sesar’

JOINT UNDERTAKING

D3.1:Report on Definition,
Specifications and SotA of
Artificial Intelligence in
Remote Digital Towers

Deliverable ID:
Project acronym:
Grant:

Call:

Topic:

Consortium coordinator:

Edition date:
Edition:
Status:
Classification:

Abstract

D3.1

TRUSTY

101114838
HORIZON-SESAR-2022-DES-ER-01
HORIZON-SESAR-2022-DES-ER-01-WA1-7
MDU

09 April 2024

00.02.00

Final

PU

The study defines the possible definition, specifications for the taxiway and runway monitoring and decision
support in RDTs application domain and consequently the functional requirements of the XAl, human-centred
XAl, HMI and HAIT solutions in a customized way. Here, it identifies the transparency in Al based on a systematic
literature review on Al explainability, HMI and GUI with human-centred XAl in the domain of RDTs, i.e., taxiway
and runway monitoring. The task will also identify the SotA techniques and approach for interactive data
visualisation, human-centric Al model development and hAli interfaces, and HAIT in RDT domain.

EUROPEAN PARTNERSHIP

Co-funded by
the European Union



D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL
INTELLIGENCE IN REMOTE DIGITAL TOWERS
Edition 00.02.00

sesar’

JOINT UNDERTAKING

Authoring & approval

Author(s) of the document

Organisation name Date

MDU 2023-09-18

ENAC 2023-12-18

UNIROMA1 2024-02-08

Reviewed by

Organisation name Date

Deep Blue 2024-02-26
ENAC 2024-02-23
UNIROMA1 2024-02-22
MDU 2024/02/26

Approved for submission to the SESAR 3 JU by

Organisation name Date

MDU 2024-02-07
ENAC 2024-02-07
UNIROMA1 2024-02-14
Deep Blue 2024-02-14

Rejected by?

Organisation name Date

! Representatives of all the beneficiaries involved in the project

2 Representatives of the beneficiaries involved in the project

Page | 2

©-2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL
INTELLIGENCE IN REMOTE DIGITAL TOWERS
Edition 00.02.00

sesar’

JOINT UNDERTAKING

Document history

Edition Date Status Company Author Justification

00.00.01 18/09/23 Initial template MDU Initial table of contents
and structure of the
report

00.00.01 17/10/23 Initial Draft MDU Add contents to Section 3
and section 4

00.00.02 06/11/23 Draft MDU Updated contents of
Section 3 and section 4

00.00.03 23/11/23 Draft MDU Add contents to Section 2

00.00.04 18/12/23 Draft ENAC Add content to section 3

00.00.05 05/01/24 Draft in New template MDU Updated structure, move

to new template and add
text of section 1

00.00.06 10/01/24 Draft ENAC Updated Section 2 and
section 3

00.00.07 15/01/24 Draft ENAC Updated the section 3

00.00.08 26/01/24 Draft ENAC Updated the section 2

00.00.09 07/02/24 Draft MDU Updated the section 6

00.00.10 08/02/24 Draft UNIROMA1 Updated the section 5

00.00.11 14/02/24 Draft MDU Formatting and
synchronize all references

00.00.12 16/02/24 Draft MDU Updated with internal
review

00.00.13 19/02/24 Draft MDU Ready for external review

00.00.14 28/02/24 Draft MDU & ENAC Revised based on the
internal review feedback

00.00.15 29/02/24 Draft MDU Adding Executive
Summary

00.01.00 29/02/24 Final MDU Ready for submission

00.01.01 04/04/2024 2" Round Draft MDU Addressing SJU’s
feedback

00.01.02 05/04/2024 2" Round Draft MDU Final revision

00.02.00 09/04/2024 Final MDU Ready for submission

Page | 3

Co-funded by

© —2023- SESAR 3 JU EUROPEAN PARTNERSHIP ;
the European Union




D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL
INTELLIGENCE IN REMOTE DIGITAL TOWERS »
Edition 00.02.00 -~

oanal

Copyright statement © (2024) — (TRUSTY Consortium). All rights reserved. Licensed to SESAR 3
Joint Undertaking under conditions.

TRUSTY

TRUSTWORTHY INTELLIGENT SYSTEM FOR REMOTE DIGITAL TOWER

TRUSTY

This document is part of a project that has received funding from the SESAR 3 Joint Undertaking under grant agreement No
101114838 under European Union’s Horizon Europe research and innovation programme.

Page | 4

©-2023- SESAR 3 JU EUROPEAN PARTNERSHIP Co-funded by

the European Union




D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL
INTELLIGENCE IN REMOTE DIGITAL TOWERS
Edition 00.02.00

sesar’

JOINT UNDERTAKING

Table of contents

1 EXECULIVE SUMMIAIY .....ceueeeeeeerereerenerenerenssensseesssnsssnssssssesssssesssasssnsssnsssssssessssnsssnsssnsssnne 6
WA [ (1o Lo [V o 1 Lo o T 9
3 Background and related WOrK ............ceeeecieeeiiienniiieeiiiiniiiisnisiesissnisiensossnsisssasosssnnens 11
4 Operational scenarios in Remote Digital TOWETr ..........cc.cevvureiieeirierisrenisinsssensissennens 15
5  Trusted Intelligent SYStem (TIS) ..........coeeeeueceirreeniiirieeniirssensiiesssnniissssssssssssnnsssssssnnnns 23
6 Human Factor and Cognitive ASSESSMENT ..........ccceceeeerieieenirieniereenissensossnsssssnsssssanannes 37
A 0 11 Tl (7 o T KN 40
8 RESCIEINCES ...cuueeeeiaeeniiienieieeiirinisisinnisteaissnsisssnsessssssssnsssssnssssssssssnssssssssssnsssssassssnnsans 41
23 o) e Lol g1}V 1 KOO 50

List of figures

Figure 1: MML in the coNteXt Of RTDS. .....uiiiiiiiiiiiciiee ettt e ettt e e e et e e e e b e e e e abae e e enreeas 25
Figure 2: Workflow robust and resilient ML model. .......oociiiiiiiiiiiiieiicesiee et 26
Figure 3: A high-level view of the Accountability and Auditability of ML. ........ccooeeiieiiiiiiieeieeeee. 26
List of tables

Table 1: Summary of the selected SESAR JU funded research porjects contributing to the developement

OF XALTN ATIVI/ATC . oottt sttt st te s et e e s te et e st e e seeae s seesaesteeseensesteesseseeseensesseesseseeseensestenseensenseenes 13

Table 2: Challenges of Human-Al Collaboration. ........cc.ueiiiiiiiieciiee e 32

Table 3: List of categories and MEthOdS..........ciiiiiiiieciie e e ee e 34

Table 4: LiST Of @CTONYIMS...ciiiiiiee ettt e et e e ettt e e e e tb e e e e e sabeeeeeaasaee e e ssaeseeansseeeeansneeaaan 50
Page | 5

Co-funded by

© -2023- SESAR 3 JU EUROPEAN PARTNERSHIP ;
the European Union




D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL
INTELLIGENCE IN REMOTE DIGITAL TOWERS
Edition 00.02.00

sesar’

JOINT UNDERTAKING

1 Executive Summary

The TRUSTY —Trustworthy Intelligent System for Remote Digital Tower project exemplifies this
innovation, aiming to equip RDTs with Al to match the safety and efficiency of conventional ATC
towers. By focusing on the trustworthiness of Al systems, the project seeks to ensure that these
advanced towers can reliably monitor critical areas such as runways and taxiways. The project will
integrate sophisticated visualization techniques into the operator interfaces, enhancing human-Al
interaction.

Remote digital towers (RDTs) are a ground-breaking development in ATM/ATC, employing advanced
technology to enhance efficiency and safety by allowing ATCOs to operate remotely. RDTs use a
network of high-resolution cameras and sensors around airports, offering improved safety, cost
reduction, increased flexibility, and a comprehensive view of airport operations. RDTs improve safety
by providing a 360-degree view of airports, reducing blind spots, and saving costs by eliminating the
need for traditional towers, but they also provide detailed insights into aircraft movements and
weather conditions, with advanced image processing and Al algorithms enhancing situational
awareness and hazard detection.

Al and related technologies in ATM/ATC, especially in RDT contexts, are revolutionizing the field by
enhancing efficiency, reducing workload, and improving overall operational safety. These
advancements are not only beneficial in current operations but also hold significant potential for the
future training and development of ATCOs due to the human-Al integration. These different studies
highlight the challenges and innovative solutions in RDTs, covering machine learning, augmented
reality, and remote sensing. They mark a shift towards enhanced safety, improved real-time decision-
making, and understanding of digital and autonomous systems in high-stakes environments.

In Operational Scenarios in Remote Digital Towers and the Role of XAl, presents a series of
operational use-case scenarios within Remote Digital Towers (RDT) to understand better the needs of
Air Traffic Control Officers (ATCOs) and Remote Tower Operators (RTOs). These scenarios are
instrumental in showcasing the multifaceted applications and indispensable value of Explainable
Artificial Intelligence (XAl) in Air Traffic Management (ATM) and Air Traffic Control (ATC) as part of the
TRUSTY project. Through detailed narratives, the section illustrates how XAl can significantly enhance
decision-making processes, crisis management, and operational resilience in various challenging
situations. The operational scenarios discuss the use of XAl during specific ATC challenges which
include crisis management, the impact of adverse conditions, and the integration of Unmanned Aerial
Vehicles (UAVs). By providing ATCOs and RTOs with transparent, understandable, and actionable
insights, XAl aims to introduce more resilience, efficiency, and willing collaboration between the end
user and the Al.

Trusted Intelligent System, provides an in-depth analysis of the integration and impact of Al in Air
Traffic Management (ATM), focusing on robust and interpretable Al, Human-Centric XAl and Human
Machine Teaming.

