
4) Assure the best of human and the best of machine joint working. 

 

Challenges 

Considering the opportunities, the following challenges may become an important direction for 
research: 

1) Human AI Teaming (National Academies of Sciences, Engineering, and Medicine, 2022)  

a. Existing human-AI research is severely limited in terms of the conceptualizations of 
functions, metrics, and performance-process outcomes associated with dynamically 
evolving, distributed, and adaptive collaborative tasks. Research programs that focus 
primarily on the independent performance of AI systems generally fail to consider the 
functionality that AI must provide within the context of dynamic, adaptive, and 
collaborative teams. Research should specifically consider the dynamic process factors 
and timing constraints involved when human-AI team members address uncertainties 
in task progress or the evolution of performance over work sessions, shifts, task 
episodes, software updates, and longer time horizons.  

b. Human-AI Team Models. Predictive models of human-AI performance are needed to 
provide quantitative predictions of operator performance and interaction in both 
routine and failure conditions. 

2) Performance Framework to assess the effectiveness of the “assistance” and the potential 
integration with SESAR Performance Framework 

3) Technologies of multimodal fusion perception and human-like intelligent perception. The 
perception of the human emotional status is relevant for a good human-machine interaction. 
It is a kind of empathy to be implemented at machine level and to tune as a consequence its 
behaviour. Human beings express their emotions and intentions through multiple signals, such 
as language, pronunciation, and intonation, facial expressions and gestures, as well as some 
physiological signals, such as blood pressure and heartbeat. Most of the existing perception 
methods are focused on the single mode. The correlation between the multiple modes is 
ignored. Therefore, the creation of multimodal databases, multimodal data hierarchical fusion 
perception, and human-like intelligent perception technologies based on this database (R 11) 
can be explored.  

4) Mechanism of multimodal cooperative analysis and intelligent reasoning. At present, 
intelligent reasoning leverages on algorithms conditioned in some way by the status of the 
human. Once the multimodal perception is explored, a deep adaptive cooperative semantic 
understanding mechanism is needed based on ontology. 
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5) Deep understanding of natural language and personalised interaction. In the personalised 
interaction, the intelligent robot can adjust the interaction method and strategize neatly 
according to the scene, interaction object, interaction state, etc. 

6) Personalised interaction to cope with biases of the human- a new form of training. Once the 
assistant is “profiled” on the assisted human, typical human biases in specific conditions should 
be detected and known by the Assistant that can avoid the error, after which the human will 
need to be able to understand the status of the machine and cope with its biases. 

7) Effective computing. By using the abilities of perception, deduction, and prediction, intelligent 
robots or computers are involved in a large number of tasks in our daily life. The key issue is 
that these robots are not similar to humans from the perspective of emotions. It is well known 
that emotion is a necessary factor for communication and interaction between humans. 
Therefore, people naturally expect intelligent robots to have EQ along with IQ. Can it be an 
enabler for an effective man-machine teaming?  

8) Integration of human and machine. As the level of intelligence grows and the human overlies 
on it more and more, the task allocation and the workload have to be further investigated. 

Regarding the XAI  

Challenges opportunities 

The market of XAI is expected to grow with 20.9% in the next five years representing a great 
opportunity.  

 

Figure 34 Explainable AI market forecast3 

 (Saeed, W. et al., 2023) discusses the challenges and research directions of XAI in the deployment 
phase (see Figure 16). 

 

3 https://www.marketsandmarkets.com/Market-Reports/explainable-ai-market-47650132.html?gad_source=1&gclid=CjwKCAiA-

bmsBhAGEiwAoaQNmqFQPK_X2bq34rchI3QUxg8zNUiitKOfaekTC7_HUxjvO7M32XaevxoCNFIQAvD_BwE 
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Figure 35: Challenges and Research Directions of XAI in Deployment Phase (Saeed, W. et al., 2023) 

4.6.3 Conclusion 

The present work on Human Assistant has provided the most recent current developments on Human 
Assistant giving some elements of current research on key aspects of Human Assistant: Man-Machine 
interaction, Human Ai Teaming, Trust, Explainability, Task Allocation and Performance metrics. Human 
assistant is a topic transversal to all domains and the need of a unique theoretical framework for 
taxonomy, research proper classification and benchmark is needed. 