The Robust and Interpretable Al section underscores the critical importance of developing Al systems
that are both robust and interpretable, particularly within the context of the RDT. It highlights the
necessity for Al to be trained on diverse data sets for enhanced reliability and to provide clear,
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understandable explanations of its decisions recommendations, fostering trust in high-stakes fields
such as healthcare, finance, transportation, and air traffic management.

This section discusses the challenges and solutions for implementing Multimodal Machine Learning
(MML) to integrate data from various sources for optimization of Al design, emphasizing the
importance of ethical considerations. It also addresses the need for Al systems to be resilient against
errors and adaptable to new data.

Accountability, transparency, and fairness are identified as key pillars for ethical Al development,
ensuring that Al decisions can be audited and are free from bias, thus encouraging user trust. The
section proposes a Learning Assurance Process to validate Al tools, like conflict detection in air traffic
control, ensuring they are safe and effective.

Human-Centred Explainable Al introduces the pivotal role of human-centric XAl within the TRUSTY
project, underlining the project's commitment to developing Al systems that are not only advanced
but also transparent, understandable, and, most importantly, trustworthy. Human-centric XAl aims to
bridge the gap between Al's complex mechanisms and the user's need for clear, actionable insights.
TRUSTY aims to meet users' needs by providing explanations that enhance trust and improve decision-
making capabilities, whilst not increasing workload and cognitive demands.

A critical focus of TRUSTY is the methodological exploration and evaluation of XAl techniques. This
involves an innovative approach to assessing how users perceive Al explanations in terms of their
usefulness, satisfaction, understandability, and the overall performance of the Al system. These
human-centric evaluation methods are essential for ensuring that the Al explanations meet the
intended objectives of enhancing user trust and acceptance and facilitating more effective interaction
with Al systems.

Moreover, the section acknowledges the inherent challenges in maintaining explainability within
increasingly complex Al systems. The project will balance achieving high accuracy and maintaining the
transparency necessary for user trust and understanding. This involves a strategic focus on specific
methods that can effectively assess and improve the explainability of Al systems without
compromising their performance.

Human Machine Teaming delves into the dynamics of Human-Al Teaming (HAIT), defining it as the
cooperative interaction between humans and Al to achieve shared goals. This collaboration brings
significant benefits, including enhanced decision-making, improved problem-solving, and increased
creativity across various domains such as the military, healthcare, and ATM.

Despite the evident advantages, HAIT faces numerous challenges spanning design, interaction, social,
behavioural, ethical, societal, integration, and coordination. These include uncertainties about Al
capabilities, managing complex Al outputs, fostering trust and confidence, addressing human
emotions, ensuring fairness, mitigating bias, preventing unintended consequences, and optimising
teamwork and human-machine interaction.

A focal point of this section is the exploration of state-of-the-art HAIT within RDT. It emphasises the
importance of advanced systems equipped with fail-safe mechanisms, Al technologies, consideration
of human factors, and the development of user-friendly interfaces. In RDTs, Al technologies such as
speech recognition are highlighted as a potential way of enhancing air traffic controller capabilities.
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Understanding cognitive demands and workload is deemed essential, alongside ensuring that
interfaces are designed to maximise effectiveness and user experience.

In summary, Chapter 4 highlights the integration of Al in RDT, focusing on developing robust,
understandable, and ethically sound Al systems. This chapter underscores the necessity of balancing
Al's technological advancements with user trust and ethical development for effective air traffic
management in an Al-enhanced future.

Human Factor and Cognitive Assessment, delves into the challenges of integrating Al into human
teams, emphasising the importance of understanding human factors such as mental workload and
stress. It introduces the use of neurophysiological measures, such as electroencephalograms (EEG) and
electrocardiograms (ECG), as superior methods for gauging these factors compared to traditional
subjective assessments or performance metrics. Specifically, Brain-Computer Interfaces (BCls) are
highlighted for their potential to significantly improve trust and effectiveness within HAIT by offering
a direct channel for assessing and adapting to the operator's mental and emotional states, including
workload, stress, and trust levels.

A pivotal initiative discussed is the TRUSTY project, which employs passive BCls to monitor and adapt
Al behaviour in response to real-time assessments of an operator's mental and emotional states. This
approach not only aims to enhance collaboration but also addresses the challenge of unconscious bias
towards Al by utilising neurophysiological measures to provide deeper insights into human-Al
interactions. The application of neuroesthetics in artistic domains further enriches our understanding
of these interactions, offering valuable perspectives on bias and collaboration dynamics.

In conclusion, underscores the critical role of neurophysiological measures in advancing HAIT. By
leveraging these innovative techniques, we can improve the trust, efficiency, and overall effectiveness
of human-Al collaborations, paving the way for a more integrated and harmonious future between
humans and Al technologies.
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2 Introduction

Artificial Intelligence (Al) has become a transformative force across various sectors, including aviation,
where it promises to redefine air traffic control (ATC) through remote digital towers (RDTs). The
TRUSTY —Trustworthy Intelligent System for Remote Digital Tower project exemplifies this innovation,
aiming to equip RDTs with Al to match the safety and efficiency of conventional ATC towers. By
focusing on the trustworthiness of Al systems, the project seeks to ensure that these advanced towers
can reliably monitor critical areas such as runways and taxiways. The project will integrate
sophisticated visualization techniques into the operator interfaces, enhancing human-Al interaction.
This initiative is grounded in the principles of trustworthy Al, which include robust and interpretable
Al, multimodal machine learning, resilience, accountability, transparency, fairness, explainable Al, and
effective human-machine collaboration. These principles are essential for building intelligent systems
that earn the confidence of users and stakeholders, ensuring that Al decisions are not only accurate
but also understandable and fair. The TRUSTY project stands at the forefront of this effort, setting a
standard for deploying Al in high-stakes environments like ATC, where trust is crucial.

In this report, we search into the definition, specification, and state-of-the-art (SoTA) of the TRUSTY-
Trustworthy Intelligent System for Remote Digital Tower (RDT). Hence, this report aims to provide a
comprehensive overview of the current SoTA in Al systems, with a focus on their application to RDTs
and the trustworthiness of Al. We will explore these systems' theoretical underpinnings, practical
implementations, and future directions, ensuring that the RDT project not only meets but exceeds the
expectations of trustworthiness in intelligent systems.

The purpose of TRUSTY is to adjust the transparency level to improve the trustworthiness of Al-
powered decisions in RDTs. The advancement of intelligent systems has revolutionized numerous
industries, and the aviation sector is no exception. Remote digital towers represent a significant
technological leap, offering a fusion of advanced sensors, machine learning, and human expertise to
manage air traffic with enhanced efficiency and safety. However, the deployment of such systems
necessitates a rigorous framework of trustworthiness to ensure reliability, safety, and user acceptance.

To achieve the project objectives, we need to study operational use case scenarios to enable a better
understanding of user needs, i.e., Air Traffic Control Officers (ATCOs) and Remote Towers Operators
(RTOs). In this way, some scenarios will be presented that explore the multifaceted applications of
explainable Al (XAl) in ATC within the TRUSTY project.

The first scenario presents Jean, an ATCO, using XAl at an RDT during a critical system failure,
showcasing the system's utility in crisis management. The second scenario involves Marie at Muret-
Lherm Aerodrome, where XAl aids in directing air traffic under reduced visibility conditions. In the third
scenario, Raphaél at London City Airport leverages XAl to overcome challenges posed by a power
outage, demonstrating its role in enhancing operational resilience. The fourth scenario shifts focus to
a regional ATC centre, illustrating the integration of XAl in managing UAVs and their interactions with
commercial flight corridors, emphasizing the enhancement of human-machine collaboration. Finally,
in the fifth catastrophic scenario at an RDT, Alex, aided by the advanced XAl system, adeptly manages
a crisis involving dense weather conditions, UAV and crewed aircraft operations, system failure, and
additional hazards such as a medical emergency and runway obstructions, employing transparent
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insights from XAl for informed decision-making, ensuring safe operations, and enhancing crisis
management through collaborative and adaptive approaches.

These scenarios collectively illustrate the indispensable role of XAl in modern Air Traffic Management
(ATM) and ATC, emphasizing its significance in crisis situations, adverse conditions, or UAV integration,
thereby charting the future of civil aviation in an Al-driven era.

The concept of a Trusted Intelligent System has many aspects, encompassing robust and interpretable
Al, multimodal machine learning (ML), robust and resilient ML, accountability, auditability,
transparency, fairness, Human-Centred XAl (HCXAI) and human-machine teaming. Each of these
components plays a pivotal role in the development and operation of intelligent systems that can be
trusted by users and stakeholders alike.

Robust and interpretable Al is the cornerstone of trustworthy Al systems, ensuring that Al decisions
are not solely reliable across a range of conditions but also comprehensible to human operators. Thus,
the transparency of Al is particularly critical in the RDT design and implementation, where decisions
must be made swiftly and with a clear understanding of the underlying rationale.

Multimodal ML is an essential aspect of trustworthy Al systems, teaching computers to process and
synthesize information from various inputs—visual, auditory, textual, etc. This capability is crucial for
the RDT project, which relies on a multitude of sensors and data sources to provide a comprehensive
view of the taxiway, runway, and airspace.

The foundation of the RDT project consists of robust and resilient machine learning models that are
carefully designed to withstand data anomalies and maintain optimal performance. Robustness is
crucial, considering the high stakes involved and the profound consequences of any potential failure.
Simultaneously, accountability and auditability are essential because they offer a structure for
traceability and compliance with legal and ethical requirements, all of which are necessary to maintain
public confidence and guarantee regulatory compliance. Furthermore, the principles of transparency
and fairness are integral for RDT, as they are instrumental in eliminating biases and guaranteeing that
Al systems operate with unequivocal clarity and impartiality, thereby ensuring equitable and unbiased
decision-making that treats every aircraft and operator with the same level of objectivity.

HCXAI prioritizes the delivery of explanations that are understandable and actionable, fostering trust
and enabling effective human oversight of Al systems. The HCXAI is particularly relevant for the RDT
project, where operators must fully grasp Al-generated advice to make informed decisions.
Furthermore, human-machine teaming encapsulates the collaborative, constructive collaboration
between human operators and Al systems, leveraging their combined strengths to optimize air traffic
management in the RDT project.
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3 Background and related work

The field of ATM/ATC has significantly evolved to meet the increasing demand for air travel. Key to this
evolution is the use of multi-agent coordination techniques in ATM, which decentralizes system
responsibilities for improved air traffic flow management [1]. Optimization models and algorithms are
developed to enhance the capacity and efficiency of systems, particularly in congested terminal areas
[2]. The integration of automation, employing computers and flight management systems, aids human
controllers in ATM [3]. Additionally, efficient conflict detection methods are vital for safety and
flexibility amidst growing air traffic [4]. The field also investigates arrival flow aggregation effects and
the role of complexity metrics in ATM performance, accounting for variables such as weather
conditions to thoroughly understand air traffic productivity and efficiency [5], [6]. The evolution and
implementation of RDTs in the aviation industry have been explored in the context of the Single
European Sky initiative [7]. Feasibility studies and regulatory approvals have been conducted to test
the concept of multiple remote towers and assess their potential benefits in improving air traffic
management.

Remote digital towers (RDTs) are a ground-breaking development in ATM/ATC, employing advanced
technology to enhance efficiency and safety by allowing ATCOs to operate remotely. RDTs use a
network of high-resolution cameras and sensors around airports, offering improved safety, cost
reduction, increased flexibility, and a comprehensive view of airport operations. RDTs improve safety
by providing a 360-degree view of airports, reducing blind spots, and saving costs by eliminating the
need for traditional towers, but they also provide detailed insights into aircraft movements and
weather conditions, with advanced image processing and Al algorithms enhancing situational
awareness and hazard detection.

The advancement in RDTs includes the concept of Remote Tower Operations (RTOs), with Multiple
Remote Tower Operations (MRTOs) enabling a single ATCO to manage multiple airports
simultaneously using innovative display systems and advanced pan-tilt-zoom (PTZ) cameras [8].
Immersive technologies such as Head Mounted Displays (HMDs) were previously integrated into
ATM/ATC to enhance data management and analysis [9]. Innovations in interactive spatial sound and
haptics improve ATCO perception and safety, particularly in poor visibility conditions [10]. The
implementation of virtual views from the tower through multiple cameras increases the realism and
detail of the airport environment for ATCOs [11]. The application of augmented vision in remote
towers was explored by [12] emphasizing the need for high-resolution digital panoramas. The authors
[13] studied the implementation of eye tracking in augmented reality for RDT while in [14] authors
investigated the discriminability of flight manoeuvres in remote tower settings, indicating a potential
increase in decision errors in RTOs compared to conventional out-of-windows view. Finally, the
development of digital assistants like DiTA in multiple remote towers optimizes ATCOs' workload,
enhancing operational efficiency and underscoring the need for trust in these systems [15].

In the field of ATC, particularly focusing on RDTs, Al systems have been instrumental in enhancing
operational efficiency, safety, and situational awareness. Recent ATM research, especially in RDT, has
shown significant progress in digital technologies and machine learning. The work by [16] highlighted
machine learning's effectiveness in aircraft and drone detection and tracking, which is crucial for real-
time operations. The authors in [17] examined the impact of digital tower technologies on ATCOs'
visual capabilities and their safety implications. One significant advancement is the development of an
augmented reality system for remote tower operations that integrates visual spectrum (VS) and
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infrared (IR) fusion along with optical tracking. This technology aims to improve efficiency and reduce
workload, especially under restricted visibility conditions [18]. Another innovation is the Automated
Speech-Based Service Requests (ABSR) system, which supports ATCOs by highlighting recognized
callsigns, inputting commands, and feeding digital ATC systems. This system has been shown to reduce
workload and improve usability compared to traditional methods without ABSR support [19]. Further
research has explored the potential of using multimodal augmentations to increase performance in
Single Remote Tower contexts. This includes improvements in controllers' situation awareness and
performance under varying operational conditions [10].

Safety performance is one of the important aspects of RDT scenarios. A field study conducted at a
large-scale airport examined the safety performance of apron controllers based on digital tower
technology [20]. The study addressed the effectiveness of RDTs in enhancing situation awareness and
ensuring safe operations. The findings of this study can provide valuable insights into the safety
considerations and performance of RDTs in real-world airport environments. Reliability analysis
methods for RDT systems have also been investigated [21]. This research focuses on assessing the
reliability of remote tower technology, particularly in small airports with low passenger and cargo
throughput. Understanding the reliability of RDT systems is essential for ensuring their effectiveness
and suitability for different operational environments. Designing remote and virtual ATC centres also
involves unique challenges and requires a human systems integration approach. Effective human-
system integration requires a thorough understanding of the system in which we operate, and the
potential human performance in that system. This involves considering the needs, capabilities and
limitations of the controllers to ensure that the system is designed to enhance human performance
and situational awareness, and to minimise cognitive workload [22]. To achieve this, the Al systems on
which the ATCO will base its decisions must be transparent, understandable, reliable, and trustworthy.

XAl is crucial for making complex Al systems transparent and understandable, fostering trust,
acceptance and effective management in various sectors [23], [24]. XAl agent for human-agent
interaction explores the role of emotions in cognitive Al agents [25] and emphasizes responsible Al
with fairness and accountability [26]. From a historical perspective, XAl evolved from expert systems
to advanced machine learning approaches aimed at developing human-understandable systems [27].
XAl applications, such as detecting depressive symptoms in mental health, show its expanding impact
[28], supported by social science insights for effective human-like Al explanations [29], [30].

XAl is becoming increasingly pivotal in the field of ATM/ATC and, consequently, in RDT. Particularly,
the advancement of XAl in the field of ATM has been reported in a literature review article [31] within
the framework of the project ARTIMATION? supported by SESAR JU. Including ARTIMATION, there are
some other research projects supported by SESAR JU, which are summerisd in Table with their timeline
and prominent contributions. Apart from the research projects related to ATM/ATC, another notable
advancement was the integration of Al to detect conflicts in air traffic by analysing aircraft surveillance
data, thereby augmenting situational awareness for controllers [32]. Due to the critical safety
requirements, the design of machine learning systems in ATMs must focus on transparency and user
acceptance, underlining the necessity of an update to the regulatory framework for explainability [33].
XAl also plays a crucial role in enhancing the resilience of ATM operations against disruptions caused

3 https://www.artimation.eu/
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by reliance on network infrastructures and remote sensors [34]. Furthermore, blockchain technology
and self-learning networking architectures are being integrated with explainable Al to build trust with
human stakeholders and optimize ATC [35]. The introduction of digital ATCOs, capable of
autonomously performing time-consuming tasks, emphasizes the importance of a human-autonomy
teaming interface, supported by explainable Al [36]. These advancements are crucial in making Al-
driven decision-making in ATM/ATC, and RDT more transparent, reliable, and acceptable to human
operators.

Table 1: Summary of the selected SESAR JU funded research porjects contributing to the developement of
XAl in ATM/ATC.

SI. Project Name Timeline Contribution

1  AISA? 2020-06-01 - @ Strategy for providing the necessary information to a specific
2022-11-30 ATM operational environment (en-route ATC) in order to
make them trust the automated system.

2  MAHALO® 2020-06-01 - | Al-based Conflict Detection & Resolution tool with different
2022-11-30 levels of conformance and transparency.
3 TAPAS® 2020-06-01 - XAl methods for two operational cases: Conflict Detection &

2022-11-30 Resolution applied to ATC (tactical), and Air Traffic Flow
Management (ATFM) (pre-tactical).

4  ARTIMATION’ @ 2021-01-01 - Tools for Conflict Detection & Resolution and Delay
2022-12-31 Prediction with explanation through visualisations.

5  SAFEOPS® 2021-01-01 - A decision-support tool powered by Al to help ATCOs make
2022-12-31 complex decisions in the context of go-arounds.

In ATM/ATC, XAl represents a significant step forward in managing complex operations, aiding
controllers with sophisticated pattern recognition, predictive analysis with data analytics and
visualisation, and decision support. It enhances capabilities and provides deeper understanding of Al-
driven decisions, fostering trust and clarity among controllers. The integration of XAl into RDTs and
ATC systems exemplifies a commitment to advancing aviation technology while ensuring transparency,
understandability, and trustworthiness for human operators.

In summary, Al and related technologies in ATM/ATC, especially in RDT contexts, are revolutionizing
the field by enhancing efficiency, reducing workload, and improving overall operational safety. These
advancements are not only beneficial in current operations but also hold significant potential for the

4 https://aisa-project.eu/

5 http://mahaloproject.eu/

6 https://tapas-atm.eu/

7 https://www.artimation.eu/
8 https://safeops.eu/
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future training and development of ATCOs due to the human-Al integration. These different studies
highlight the challenges and innovative solutions in RDTs, covering machine learning, augmented
reality, and remote sensing. They mark a shift towards enhanced safety, improved real-time decision-
making, and understanding of digital and autonomous systems in high-stakes environments.