For these purposes, the framework proposed in Industry 4.0 and 5.0 could be adopted creating a great 
potential of cross fertilisation among the different sectors once they are speaking the same language. 
For example, during such study we found that task allocation problems are faced according to certain 
paradigms when talking of digital Agents and very extended studies in the robot domain (Multi Robot 
Task Allocation). Many aspects of MRTA may apply to digital agents.  

Furthermore, the metrics to assess the performance of an Assistant could be a starting point to set up 
a link with the SESAR framework expected to consider in the next future the value of the assistant 
ecosystem. 

Accordingly, the present work provides a very brief overview of the huge world behind the concept of 
Human Assistant not aiming at being exhaustive but instead aiming at triggering useful questions on 
the basis of the opportunities that AI Assistants can rise and the related challenges. 
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5 Opportunities and Challenges 

5.1 Workshop 

In Work Package 2 (WP 2.3), our primary objective was to analyse the impact of automated systems 
and AI on aviation. We focused on identifying key opportunities and challenges, with a particular 
emphasis on the human factor and safety concerns. To accomplish this goal, a dedicated workshop 
session was organised to collect and discuss "Opportunities and Challenges." The virtual event was 
held on January 29th, 2024, and utilised the "Miro interactive whiteboard" to facilitate active 
participation and feedback. The workshop was attended by 11 participants from the entire HUCAN 
consortium, including partners who were not involved in WP 2. The session spanned from 09:00 to 
14:00 and consisted of three parts.  

  

 

Figure 35 WP 2 workshop schedule and goals 

To generate ideas and gather thoughts from a diverse group of experts, we chose the brainstorming 
workshop method. To keep the discussion organised and extract the most information, we 
communicated a set of rules to all participants. These rules included registering and expressing 
opinions in favour or against a point. We also moderated two sessions to ensure that each point was 
adequately understood and discussed. Additionally, we established general rules such as "the more 
the better," "there is no such thing as a bad idea," and "think in terms of: what if" for open discussion. 
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Throughout the workshop, participants were actively involved in a discussion surrounding the 
complexities and venues of automation in aviation. To facilitate an effective discussion of broader 
views, the workshop was structured into four distinct sessions, each of which had a specific purpose. 

 

Figure 36 Opportunities (1/4) collected and discussed during the HUCAN WP 2 workshop 

The first session, which was the introduction and idea generation session, set the tone for the rest of 
the workshop. In the introduction, participants became familiar with the workshop's objectives and 
principles, and the ground rules were established to ensure an inclusive discussion. After that, the 
remainder of the time was spent gathering perspectives about the current state of automation, the 
identification of gaps and the identification of future opportunities, allowing everyone to align to the 
main topic and focus on assessing the current landscape and identifying areas for improvement. The 
opportunities identified in this session laid the groundwork for the subsequent sessions. 
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Figure 37 Opportunities (2/4) collected and discussed during the HUCAN WP 2 workshop 

 

Figure 38 Opportunities (3/4) collected and discussed during the HUCAN WP 2 workshop 

During the second session of the workshop, participants took part in the opportunity exploration and 
evaluation phase. Here, they examined the opportunities that were discovered in the previous session. 
Through detailed analysis and in-depth discussions, the participants were able to gain a comprehensive 
understanding of each prospect. They shared valuable feedback and insights, which helped to identify 
any potential opportunities. The discussions were lively and engaging, with participants critically 
examining each idea and exploring all possible angles. By working together, they were able to 
collectively assess the feasibility and potential impact of each opportunity. 
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Figure 39 Opportunities (4/4) collected and discussed during the HUCAN WP 2 workshop 

Towards the end of the session, participants were given a voting scale which included "Do it Now", "Do 
it Next", "Do it if we have time" and "Don't Do it". This scale represented the priority in implementing 
each opportunity. They used this voting scale to assign priority to each opportunity. At the end of this 
session, the total votes were counted and the opportunities that were deemed "Do it Now" were 
chosen for the next round. 