The TRUSTY project, aligned with SESAR objectives, aims to integrate XAl into RDTs and ATM/ATC
systems, marking a significant improvement in the enhancement of aviation safety and operational
efficiency. XAl's incorporation into RDTs offers an intuitive, transparent decision-making approach,
enhancing controllers' monitoring and management capabilities with precision and insight through
high-resolution cameras and advanced sensors.
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4 Operational scenarios in Remote Digital Tower

The landscape of ATM has undergone a profound transformation with the advent of RDT technology.
As a nexus of advanced sensors, high-resolution cameras, and artificial intelligence systems, RDTs
promise unparalleled opportunities for enhancing safety, flexibility, and operational efficiency in
aviation. The integration of XAl systems with RDTs stands as a beacon of innovation, promising to
revolutionize the way air traffic is managed. TRUSTY project, aligned with the objectives of SESAR,
focuses on developing operational use case scenarios that illustrate the transformative potential of
XAl in enhancing safety and efficiency in civil aviation operations. The incorporation of XAl-based
systems into this framework marks a significant leap forward. XAl's capabilities in pattern recognition,
predictive analysis, data analytics and decision-making support offer unprecedented opportunities to
augment human expertise. This synergy between human intelligence and machine learning fosters a
collaborative environment where safety and operational efficiency are significantly enhanced.

Through meticulously crafted scenarios, this project aims to demonstrate how XAl can assist air traffic
controllers in identifying potential safety hazards, optimizing traffic flow, and making real-time, data-
driven decisions. The following section will detail operational scenarios which demonstrate the role of
XAl in augmenting human expertise within RDTs, offering a glimpse into a future where technology
and human skill work in tandem to revolutionize ATC. The scenarios will explore various aspects of civil
aviation operations, from routine ATM to handling complex, unforeseen situations.

4.1 Scenario 1: XAl-Driven Crisis Management in RDTs®

Part 1: Introduction to the Scenario with XAl Integration

Jean, an experienced air traffic controller, is currently overseeing operations from a Remote Digital
Tower (RDT), now enhanced with XAl technology. In this airfield management scenario, Jean
encounters an increase in aircraft flow, elevating the workload significantly. This surge presents Jean
with unprecedented constraints, such as managing simultaneous take-offs and landings on runways.
As the traffic volume intensifies and the queue of aircraft awaiting clearance grows, the role of the XAl
system becomes indispensable. Distinct from traditional Al, the XAl system aids Jean by not only
presenting data in an interactive and relevant way but also providing transparent explanations for its
recommendations. For instance, it outlines why one aircraft is prioritized over another for landing
based on factors like fuel levels, weather conditions, and emergency statuses, offering Jean a
comprehensive understanding of the decision-making process behind the traffic management. Amidst
the escalating complexity of managing the increased air traffic, a critical emergency unfolds: one of
the aircraft in the congested airspace urgently declares a medical emergency. The pilot reports a
passenger experiencing severe chest pain, suspected to be a heart attack, necessitating an immediate
and prioritized landing. This adds a layer of urgency to Jean's responsibilities, compelling a swift
adaptation of the current traffic management strategies to accommaodate this unforeseen priority. The
situation demands not only an expedited landing clearance but also coordination with ground medical

9 Advanced Regional ATC Center, 2025.
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services to ensure that medical personnel are ready at the runway as soon as the aircraft touches
down, highlighting the critical nature of quick, informed decision-making in air traffic control.

Part 2: XAl in Advanced Crisis Response

As the situation escalates, the XAl system shifts into an advanced crisis management mode, a capability
that sets it apart from traditional ATC towers. It begins an in-depth analysis of the airspace, assessing
critical factors such as the exact locations and speeds of aircraft, potential collision courses, and
relevant emergency procedures. This process is markedly different from the operations in a standard
control tower, where controllers rely heavily on visual observations and less sophisticated data analysis
Al-based tools. In contrast to the often manual and visually dependent decision-making in
conventional towers, the XAl provides Jean with a logically structured action plan. This includes
innovative communication techniques and rerouting options, all explained in a manner that is
straightforward for Jean to understand and implement. The key difference here is the level of detail
and rationale provided by the XAl system. This transparency allows Jean to quickly comprehend the
reasoning behind each action proposed by the Al, establishing a trust in the technology that is not
typically possible with the opaquer processes of a standard control tower. Jean's decisions are thus
informed by a rich, real-time data analysis, enhancing his ability to manage the emergency efficiently
and effectively, a stark contrast to the limitations faced by controllers in conventional air traffic control
environments.

Part 3: Navigating the Crisis with XAl's Support

As Jean addresses the critical airspace situation, the XAl system continuously refines its
recommendations based on real-time data and sequencing procedures of flights. Jean uses these
insights, along with radar data and airport surveillance systems, to make informed decisions. The
system’s explainability ensures that Jean fully grasps the logic behind directing aircraft using visual
signals and emergency codes. Jean's adept handling of the crisis, supported by the system’s
transparent and actionable insights, results in the safe management of all flights, including the
emergency landing. The incident underscores the indispensable role of explainable Al in modern ATC,
especially in high-pressure situations.

This scenario illustrates the crucial role of XAl in ATC, particularly in managing crisis situations at RDTs.
The ability of XAl to provide clear, logical explanations for its recommendations is vital, offering ATCOs
like Jean an enhanced level of understanding and trust in Al’s capabilities.

4.2 Scenario 2: XAl-Enabled Decision-Making Enhancement??

Part 1: Introduction to Advanced Operations with XAl

Marie, an experienced ATCO, starts her shift at Muret-Lherm Aerodrome, which is now enhanced with
TRUSTY RDT technology and integrated with XAl. Dense fog challenges the day, but initially, the RDT's
advanced systems provide clear imagery despite the poor visibility. As fog causes condensation on
camera lenses, impairing visibility, the XAl system becomes essential. Unlike traditional Al, XAl provides

10 Muret-Lherm Aerodrome with TRUSTY RDT Technology, France. 2025
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Marie not only with data but also with clear explanations for the aids to decision-making process,
crucial in managing air traffic under reduced visibility.

Part 2: XAl in Navigating Reduced Visibility

The XAl system analyses the impaired visibility situation, considering radar data, historical weather
patterns and ground operations resolution strategy. It provides Marie with understandable, data-
driven instructions and alternative navigational methods, explaining each recommendation's logic and
rationale. This transparency in Al's decision-support processes enables Marie to make informed
decisions based on a deeper understanding of the Al's suggestions, crucial for managing the
simultaneous arrival of multiple commercial flights and several private planes in emergency.

Part 3: Strategic Implementation of XAl Recommendations

As all aircrafts approach simultaneously, the XAl system continues to offer real-time, logical guidance
based on conflict resolution strategy procedures. Marie uses this information, along with pilot reports
and radar data, to make precise decisions. XAl's ability to explain its reasoning aids her in
understanding the optimal landing paths, factoring in wind direction, visibility, and runway availability.
With the XAl system's assistance, Marie successfully manages the challenging situation, highlighting
the essential role of explainable Al in modern ATC, especially in adverse weather conditions and
visibility-impaired scenarios.

This scenario showcases the critical role of XAl in ATC, particularly under adverse weather conditions.
XAl's ability to provide clear, logical explanations for its recommendations is vital, offering ATCOs like
Marie an enhanced level of understanding and trust in Al’s capabilities.

4.3 Scenario 3: XAl-Enhanced Resilience in Aerodrome Operations'!

Part 1: Introduction to Advanced Operations with XAl

Raphaél, a skilled ATCO at London City Airport, starts his shift in a control tower enhanced with TRUSTY
RDT technology, now integrated with explainable Al systems. This integration is designed to optimize
routine ATM and provide robust responses to unforeseen challenges. A sudden power outage disrupts
the control room, leading to a loss of visual monitoring capabilities. Despite the redundancy systems
naturally present in the tower, the electrical incident affected multiple centres suspiciously, leaving
only some functional services like XAl-based system but cutting off video camera transmissions from
all the runways.

Part 2: Managing the Crisis with XAl-Driven Decision-Making Under Pressure

As Raphaél manages the escalating crisis at London City Airport, a new urgent scenario unfolds. Three
aircraft signal their immediate needs: two are civil transport airplanes requiring landing permissions,
and one faces a critical fuel shortage, demanding priority landing. This scenario pushes the boundaries
of Raphaél's skills and the TRUSTY RDT system, enhanced with XAl technology, to their limits. The XAl
system, recognizing the critical nature of the situation, initiates a prioritization protocol. It delivers a

1 London City Airport with TRUSTY RDT Technology, England. 2025.
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swift evaluation of each aircraft's condition, including fuel levels and the time window before reaching
a critical state, utilizing data such as the flight plans provided by airlines and coordination with airport
transportation services rather than relying solely on RDT-specific technologies like camera feeds. This
approach allows the XAl to propose an optimal landing order that ensures safety for all involved. It
clearly explains why the aircraft with the fuel emergency must land first, detailing the strategic landing
sequence for the remaining flights.

In the event of a power failure, the XAl system immediately engages backup protocols, tapping into
alternative energy sources to maintain critical operations. Even as the usual visual monitoring tools
become unavailable, the Al leverages a comprehensive database of flight paths and air traffic control
communications to maintain a detailed awareness of the airspace. This information, along with the
XAl's ongoing analysis, is relayed to Raphaél through external devices, ensuring he has access to crucial
data about aircraft positions and movements without needing direct visual confirmation from
cameras. This feature of the XAl system, providing data analytics and visualizations, underscores its
utility in scenarios where traditional visual aids might be compromised. The system's ability to explain
its recommendations, grounding them in robust data analysis, is vital. This transparency and reliance
on a broad dataset, including flight plans and air traffic communications, empower Raphaél to trust
and follow the Al's guidance, ensuring decisions are informed, precise, and tailored to the unique
challenges of managing air traffic under adverse conditions.

Part 3: Human-Al Synergy in Crisis Management

Raphaél, with the aid of the XAl's insights, coordinates a response. He directs the fuel emergency flight
to land immediately, using a runway that the XAl system identifies as most suitable based on current
conditions. Simultaneously, he instructs the civil transport airplanes to enter a holding pattern,
explaining the situation and the estimated wait time, as calculated by the XAl system. As Raphaél
tackles the challenge of managing air traffic under constrained conditions, the XAl system continuously
updates its analysis and recommendations. This adaptive approach allows him to make strategic
decisions regarding incoming flights and ground movements, ensuring safe and efficient traffic
management. Thanks to the combined efforts of Raphaél and the XAl system, all three aircrafts land
safely. The fuel emergency flight touches down without incident, and the civil transport airplanes
follow in a well-coordinated manner.