  

Figure 40 Classification of opportunities into four quadrants according to importance generated during the 
HUCAN WP 2 workshop 

During the third session of the workshop, participants transitioned from exploring ideas to creating 
actionable plans. They shifted their focus towards a more practical approach, identifying the 
opportunities that were most urgent and needed immediate attention. With a keen eye for detail, they 
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carefully scrutinised each opportunity, looking for any potential roadblocks or challenges that could 
hinder their progress. Through candid and strategic deliberation, participants proactively sought to 
mitigate risks and devise actionable strategies for implementation. They engaged in open and honest 
discourse, sharing their insights and perspectives to ensure that the best ideas were brought to the 
table. By working collaboratively, they were able to overcome obstacles and devise practical solutions 
that could be implemented effectively. 

 

Figure 41 Collection of challenges (1/2) associated with opportunities discussed during the HUCAN WP 2 
workshop 
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Figure 42 Collection of challenges (2/2) associated with opportunities discussed during the HUCAN WP 2 
workshop 

The last session was dedicated to a final discussion about synthesising the main takeaways and 
determining what steps to take next for WP 2. During the workshop, participants identified 11 
opportunities and examined each in detail. Five of those 11 opportunities were shortlisted, and 
potential challenges were identified. Overall, the workshop was a great success as it generated intense 
and productive discussions in a concise amount of time. As a result, a collection of opportunities and 
challenges were gathered, focusing on higher automation in aviation. For a detailed description of each 
opportunity and challenges discussed during the workshop, please refer to the following two 
subsections. 

5.2 Opportunities and Challenges 

AI offers opportunities through 

1. Its possibilities to quickly process large amounts of data from different sources, even if the 
data is conflicting, incomplete or inaccurate; 

2. Its characteristics to learn, adapt and predict; 
3. Its ability to flexibly support tasks of human operators through building task models and 

profiling; 
4. Finding new solutions to issues that cannot be solved with conventional means, like conflict 

detection and solutions to “larger-than-aviation” problems (e.g. general world-wide 
sustainability). 

The following subsections discuss opportunities and corresponding challenges for the use of AI in 
aviation, which were collected during the workshop. 

5.2.1 Efficient data processing 
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• Opportunities 

AI can process complex, non-accurate information. Most AI systems are capable of processing large 
amounts of data; even if the data originates from different sources and contains conflicting 
information, it can still be used by the algorithms. Just as well, AI is capable of reasoning with 
incomplete data or with information that is processed and provided as an estimate, thus containing 
uncertainty. 

This efficient data processing is a major benefit of the use of AI/AA in complex decision-making tasks. 

• Challenges 

The reasoning process and the solution presented to the human operator must be clear, so that a 
decision is made based on well-motivated grounds. The information presented must be meaningful to 
the human decision-maker so as to solve business problems and provide value in the chain of collecting 
data, information processing and decision-making. 

The technical challenge of the use of AI is that it needs to be decided what AI techniques to use for 
specific situations in which data/information needs to be processed. Information from different 
sources that conflicts, uncertain information, incomplete information or information that contains 
estimates requires careful analysis before a decision is taken on what AI technique to use. 

5.2.2 Continuous learning and adaptation (self-learning systems) 

• Opportunities 

Self-learning systems offer the possibility to adapt continuously while in operation. This can be a 
powerful feature in complex environments in situations where errors have been introduced in the 
process. The system will thus autonomously correct errors. 

The system is also flexible in learning new things from entering into new operational modes and new 
operational environments. Just as well, new systems can be introduced in the aircraft or on the ground, 
where, through a self-learning adaptive process, the newly introduced elements will be taken into 
account without the need to change the software that processes the new information. 

The possibility to expand the AI/AA-model offers a robust environment. Instead of off-line learning and 
the need to install new systems with every system upgrade or new operational environment, the 
system now is capable of adapting. 

• Challenges 

An unsupervised learning process can be applied without risk for non-critical system elements, 
however, for decisions that impact safety, it must be ensured that the newly adapted system will not 
cause any harm.  

Learning during the process of operation implies that all aircraft will learn differently and will have 
other systems as they have been operating in other environments.  

One major challenge is that a mechanism must be in place to learn. As structural changes to e.g. the 
airspace are implemented, the trained capabilities of a support system become obsolete. After such 



ADVANCED AUTOMATION IN AVIATION 
Edition 01.00 

  

 
 

Page | 110 
© –2023– SESAR 3 JU 

  
 

changes, new training data must first be collected, processed, and thus taught to a system in order to 
be able to provide support in the new environment. This extension to the system does not have an 
operational function in the existing software but is an internal processing system that is modifying 
answers of systems that have been approved in the past already. This kind of software is new to 
aviation, where currently all software must be in direct function to an operational process.  

Procedures must be in place that ensure the AI is learning within well-defined boundaries and creates 
safe and acceptable solutions. The self-learning system must guarantee the learning process to “move” 
towards operationally acceptable solutions and should not get stuck into some loop of non-viable 
solutions. 

5.2.3 Personalised assistants 

• Opportunities 

Each individual will have a dedicated way of working, even though many of the tasks in aviation have 
been standardised. With increasingly complex work, a personal touch will be given to each task. 
Through personalised profiling, the user can be assisted by AI systems to perform their tasks without 
having to slightly divert from their preferred way of doing so. Central to this adaptation is the 
understanding that the ideal outcome varies for each participant involved in the human-AI 
collaboration. 

Through task models the AI system can propose priorities to the human operator and assist in 
scheduling tasks. 

Another opportunity of the use of AI in task modelling is that the work can be checked and small 
personal mistakes or errors can be eliminated from the process as quickly as possible. 

• Challenges 

The construction of task models for human operators is a complex process. The task must be detailed 
at the correct level and the relation between tasks must be carefully laid down, allowing an 
understanding of the consequences of carrying out (part of) a task later in the process or reversing the 
order of tasks. Pre- and postconditions must be clear and the context of the task must be considered. 

User profiling requires a longer assessment of the user, who may even change their behaviour in the 
course of the process. The development of a personalised system could lead to ethical and legal issues. 

To assist the user, based on their profile, a sequence of tasks can be offered, that proposes the 
preferred task to be performed, where care must be taken that its priority must be in line with the 
required objective of the work of the human. 

Small errors must be detected before they become serious, however these should not be presented 
as annoying. The human operator might have left the task out at the moment to give personal 
preferences to a task or consider the task to be of lower priority at the moment. 

5.2.4 Long-term adaptation between humans and AI 

• Opportunity 
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As the role of the human is continuously changing while AI technology continues to advance, so too 
must the relationship between humans and their artificially intelligent counterparts. With growing 
experience, the human will consider and perform certain tasks differently than when operating as a 
novice. Just as well, the tasks may change over time with new systems and technology, new procedures 
or a new operational concept and the AI support system can grow with its human operator. Particular 
attention is given to the design of the human-machine interface (HMI) to facilitate seamless 
collaboration in AI-assisted decision-making. 

In cooperating with AI systems, humans will perceive the role of both human and machine as changing 
over time. The continuous support and experience gained from working with an AI system will allow 
the human to consider the system as more reliable and trustworthy as long as the support given is 
correct. The human might even consider giving certain tasks to the system that were initially 
performed manually leading to enhanced productivity, efficiency, and innovation. 

This could include providing opportunities for skill development and knowledge acquisition for human 
operators, as well as enabling AI systems to continually refine their algorithms and adapt to new 
challenges. 