This demonstration of human-Al synergy showcases the ability of XAl systems to enhance human
decision-making under extreme stress. The situation underscores the importance of XAl in fostering
effective human-machine collaboration. Raphaél's ability to comprehend the Al's logic and reasoning
enhances his decision-making capabilities, ensuring a high level of operational safety during the crisis.
In the debrief, the effectiveness of the XAl system in providing actionable, understandable, and logical
guidance under high-pressure conditions is highly commended. Raphaél's ability to seamlessly
integrate Al insights into his decision-making process is recognized as a key human factor in the
successful management of the situation.

In this scenario, the integration of XAl algorithms into the TRUSTY RDT system exemplifies the future
of ATM. XAl's capacity to provide transparent and understandable decision-making processes is vital,
especially in complex or crisis situations, ensuring that ATC remains efficient, safe, and adaptable to
rapidly evolving challenges.
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4.4 Scenario 4: XAl-Enhanced UAV Integration in Air Traffic Control'?

Part 1: Enhanced Recognition of Complex Situations with XAl and Emergence of Data Mismatch
Challenge

At the advanced regional ATC centre, the integration of XAl within the RDT systems marks the start of
a routine yet technologically advanced day. The XAl system, with its capability to provide clear,
understandable insights into Al decision-making processes, becomes crucial in managing a mix of
flights, but also Unmanned Aerial Vehicles (UAVs). When a group of UAVs dangerously enters a
commercial flight corridor, the XAl system not only identifies this deviation but also provides the
rationale behind flagging these UAVs as potential risks, along with suggested actions.

The event takes an unexpected turn when the XAl system's data on the UAVs’ positions conflicts with
that shown by the surveillance cameras. This discrepancy presents a critical challenge, as relying on
inaccurate data could lead to unsafe decisions. The XAl system, recognizing this anomaly, initiates a
deeper analysis. It starts by cross-referencing the UAVs' past flight data with similar historical patterns
and related atmospheric phenomena, aiming to reconcile the data mismatch.

Part 2: XAl-Driven Resolution, Strategic Implementation and Continuous Evolution

Through its comprehensive analysis, the XAl system identifies the root cause of the discrepancy. High
precision cameras, despite their advanced capabilities, can sometimes face challenges in accurately
recognizing UAVs. UAVs are generally small and can operate at significant altitudes or distances from
the camera. Due to their size and the distance, even high precision cameras may struggle to capture
enough detail to accurately recognize them, especially if the UAVs are beyond the effective range of
the camera's resolution and zoom capabilities. Another point is if the UAVs have coloration or patterns
that blend with the background (like the sky, trees, or urban landscapes), it can be difficult for cameras
to distinguish them from their surroundings. Low contrast between the UAV and its environment can
significantly reduce the camera's ability to detect and recognize them. Additionally, UAVs can move at
high speeds and change directions quickly. This rapid movement can cause motion blur in the camera's
imagery, making it difficult to maintain a lock on the UAV or to process its image accurately, especially
if the camera's frame rate isn't high enough to capture such quick movements clearly. Finally, some
UAVs are equipped with technologies designed to evade detection, such as anti-surveillance materials
that absorb or deflect radar and certain light frequencies, or electronic countermeasures that can
interfere with camera sensors. These technologies can make it challenging for even high precision
cameras to detect and recognize the UAVs.

Unfortunately, these different elements played into the situation, making the data transmitted by the
video systems unreliable. Consequently, the XAl-system launched a deeper analysis, crossing all the
video data available before the event as well as the meteorological data based on machine learning
algorithms with explanation of the decision processes. With this newfound understanding, the XAl
system recalibrates the UAVs' data, aligning it with the visual feed. The system then updates its

12 Berlevag Aerodrome with TRUSTY RDT Technology, Norway. 2026
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recommendations for rerouting commercial flights, providing the ATCO with a reliable and accurate
understanding of the situation.

Part 3: Post-Incident Review and Future Implications

Equipped with accurate, XAl-verified information, the ATCO effectively manages the airspace, safely
rerouting commercial flights and communicating with UAV operators to rectify their course. This
incident not only demonstrates the critical role of XAl in complex decision-making but also highlights
its importance in continuously evolving and refining ATM protocols and Al algorithms.

Post-incident, the ATCO reviews the performance of the XAl system, appreciating its ability to analyse
and resolve unexpected challenges dynamically. This scenario underscores the indispensable role of
XAl in future ATM, particularly in scenarios involving UAVs in the frame of visual recognition in RDTs.
The continuous development of XAl technology is essential to ensure that ATC remains safe, efficient,
and transparent in an increasingly complex airspace use.

This scenario emphasizes the importance of XAl in not only handling routine operations but also in
resolving unexpected and complex issues that arise in modern ATM, particularly with the integration
of UAVs. The ability of XAl to perform deep, contextual analyses and provide comprehensible,
actionable insights is pivotal in maintaining safety and efficiency in the face of technological
advancements.

4.5 Scenario 5: Crisis Management in a Remote Digital Tower with UAVs,
Weather, and System Failure

Part 1: Adverse Weather Operations and Initial Challenges

During a challenging weather day, with a dense fog enveloping the area, both scheduled UAV flights
and crewed aircraft operations persist. The severe conditions drastically reduce visibility, posing
significant difficulties for Alex, ATCO responsible for monitoring these flights in the aerodrome. The
digital tower's cameras, designed to provide clear images of the airspace, struggle under these
conditions, leading to a notable degradation of the approaching landings.

Part 2: Transparent Explanation in Specific Case of System Failure and Escalating Crises

As the weather continues to worsen, a critical crisis emerges within the remote digital tower system.
A key component malfunctions, leading to significant disruptions in both communication and data
processing. Amidst this chaos, Alex, who oversees the operation and safety of the airspace, is alerted
to the system failure. Further complicating matters, several cameras crucial for detecting UAVs
become non-operational, creating a substantial surveillance gap.

In this escalating situation, two critical and urgent events unfold. First, an aircraft reports a medical
emergency, necessitating an immediate and unplanned landing. This development adds a layer of
complexity and urgency to the already challenging scenario, as Alex must coordinate a safe landing
path in conditions of reduced visibility and hampered communication.

Simultaneously, a new hazard emerges on the airfield. One of the working cameras detected that a
heavy piece of metal, likely dislodged by strong winds, lands on one of the runways. This presents a
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highly dangerous situation, especially since the malfunctioning cameras impair Alex's ability to detect
and assess this new hazard effectively. The presence of this metal on the runway, coupled with the
reduced surveillance capabilities, heightens the risk of a serious incident, particularly with the insights
into how these adverse conditions impact decision-making processes.

These concurrent crises put the digital tower system and Alex to the test. During this critical time,
TRUSTY, the advanced XAl system, proves invaluable. It not only informs Alex about the system failure
and its implications but also offers essential insights and clear explanations for managing these
simultaneous emergencies. This support is crucial for Alex to navigate the compounded challenges of
adverse weather, technical failures, and unforeseen dangers, ensuring the highest level of safety and
efficiency in air operations.

Part 3: Crisis Management and Post-Crisis Analysis

Faced with communication challenges due to the system failure, Alex struggles to coordinate with both
crewed aircraft and UAV operators. In response, TRUSTY suggests alternative communication methods
and assists in rerouting aircraft to ensure safety. Alex then initiates emergency protocols, focusing on
radio communications and implementing contingency plans for rerouting aircraft. TRUSTY supports
these efforts by providing real-time suggestions. Additionally, Alex makes human-in-the-loop
adaptations to the flight plans, adjusting altitudes and rerouting, with TRUSTY's assistance, to maintain
safe separation between the aircraft.

Throughout the crisis, Alex collaborates with neighbouring ATC sectors and UAV operators, sharing
information and managing the airspace collectively. TRUSTY plays a pivotal role in facilitating this
exchange of data and insights. It continuously assesses the impact of fog on surveillance, suggesting
reliance on secondary systems and additional sensor inputs. After the crisis subsides, Alex and TRUSTY
conduct a thorough analysis of the emergency response. They review the decisions made, identify
areas for improvement in handling adverse weather conditions, and implement lessons learned to
enhance future responses.

Despite the catastrophic scenario involving dense fog and a system failure, Alex, with the assistance of
TRUSTY, successfully manages the crisis. The transparent insights from XAl empower the controller to
make informed decisions, ensuring the safe operation of both crewed and uncrewed aircraft in
challenging conditions. The collaborative crisis management approach enhances communication and
coordination, contributing to a resilient and adaptive remote digital tower environment.

4.6 Use-Case conclusions

In conclusion, the TRUSTY project exemplifies the revolutionary role of XAl in enhancing ATC, achieved
through a series of carefully designed scenarios. These scenarios, pivotal to TRUSTY, demonstrate how
XAl and digital assistants can substantially improve ATMs by helping controllers' pinpoint safety
hazards, streamlining traffic flow, and enabling real-time, informed decision-making. Spanning a wide
array of civil aviation operations, from everyday management to handling intricate, unexpected
situations, they underscore the adaptability of XAl.

A key focus is on bolstering situational awareness, especially in monitoring runways and taxiways, and
on the pivotal role of XAl in diminishing the cognitive workload of air traffic controllers. This reduction
in workload not only boosts efficiency but also curtails fatigue, enhancing overall operational safety. A
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central aspect of TRUSTY's methodology is its fluid integration of XAl's digital prowess with the dynamic
nuances of ATM, ensuring that human controllers remain integral to decision processes.