• Challenges 

To allow cooperation between human and machine, an intuitive and clear user interface is required 
that enables the full potential of the partnership. The interface must be able to address complex 
problems in aviation but also in human-machine interaction.  

The relation between the human and the AI system must be carefully mapped to allow such complex 
cooperation. Humans may even expect a changing role from advanced automation when they learn to 
master their tasks better. 

5.2.5 Support in crisis management  

• Opportunities 

In situations of crisis-management, AI can support the human operator by taking over the standard 
tasks that an operator has, but which are now given less priority because of the crisis. 

With good prediction systems, crisis situations can be discovered beforehand. Crises require 
preparedness at any moment and the sooner the situation is recognised, the better-prepared decisions 
can be taken. AI can especially contribute to surveillance and mapping all aspects of the crisis, 
providing situational awareness to responders. 

• Challenges 

Find a new division of tasks between the human and the system, in accordance with the crisis situation 
at hand and acceptable workload for the human. 

Preparedness for crisis situations asks for a systematic approach towards crisis types and preparedness 
in different responses. Timing is crucial.  

5.2.6 Enhanced problem-solving 
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• Opportunities 

AI offers enhanced problem-solving for issues that at the moment cannot be solved, so that more 
complex operations become possible, e.g. with the use of drones. 

AI/AA offers new techniques beyond current problem-solving algorithms that are capable of extremely 
fast processing of data and information. The logic processes behind the algorithms provide a kind of 
intelligence that enhances traditional algorithms. This feature allows new operational problems to be 
solved, like conflict detection and planning of large numbers of drones in complex (urban) 
environments. 

In many complex situations, the objectives of solving an issue are not all in line with each other, 
requiring a multi-objective problem-solving technique that considers optimal solutions instead of 
always finding the one “best” solution. It may even be that the solution proposed does not rank highest 
in the list of optimum solutions, but provides acceptable and safe solutions in the given time for finding 
a solution. 

A special enhanced problem-solving feature is the prediction that AI systems can deal with the 
uncertainty of future situations. This may aid for example the above-mentioned conflict detection and 
just as well offers new opportunities in special operational situations. AI/AA offers prediction 
techniques that may enhance the safety of the whole aviation system. 

• Challenges 

Instead of considering the safety of an algorithm, in a complex environment, the safety of the objective 
function should be considered. The system will propose solutions, within limited time, that are 
considered “optimum” solutions to new complex challenges.  

In enhanced problem-solving, the AI system will need to deal with multiple objectives to find a solution. 
These objectives may, at some operational level, even be conflicting with each other. In finding an 
optimum, it may be possible to end the process of finding an even better solution through presenting 
a local optimum. The question becomes who defines the objectives, especially when they evolve over 
time and include new objectives. Further, who decides the relative importance of each of the 
objectives? 

Dealing with uncertainty, especially in predictive behaviour is a characteristic that requires reasoning 
with uncertainty. This is a dedicated field in AI with new challenges such as what would be the 
uncertainty in situations where decisions are taken, based on this prediction? 

5.2.7 Dynamic Airspace Reconfiguration 

• Opportunities 

AI can support the Dynamic Airspace Reconfiguration (DAR) process by adjusting U-space airspace 
safely and efficiently to allow manned aviation to pass through while still maintaining an optimum 
volume of airspace to accommodate unmanned traffic. The opportunities mentioned in this section 
concern human support in the reconfiguration process. 
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The first opportunity is to provide the human decision-maker (e.g. the ATCO or a dedicated human 
broker) with options to support the reconfiguration process. For each possible option a motivation can 
be provided, e.g. in terms of timing, volume of airspace required and the number of manned and 
unmanned vehicles that can be accommodated in the solution. 

Another opportunity for an AI system is to provide the means to negotiate between the different types 
of aircraft that plan to use the same airspace. Negotiation is an iterative process requiring negotiation 
parties to work on proposals and counter-proposals to reach a solution that is agreeable for both. This 
often means one might have to extend some concession to get favour in return. 

• Challenges 

Explanation of reasoning in optimisation problems is a challenging task. The different objectives of the 
optimization problem can be given a (numerical) score and then explained to the human operator, 
though this is usually not according to the terminology he would use. Furthermore, it will be difficult 
to make a good assessment of the value of each of the objectives and compare these with the values 
of others. 

Negotiation is a separate AI topic that still requires more research. Negotiation takes place in a larger 
context, possibly extending the scope of the actual topic of the negotiation. Just as well, the process 
requires more than one instance over time. An issue with a solution that was considered yesterday to 
be unfavourable for one user might be solved differently to give that user the benefit some other time. 

5.2.8 AI and the greening of aviation 

• Opportunities 

Reducing climate-damaging influences, such as emissions of CO2, NOx, water vapour and condensation 
trails, is a challenge also for air traffic and AI-based innovations can help to find solutions that meet 
sustainable goals. The analysis of collected data regarding emissions could be translated into patterns 
by machine learning and thus into more accurate estimation of environmental impact which is 
essential for generating green trajectories.  

• Challenges 

The generation of green trajectories is a complex computational problem that needs to consider a 
large number of parameters, including the still unpredictable weather patterns. The availability of 
information is a challenge. Weather phenomena are diverse in terms of complexity, type, duration, 
and variability and can occur very differently locally. In order to integrate these into an AI system, 
extensive training data is required, which must cover a wide range of weather events as well as traffic 
situations. 

Since AI itself is part of the solution, it should not be neglected that the use of AI also consumes 
resources for computing power, storage and cooling. Renewable energy can reduce the environmental 
burden, though measuring the environmental impact of AI in computing and its applications is 
currently limited by the lack of recognized standards, consistent indicators and metrics. 
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5.2.9 Conclusion 

The following table summarises the above-mentioned opportunities and challenges. 

Table 8 Summary of Opportunities and Challenges 

Efficient data processing 

Opportunity Challenge Issue 

Support human decision 
making 

Provide information in 
meaningful elements to 
support the chain from data to 
information to decision 

Human operators will not be 
able to understand the AI 
reasoning process if this 
contains merely figures to 
compare 

Reasoning with data from 
different sources, incomplete 
data, uncertain data or 
estimates 

Find the right AI-technique to 
process the data 

  

Continuous learning and adaptation 

Opportunity Challenge Issue 

Correct error Do not get stuck in loops Before errors can be corrected, 
they will be made. This can be a 
safety issue 

Adapt to new environment Ensure viable and safe solutions 
at all times 

In many situations, the system 
will not be allowed to learn 
through making mistakes 

Adapt to new systems (1) Ensure viable and safe solutions 
at all times 

In many situations, the system 
will not be allowed to learn 
through making mistakes 

Adapt to new systems (2) Operationally non-functional 
software must be installed 

  

Adapt to new systems (3) All aircraft will have their “own” 
system different from others 

  

Personalised assistant 

Opportunity Challenge Issue 

Support human tasks (1) Build human task models   
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Support human tasks (2) Profiling requires advanced 
algorithms to understand 
human behaviour 

  

Support human tasks (3) Profiling could lead to ethical 
and legal issues 

 

Prioritise human tasks Understand links between tasks 
in task models 

  

Eliminate human errors as early 
as possible 

Understand links and 
consequences in task models 

  

Long term adaptation between humans and AI 

Opportunity Challenge Issue 

Support humans in an 
environment that changes over 
time 

Mapping of human-machine 
cooperation necessary 

  

Changing relationship between 
humans and their AI support 
systems 

Design the human-machine 
interface carefully so that an 
intuitive cooperation comes to 
place 

With learning to control their 
tasks, humans will expect a 
changing role from advanced 
automation 

Human skill development 
through cooperation with AI 
systems 

Mapping of human-machine 
cooperation necessary 

  

Support in crisis management 

Opportunity Challenge Issue 

Support human in crisis 
situations by taking over part of 
the routine job 

Find a good division of tasks 
between human and AI, 
according to the situation at 
hand an acceptable workload 
for the human 

  

Support in surveillance and 
providing a quick overview of 
the crisis situation 

Timing and being prepared for 
crisis situations asks for a 
systematic approach towards 
crisis types 

 

Enhanced problem solving 

Opportunity Challenge Issue 
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Solve complex problems (1) Find multi-objective solutions   

Solve complex problems (2) Dealing with local optimum and 
stop searching for “better” 
solutions 

  

Multi-objective optimisation (1) How to deal with new 
objectives. Who defines them? 