This approach accentuates TRUSTY's dedication to marrying technological advances with human-
focused considerations. It marks a notable advancement in ATM evolution, aiming to heighten the
safety of group aviation operations. The project endeavours to employ more explainable Al systems,
fostering a nuanced collaboration between humans and machines. This fine-grained synergy is
intended to make complex Al decisions more transparent and understandable to human operators,
thereby enhancing trust and effectiveness in high-stakes aviation environments. This integration of XAl
is not only crucial for current operations but will also be a cornerstone in the future of civil aviation,
ensuring safety, efficiency, and adaptability in increasingly complex airspace environments.
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5 Trusted Intelligent System (TIS)

5.1 Robust and Interpretable Al

Robust and interpretable Al refers to artificial intelligence systems that are designed to be both reliable
and understandable. These systems are trained on diverse datasets and are tested to ensure their
performance in various scenarios, making them more robust compared to traditional Al models.
Additionally, these Al systems provide clear explanations for their decisions and allow users to
understand the reason behind the outcomes, which is very important in high-stakes applications like
healthcare, finance, and transportation. Interpretable Al can help build trust between humans and
machines, enabling more effective collaboration in decision-making.

5.1.1.1 Multimodal Machine Learning

In the academic landscape, Baltrusaitis et al. [37] dive into the topic of Multimodal Machine Learning
(MML), which is a branch of Artificial Intelligence. This field is concerned with teaching computers to
grasp and connect the information they receive from various senses like seeing, hearing, sensing and
text. It's a crucial part of helping computers make sense of the world around us.

On the other side, Parcalabescu et al. in [38] offer a fresh perspective on multimodality in the context
of MML. They argue that how we understand multimodality should depend on the specific problem
that a computer is trying to solve. Different tasks require different types of information, and the best
way to understand this information is in the context of the task at hand. Therefore, their new definition
of multimodality is centred around the information that is most relevant for a particular computer
task.

Together, these two papers analysed the broad field of MML. Baltrusaitis et al. [37] introduce the field,
while Parcalabescu et al. [38] offers a new way to think about it, emphasizing the importance of
tailoring the understanding of multimodality to the task at hand.

5.1.1.2 Challenge

In the realm of academic research, the study of Liang et al. [39] focuses on the fascinating challenges
posed by multimodal machine learning. This branch of machine learning deals with data coming from
different sources like images and text, and it brings about unique and tricky issues for the machine
learning community. These challenges are because the data sources are quite different, and there are
often connections between them. To tackle these challenges, the paper introduces a system of six
main technical problems: representation, alignment, reasoning, generation, transference, and
guantification. These challenges cover both the historical aspects of the field and more recent trends.
They involve things like figuring out how to model and learn from this diverse data, understanding the
different aspects of this diversity, and dealing with the learning and optimization issues that arise when
the data is so varied.

A different study [37], explores more practical considerations for the application of MML. This study
looks at what can be done with MML, like recognising speech, describing events, answering questions
about images, and finding media in large collections. However, the study highlights the technical
hurdles to overcome. These challenges are about how to represent and translate the different types
of data, align them properly, merge them together, and learn from them, especially when one type of
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data doesn't have much information. These challenges are especially important when one of the data
sources doesn't have much useful information, like not enough labelled data to learn from.

Together, these two papers shed light on the complexities of MML, showing the academic and practical
sides of the field. Liang et al. [39] identify the theoretical challenges, while Baltrusaitis et al. [37]
illustrate the real-world applications and the hurdles that must be overcome.

5.1.1.3  Suggestions regarding MML

In [39], the authors introduce a new way of looking at the challenges of multimodal learning, which
involves understanding and connecting data from different sources like images and text. They say that
these challenges are not studied enough in traditional single-source machine learning and need more
attention to advance this field. They also suggest that this new system of challenges will help organize
future research and identify the problems that still need solving in MML. Moreover, they call for future
research to develop solid theories and practical methods to define and measure the differences and
relationships between different data types in multimodal datasets.

The authors of the paper [38] also emphasize the need for better ways to combine different types of
data in machine learning. They point out that the current methods are often random and lack a solid
foundation. They propose that more research should be directed toward creating well-thought-out
methods for combining data types. Additionally, they highlight the importance of ethical
considerations in developing multimodal machine learning systems, suggesting that it should be done
in a way that aligns with ethical standards in human society.

The paper [39] takes a high level view of the field of MML advancement. They highlight key questions
that need addressing in the long term, such as finding better ways to represent and connect data from
different sources, transferring knowledge between them, and understanding the complexities of
different data types. These questions provide a roadmap for future research in the field of multimodal
machine learning.

5.1.1.4 MML in the context of RDTs

The remote digital tower requires planning tools that support the controller with tasks such as
sequencing flight movements, rearranging them according to situational demand, and organising
remote controller positions, etc. Machine learning models developed to support these tasks can use
data coming from different modalities, such as video streaming of visual surveillance, radar signals,
communication through text messages, weather reports, and tabular data from air traffic management
systems. In MML, these different modalities can be fused and encompassed to provide holistic
decisions that can reduce uncertainty and false alarms and improve the trustworthiness of Al systems.
Figure 1 illustrates the schematic of MML in the context of RTDs.
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Figure 1: MML in the context of RTDs.
5.1.2 Robust and resilient ML

A good capability of a machine learning model is known as robustness and resilience, where the ML
model can resist error, outliers, and data distortion. It also involves the capacity to detect potential
issues, make necessary adjustments, and continue functioning effectively when encountering unseen
or unexpected noisy data. In crucial application areas like healthcare, banking, and transportation
systems, such as ATMs, this robust and resilient ML model plays a vital role in making judgments and
predictions. The diagram presented in Figure 2 illustrates the comprehensive process through which
machine learning models demonstrate robustness and resilience.
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Figure 2: Workflow robust and resilient ML model.

Numerous methods can enhance the robustness of deep neural networks when applied to image
classification tasks. In our context, these tasks are essential for detecting objects in remote digital
tower systems on runways and taxiways. Some of these techniques include data augmentation,
increasing the amount of labelled data, and employing various network architectures such as AlexNet,
SqueezeNet, VGG-19, DenseNet-121, and ResNet-50. However, it is important to note that while these
techniques have the potential to improve the robustness of image classification, their effectiveness

may vary across different cases [40].

5.1.3 Accountability & Auditability

Accountability and auditability (Figure 3) are increasingly important considerations in the development
and deployment of artificial intelligence (Al) systems. Ensuring accountability in Al systems means that
there is a clear understanding of who is responsible for the actions taken by the system and that there
are mechanisms in place to monitor and enforce compliance with ethical and legal standards.
Auditability, on the other hand, refers to the ability to assess and verify the performance and behaviour
of an Al system, including its decision-making processes and outputs.
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Figure 3: A high-level view of the Accountability and Auditability of ML.
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5.1.4 Transparency and Fairness

Transparency and fairness in Al are the core principles and practices that guarantee Al systems operate
with clarity, accountability, and impartiality. This encompasses using diverse and representative
training data, employing transparent and explainable algorithms, and ensuring a fair and unbiased
decision-making process. Transparency fosters user trust by allowing them to understand the system's
decisions, while fairness ensures the system doesn't discriminate based on personal attributes. These
principles are essential for building dependable Al systems applicable across various domains like
healthcare, finance, criminal justice, and education.

5.1.4.1 Challenges in fairness research
The paper [41] identifies four key challenges in ML model fairness research:

(1) Balancing the trade-off between fairness and model performance, where if we don't consider
the social and cultural factors when using machine learning, we might end up with models that
are unfair, unethical, and even illegal. The machine learning community has come up with
different ways to make models fairer, but it's a bit tricky because making a model fair can
sometimes make it less good at its job. Sometimes, though, making a model less accurate on
purpose is a way to fix unfairness.

(2) (Dis)agreement and Incompatibility of “Fairness”, there's a debate in the literature about
whether it's more important to be fair to individuals or groups when using machine learning
models. Fairness metrics usually focus on one or the other but not both. Some methods that
aim to make things fair for groups can make things worse for individuals within those groups.
Also, the way fairness is defined mathematically doesn't always match how society,
economics, or the law see it. This makes improving fairness in machine learning challenging.
To address these issues, the community needs to find ways to combine different fairness
measures and categorize their differences, trade-offs, and preferences, which is a tough task.

(3) Tensions with Context and Policy, the current research on fairness in machine learning often
tries to make things fair without really understanding the root causes of unfairness. This
approach doesn't consider the social and cultural factors that can lead to bias. Instead of just
trying to reduce unfairness, we need to pay more attention to the real-life context in which
these decisions are made. Also, the data used to train machine learning models often reflects
past biases and may not accurately represent the real world. Researchers should work closely
with industry partners to study these models in real-world situations and involve policymakers
more in discussions about fairness and standards. This is a challenging problem, but it's crucial
to make progress in the field of fairness in machine learning.

(4) Democratisation of ML vs the Fairness Skills Gap, now a days machine learning is more
accessible with many tools and cloud-based solutions. This democratization of machine
learning can lead to both positive and unintended, socially insensitive uses. However, the
challenge is that addressing bias and fairness in machine learning requires expertise, and
there's a gap in tools and resources for those without extensive technical knowledge. To keep
up with the growing use of machine learning, there's a need for open-source tools, improved
educational resources, and comprehensive frameworks to address fairness and bias issues,
especially in situations where one model depends on another.

The transparency and fairness of Al-based systems are being ensured through the learning assurance
process. This process involves technical development to cover the specific learning processes of Al
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systems. The learning assurance process should provide relevant and understandable information on
how the Al application arrives at its results/decisions and perform a safety risk analysis and mitigation
process to avoid being considered a black box [42].