  

Multi-objective optimisation (2) Who decides the priority of 
each objective 

  

Dealing with uncertainty 
(providing e.g. predictions) 

How to make decisions on 
uncertain information 

Processing of uncertain 
information 

Dynamic Airspace Reconfiguration 

Opportunity Challenge Issue 

Support human decision 
making 

Explain solutions obtained 
through multi-objective 
optimisation 

Comparison between 
objectives will be difficult to 
make for the human 

Support the negotiation 
process (1) 

This is an AI topic that requires 
further research 

  

Support the negotiation 
process (2) 

Negotiation takes place in the 
context of a larger environment 

An issue with a solution that 
was considered yesterday to be 
unfavourable for one user 
might be solved differently to 
give that user the benefit some 
other time 

AI and the greening of aviation 

Opportunity Challenge Issue 

Generate greener trajectories 
(1) 

Weather patterns are still 
unpredictable 

  

Generate greener trajectories 
(2) 

This is a large computational 
problem 

  

Renewable energy Metrics to determine the 
energy consumption of AI 
systems and the use of green 
energy for the systems 
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6 Summary and Conclusion 

6.1 Summary 

The aim of this document, "Advanced Automation in Aviation", is to provide an up-to-date overview 
of the latest developments and research directions in the use of advanced automation in aviation. The 
focus is on the current state of research and the application of advanced automation techniques and 
AI in aviation. Current developments and future scenarios of automated systems and AI applications 
were examined and the associated opportunities, challenges, and requirements were described. 

First, the document discusses the level of automation taxonomies, which is important for the 
categorisation of automated systems. Taxonomies from SESAR and EASA, which are relevant in 
aviation, are described and a recommendation for the standardisation of this taxonomy for different 
institutions is proposed. The research criteria for the following literature review are compiled. In the 
next step, the various AI methods available are discussed and the different categorisations are 
explained. This will also illustrate the range and diversity of AI methods that could be applied in 
aviation. 

Next is a comprehensive literature review of automation advances for various modes of 
transportation, including air, rail, road, and maritime. After a discussion of general trends in mobility, 
specific technical trends in each mode of transportation are discussed in detail. One focus is on support 
systems in the areas of ATM and ATC. In summary, the goals of safety, holism, transversality, human-
centeredness and human well-being are at the forefront of automation. 

Advanced automation and the use of AI in aviation focus on the two main topics of airspace 
optimization and enhanced human support in conjunction with higher automation. A comprehensive 
literature review of the current trends and advances in ATM and ATC automation, directly related to 
the SESAR flagship "Capacity-on-Demand and Dynamic Airspace" and the use cases defined in the 
HUCAN project, is provided based on 13 selected technical articles. The focus here is on dynamic 
airspace configuration, human-autonomy teaming and the development of new decision support 
systems. 

The document presents a detailed literature survey on current developments in the field of human 
assistants and some elements of current research on key aspects of these support systems. These 
include human-machine interaction, again human-AI teaming, trust, explainability, task assignment, 
and performance metrics. Human assistants thus represent a cross-cutting topic for all areas for which 
a theoretical framework for taxonomy, research, classification, and benchmarking is required. The 
functioning of the human assistant system loaded with high automation requires human trust in the 
system. A detailed discussion covers various traits of establishing trust in the automation systems. 
Additional emphasis was put on the effect of AI systems and their ability to generate human-
understandable explanations (overview of the field of explainable AI and how it could be established).  