Authors of [42] focus on Al systems' learning process in ATC. They tested a conflict detection tool that
uses machine learning to predict aircraft separation violations. The tool uses two methods: estimating
minimum distance and identifying potential conflicts. They used extreme gradient boosting for both
methods and then validated the learning process using the EASA's W-shaped methodology. The goal
was to understand the tool's performance and avoid the "black-box" effect. The research found that
prediction accuracy decreased as aircraft got closer and that the EASA's methodology needed more
time-dependent analysis. Al systems that rely on prediction time or accuracy need more analysis as
these factors change over time. Further study is required to find the relationship between the number
of samples and metric deterioration. Lastly, more regulation and certification for Al systems in aviation
are needed, and new guidelines for data analysis are necessary to ensure valid performance.

5.1.4.2 A Case Study of Chatbot in Aviation education and research

Recently, [43] presented a case study investigating the impact of ChatGPT (a Chatbot developed by
OpenAl) on aviation education and research based on surveys of graduate students of Beihang
University, the leading aviation university of China. The survey results reveal that students find it
helpful for saving time and efficiency. The major findings of the case study were that students found
positive experiences with ChatGPT as they felt they had more access to knowledge and an effective
learning environment. Most of the students cross-validate the results with other sources, but
interestingly, the female students tend to be even more diligent and critical in this verification process.

The three main tasks that students take help from ChatGPT are programming, state-of-the-art
identification, and terminology explanation. Using ChatGPT in aviation faces significant challenges in
handling confidential information, conducting innovative research, and processing large volumes of
text. Along with those, here are a few important ones:

(1) Reliability and Over-Reliance: Using Al like ChatGPT can be risky because it might provide
wrong or misleading information. This is a big problem in aviation, where safety is crucial.
Students might not question the Al's answers even when they're incorrect.

(2) Training and Maintenance: ChatGPT needs constant updates to work well. It takes a lot of
time and effort to keep it up to date, which makes it impractical for cutting-edge research.

(3) Ethical and Bias Concerns: These systems can learn biases from training data. This could lead
to unfair or unethical outcomes. Also, they are vulnerable to cybersecurity threats, and if not
adequately protected, they could be hacked, causing problems in aviation.

In short, using ChatGPT in aviation has many challenges that need careful consideration and
management by all involved parties.

The students are against completely getting rid of this technology in university education. They think
it would be tough to ban it only in some places, like certain countries. They believe that students would
try to find ways to still use it because they see it as very useful for their learning. However, there are
also challenges and limitations that need to be addressed for a successful and safe application of
chatbots in the aviation domain. The paper also suggests future research directions in this area,
specially making the chatbot more trustworthy.
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5.2 Human-Centred XAl

HCXAI prioritises meeting the needs of users who rely on explanations. To achieve this, XAl
explanations should possess key attributes [44]:

(1) They must be understandable, catering to both experts and non-experts in Al. XAl aims to
enhance transparency, necessitating explanations with accessible, commonly used
terminology that is interpretable and intuitive.

(2) Actionable explanations empower users to make informed decisions when interacting with Al
systems. These explanations should enable users to comprehend, trust, and effectively
manage the Al system while generating high-quality, interpretable rationales for Al decisions.

(3) Trustworthiness is paramount, demanding accuracy and reliability in explanations. Grounding
explanations in real-world examples and ensuring transparency in decision-making are
essential to foster confidence among users. Given the inherent opacity of Al models, XAl seeks
to alleviate trust challenges by providing explanations that bolster stakeholders' confidence in
the utilisation of Al models.

5.2.1 Approaches of Human-Centred XAl

HCXAI involves different approaches that focus on explaining Al system outputs in a way that is
understandable and meaningful to humans [45].

One approach to HCXAI is termed as Reflective HCXAI, which takes a socio-technically informed
perspective on XAl. It critically reflects on the dominant assumptions and practices of the field and
considers the values of diverse stakeholders, especially marginalised groups. Reflective HCXAI aims to
propose alternative technologies that are sensitive to socio-organizational contexts and address the
limitations of current Al systems [46].

The Human-Centred Artificial Intelligence (HCAI) framework is another approach to Human-Centred
XAl. It emphasizes designing Al systems that offer high levels of human control and high levels of
computer automation to increase human performance. The framework helps to understand when full
human control or full computer control is necessary and how to avoid the dangers of excessive control.
The methods of HCAI aim to produce designs that are reliable, safe, and trustworthy [47].

5.2.2 Human-centred evaluation methods

Several literature reviews explored the state of XAl research, highlighting the necessity and challenge
of understanding user needs and conducting human-centred evaluations of explainable models [1],
[48].

For example, in this study [48], the review discusses the emergence of various terminologies and
categorizations for explainable Al (XAl) evaluation methods due to their multidisciplinary nature. It
identifies four key categories for HCXAI evaluation: Trust, Explanation Usefulness and Satisfaction,
Understandability, and Performance. The study findings suggest that user trust in a model is influenced
by both actual and perceived accuracy, emphasise the importance of understandable explanations,
highlight a preference for human-generated explanations, and note that an optimal level of
transparency is necessary to balance the cost and benefit of explanations.
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In another related work by [1], they used similar categories for human-based XAl evaluations (i.e.,
trust, understanding, usability, and human-Al collaboration performance). The review identified the
proliferation of XAl research but emphasized the need for more transparent and comparable human-
based evaluations across different application domains. It also underscores the importance of
incorporating insights from cognitive and social sciences in XAl research to enhance human-centred
approaches and proposes practical guidelines for future studies in this field.

5.2.3 Challenges and Advancements in Human-Centred XAl

One of the main challenges in HCXAI is to evaluate the effectiveness of XAl techniques, which are
becoming increasingly complex. The authors in [49], propose to address this challenge by focusing on
the explainability of simple mathematical models and assessing how people perceive the
comprehensibility of different model representations. This approach allows diverse stakeholders to
judge the intelligibility of fundamental concepts that more complex Al explanations are built from.

5.2.4 Human-Centred XAl for Remote Digital Towers (RDT)

The related fields, such as smart cities and industrial asset management, can provide valuable insights
and guidelines for the development of XAl in remote digital towers.

Explainable Al for smart cities is a relevant area of research that can provide insights into the
development of HCXAI in digital remote towers. The lessons learned from state-of-the-art research in
XAl for smart cities can inform the implementation of XAl-driven systems and architectures in the
context of digital remote towers. This includes addressing technical challenges, ensuring transparency
and accountability, and leveraging XAl techniques to improve decision-making processes [50].

Furthermore, the application of XAl in the prognostic and health management (PHM) of industrial
assets can provide valuable insights for human-centred XAl in digital remote towers. The balance
between accuracy and explainability is a key consideration in PHM, and similar trade-offs may need to
be made in the context of digital remote towers. The involvement of human operators, explanation
assessment, and uncertainty quantification are important factors to consider in developing XAl
solutions for PHM, and these insights can be applied to the development of HCXAI in digital remote
towers [51].

In conclusion, considering the needs and experiences of human operators, prioritizing privacy and
trustworthiness, and leveraging explainability techniques, human-centred XAl can enhance the
effectiveness and usability of Al systems in digital remote towers.

5.2.5 The Challenges and Opportunities of Al and XAl for ATM

The use of Al in ATM has seen a surge in interest and funding, particularly in the 2010s, driven by the
availability of massive volumes of data and the efficiency of computer graphics card processors in
accelerating learning algorithms. A recent survey by [31] provides a comprehensive overview of the
current state of the art in Al and XAl for ATM. The authors identify several key trends in Al research
and development in ATM, including the use of machine learning and deep learning such as Neural
Networks (NN), Random Forest (RF), Support Vector Machine (SVM), and others to develop more
accurate and efficient algorithms for ATC tasks, as well as the development of XAl methods to make Al
systems more transparent and understandable to end users.
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The authors also discuss the challenges that need to be addressed before Al can be widely adopted
and developing XAl methods that are effective and efficient in the ATM context.

One of the key challenges is the need for XAl systems to understand the end-user and adapt to their
requirements. This involves the ability to interact with the user and provide information that is not
only about the internal state of the Al but also caters to the user's needs. Additionally, the format of
explanations, such as numeric, rules, textual, and visual explanations, needs to be carefully considered
to make the explanation more understandable and user-friendly, which is crucial for effective XAl in
ATM.

Furthermore, the interchangeability of terms such as interpretability, transparency, and explainability
in the literature poses a hindrance to developing a solid understanding of explainability in Al, which is
essential for effective XAl methods in the ATM context. Additionally, the lack of a general guide
presenting how to resolve problems in the ATM domain using Al and XAl is a significant limitation that
hinders the development of effective and efficient XAl methods in ATM.

Finally, it is important to gain the trust of end users in Al systems. End users need to be confident that
Al systems are safe and reliable before they are willing to use them. It is important to develop methods
to explain Al systems to end users in a way that builds trust, maintains situational awareness but which
doesn’t compromise workload.

5.3 Human Machine Teaming

Human-Al Collaboration/Teaming can be defined as the cooperative and coordinated interaction
between humans and artificial intelligence systems to achieve a shared goal or task. It involves the
integration of human and Al capabilities, where humans and Al systems work together as
interdependent teammates to leverage their respective strengths and expertise [52]. This
collaboration can take various forms, such as humans delegating tasks to Al systems, Al systems
providing recommendations or assistance to humans, or humans and Al systems jointly making
decisions [53].

The goal of human-Al collaboration is to enhance decision-making, problem-solving, and creative
processes by combining the strengths of humans and Al systems. It aims at leveraging the
computational power, data processing capabilities, and pattern recognition abilities of Al systems,
along with the human abilities of critical thinking, creativity, and contextual understanding [54].
Human-Al teaming is being explored in various applications across diverse domains: In military
operations, Al is integrated into autonomous systems for target recognition, navigation, and
situational awareness, while humans provide strategic guidance and ethical oversight [55], [56].
Moreover, in healthcare, Al assists in medical diagnosis, treatment planning, and patient monitoring,
while humans provide expertise and empathy [57], [58]. Additionally, in Air Traffic Management (ATM)
[59], [60], where Al has the potential to enhance operational efficiency, careful consideration of factors
such as team composition, communication, trust, and the impact of Al on human design teams is
essential to ensuring effective human-Al collaboration in ATM. In general, Human-Al teaming is
particularly valuable in complex and data-intensive domains, where Al systems can analyse large
amounts of data and provide insights, while humans can provide domain expertise, interpret the
results, and make informed decisions [53].