Another important objective in this work package was to analyse the impact of automated systems 
and AI on aviation. The project focused on identifying the key opportunities and challenges, with a 
particular focus on the human factor and safety issues. To achieve this goal, a workshop was organised 
to collect and discuss "opportunities and challenges". 
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In the workshop, ten explicit opportunities and five challenges were identified by the participants in 
connection with the smart automation of functions and processes in aviation. The opportunities 
include, for example, more efficient data processing, systems that learn during operations and can 
adapt to the behaviour of air traffic controllers, thus enabling improved problem-solving behaviour 
and even crisis management in the long term, and the establishment of dynamic airspace adaptation 
for different air traffic carriers. 

The challenges identified include weather phenomena, for example, which pose particular challenges 
for self-learning systems due to their high meteorological and traffic-related parameter variability. 
Efficient data processing also poses a challenge, as high data quality is required. If a support system is 
personalised, a fair balance between automation and human involvement must be ensured in addition 
to legal aspects. The use of AI represents a new way of recognising and combating cyber attacks. 
However, AI also offers new opportunities to carry out these attacks and thus jeopardise air traffic 
safety. 

Automated systems that can analyse complex situations, learn and thus make decisions in new 
situations will change aviation forever in the near future. These systems show amazing performance 
in cognitive tasks and, through their integration, promise a higher level of automation in both air traffic 
management (ATM) and air traffic control (ATC) in order to achieve a higher level of safety, efficiency 
and reliability. This document provides an overview of ideas and current research on automation in 
aviation. Despite the opportunities presented by automated continuous learning and adaptation, 
challenges remain on both the technical and human side that need to be addressed by all stakeholders 
in order to successfully establish advanced automation. 

6.2 Conclusion 

One of the main goals of this WP is to collect opportunities and challenges regarding the application 
of high automation and AI in ATM systems. Another main gap was to suggest a unified LOAT taxonomy. 
The following are major conclusions from this document: 

1. HUCAN high automation approach targets two main aspects of Human-AI teaming (HAT), 
cooperation with a directive interaction and collaboration with a focus on joint problem-
solving and shared awareness.  

2. To support human decision-making, information must be provided in a meaningful way to 
support data acquisition to decision making. To make AI decisions understandable to humans, 
emphasis should be put on the explainability of AI decisions. 

3. Furthermore, automation should be able to identify possible errors (even human errors) to 
adapt to evolving situations. 

4. Adaptability to high automation solutions to new environments and systems is essential for 
viable and safe solutions. 

5. There is a clear opportunity for AI power to model complex problems with the ability to learn 
from multi-objective targets. However, special care should be taken in defining learning 
objectives for the AI algorithms, to have a holistic coverage of the problem. 
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List of acronyms  

Table 9 List of acronyms 

Acronym Description 

AA Advanced Automation 

ATC Air Traffic Control 

AI Artificial Intelligence 

AMAN Arrival Manager 

ANSP Air Navigation Service Provider 

ARGOS ATC Real Ground-breaking Operational System 

ATCO Air Traffic Controllers 

ATM Air Traffic Management 

CTA Cognitive Task Analysis 

CWA Cognitive Work Analysis 

DA Digital Assistant 

DMAN Departure Manager 

EASA European Union Aviation Safety Agency 

EEA European Economic Area 

eVTOL electric vertical take-off and landing 

EU European Union 

HAT Human Autonomy Teaming 

HITL Human-in-the-Loop 

HMI Human Machine Interface 

ICAO International Civil Aviation Organization 

KPI Key Performance Indicator 

LOAT level of automation taxonomy 

ML Machine Learning 

KPI key performance indicator 

SESAR Single European Sky ATM Research Programme 

SJU SESAR Joint Undertaking (Agency of the European 
Commission) 
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SRIA Strategic Research and Innovation Agenda 

TMA Terminal Manoeuvring Area 

UAM Urban Air Mobility 

UAV Unmanned Aerial Vehicles 

WP Work Package 

XAI Explainable AI 

 

 

 