5.3.1 Challenges in Human Machine Teaming
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While human-Al teaming holds immense promise, it also presents several challenges, as summarised
in Table 2. These challenges include:

Table 2: Challenges of Human-Al Collaboration.

Challenges Category Description Source
Design and Technical Designing effective and user-friendly human-Al [61]
Interaction interactions is difficult due to the uncertainty
surrounding Al's capabilities and the complexity of Al
outputs.
Social and Social Social and behavioural factors, such as trust and [57],
Behavioural confidence in Al systems, can influence the adoption = [62]

of human-Al collaboration.

Trust and Technical Establishing trust and confidence in Al systems is [52],
Confidence crucial for effective human-Al collaboration. [63]
Ethical and Ethical Human-Al collaboration raises ethical and societal = [64],
Societal concerns, such as bias and discrimination. [65]
Integration and | Technical Integrating and coordinating human and Al capabilities = [66],
Coordination can be challenging due to the need to optimise Al for . [67]

teamwork and manage human-machine interfaces.

Design and Interaction Challenges: The first set of challenges is associated with the design and
interaction of human-Al systems. Yang et al., in [61] highlight the difficulties in designing valuable
human-Al interactions. They propose two main sources of challenge: uncertainty surrounding Al's
capabilities and Al's output complexity. Al capabilities can be difficult to predict, and Al systems can
produce a wide range of outputs, from simple to adaptive and complex. These challenges can make it
difficult for designers to create human-Al interactions that are both effective and user-friendly. While
in another study, [68] emphasises the challenges in designing creative Al partners (i.e., co-creative
systems for producing creative artefacts, ideas and performances) for Human-Al interaction. These
challenges stem from the complexity of human-Al interaction and the need to establish effective
communication and collaboration between humans and machines [69].

Social and Behavioural Challenges: Secondly, there are challenges related to the social and
behavioural aspects of human-Al collaboration. [57] explores the challenges in healthcare, where
social and behavioural factors influence the adoption of human-Al collaboration. Similarly, in [62] the
authors highlight the challenges in conducting empathic conversations due to the struggle of Al
systems to understand complex human emotions.

Trust and Confidence Challenges: Thirdly, the work in [52] highlight the importance of trust in human-
Al collaboration. They suggest that perceived rapport, perceived enjoyment, peer influence, facilitating
conditions, and self-efficacy positively affect trust in Al teammates. This study provides insights into
the factors that influence trust in human-Al collaboration and can be useful for designing effective
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human-Al collaborative systems. A study by [63] discusses the impact of Al advice on human
confidence in decision-making. Their findings indicate that the influence of Al advice on human
confidence is contingent upon the accuracy of the Al advice. Accurate Al advice supports human
confidence in decision-making, while inaccurate Al advice decreases it. The study also revealed that
perceived Al advice quality mediates the impact of Al advice on human confidence. These challenges
arise from the need to establish trust and confidence in the capabilities and reliability of Al systems.

Ethical and Societal Challenges: The fourth set of challenges are related to the ethical and societal
implications of human-Al collaboration. [64] identifies ethical issues in Al partners in human-Al co-
creation, while [65] scrutinize the performance and bias in human-Al teamwork in hiring.

Integration and Coordination Challenges: Lastly, there are challenges related to the integration and
coordination of human and Al capabilities. The researchers in [66] investigate the optimisation of Al
for teamwork, while [67] discusses the collaboration between humans and machines in diverse
contexts.

5.3.2 Human Al-Teaming in RDTs

The state-of-the-art human-Al teaming for RDTs involves several key aspects: the integration of
advanced automated systems, fail-safe mechanisms, Al technologies, human factors considerations,
and the careful design and evaluation of controller-friendly assistance systems.

Firstly, using advanced automated systems requires human operators to efficiently monitor multiple
displays with distributed attention and intervene when necessary [70]. This interaction, between
operators and machines can be revealed through the path of visual attention, which reflects the
cognitive process of human-computer interaction [71]. Additionally, the implementation of fail-safe
systems and error control strategies is crucial to reduce the frequency of errors, especially in situations
with serious consequences [72].

Furthermore, integrating Al technologies, such as speech recognition support, can significantly
enhance the capabilities of air traffic controllers in multiple remote tower environments [19]. For
instance, the use of assistant-based speech recognition support (ABSR) can provide real-time
assistance to controllers by highlighting recognized callsigns, thereby improving operational efficiency.
Moreover, the results of human-in-the-loop experiments have demonstrated that remote tower
operations can lead to improvements in communications and departure rates without increasing
perceived workload, effort, safety, and situation awareness [8].

In terms of human factors, it is essential to consider the cognitive processing and workload of air traffic
controllers in next-generation ATC tower team operations [73]. The SHELL model, can be used to
provide a framework for understanding the human factors interfaces in remote tower operations [73].
Additionally, the use of eye movement analysis, including saccades and fixations, can offer insights into
the cognitive processes and selective attention of air traffic controllers [74].

Moreover, the design and evaluation of a controller-friendly assistance system, along with the careful
selection of test participants, are critical for obtaining relevant and objective results in developing
remote tower solutions [72]. Furthermore, considering user training and habituation to virtual
environments can help reduce cybersickness and improve user experience [75].
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5.4 Summary of TIS

For the TRUSTY project, this SotA report integrates insights from our previous ARTIMATION project
and the evolving landscape of Robust and interpretable Al, HCXAI and Human-Al Teaming (HAIT),
specifically in the context of Taxiway and Runway monitoring tasks within RDT. Table 2 shows a
common list of categories and methods concerning trustworthy Al.

The TRUSTY project can greatly benefit from using robust and interpretable Al, especially for tasks that
require reliability and increased insight into Al decision-making rationale. MML will be important for
making this rationale clear and fair. [37] pointed out that MML can be used for multimedia event
detection, which includes video summarization, action classification and multimedia content analysis.
[39] introduced a variety of advanced tools like Multimodal Knowledge Graphs and Generative
Adversarial Networks (GANs) that can help with visual answering questions, filling in knowledge gaps,
and describing videos and images, which are useful for the project's goals.

Drawing from the principles of HCXAI, TRUSTY prioritises creating Al explanations that are
understandable, actionable, and trustworthy. It emphasises the need for Al systems to meet the needs
of both Al experts and non-experts, offering transparent and intuitive explanations that enhance user
trust and decision-making. Moreover, the project will explore the HCXAIl approaches. TRUSTY
recognises the complexity of evaluating XAl techniques and will focus on specific methods to assess
user perceptions of Al explainability. Human-centric evaluation methods will centre around trust,
explanation of usefulness and satisfaction, understandability, and human performance. The project
will also address the challenges of ensuring explainability in increasingly complex Al systems, focusing
on the balance between accuracy and transparency.

The project will explore the cooperative interaction between humans and Al in achieving shared goals.
It will explore the RDT domain, emphasizing the integration of human critical thinking and the
computational power of Al. Challenges in design, interaction, social and behavioural aspects, trust,
ethics, and integration will be explored. The project aims to enhance decision-making and problem-
solving by leveraging the strengths of both humans and Al.

In the context of RDT, TRUSTY will apply HCXAI to improve operational efficiency and decision-making.
It will draw insights from related fields like smart cities and industrial asset management, focusing on
transparency, accountability, and effective use of XAl techniques.

Building on the findings of the ARTIMATION project's findings in the field of Al and XAl for Air Traffic
Management (ATM), TRUSTY will incorporate lessons learned in developing transparent and
understandable Al systems.

In conclusion, the TRUSTY project aims to advance robust and interpretable Al, HCXAI and HAIT by
integrating key learnings from the ARTIMATION project and recent developments in the field. It seeks
to foster trust, understanding, and effective collaboration between humans and Al systems, focusing
on remote digital towers in the context of ATMs. This SotA report lays the foundation for the technical
roadmap and future directions of the TRUSTY project.

Table 3: List of categories and methods.

Category Method Application Paper
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Image and
vision

Convolutional
Neural Networks
(CNNs)

Image captioning, visual question-answering, and
multimedia event detection.

(37]

Visual Question Answering (VQA), Visual
Commonsense Reasoning, Visual Dialogue, Phrase
Grounding

(38]

Convolutional
Neural Networks
(CNNs),
Generative
Adversarial
Networks (GANSs)

Image classification, object detection, image
captioning, and visual question answering

(39]

Text

Recurrent Neural
Networks (RNNs)
for NLP

Attention mechanisms in generating image captions,
deep learning for learning image-text embeddings.

(37]

NLP

Visual Question Answering (VQA), Visual
Commonsense Reasoning, Visual Dialogue, Phrase
Grounding

(38]

Recurrent Neural
Networks (RNNs)
and Transformer
models, Word
embeddings
(e.g., Word2Vec,
GloVe)

Sentiment analysis, machine translation, text

summarization, and document classification

(39]

MML

Multimodal
Knowledge
Graphs,
Multimodal
Commonsense
Reasoning,
Attention
Mechanisms,
Graph-based
Methods,
generative
adversarial
networks (GANs),
variational
autoencoders

Event detection

(37]
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(VAEs), Matrix
Factorization

Visual question answering, knowledge base [39]
completion, and image captioning, recommendation
systems and data clustering
Fairness Fairness Recidivism Prediction, Credit Scoring, Employment and = [41]
measuring Hiring and many others
methods:
statistical parity,
disparate impact,
equalized odds,
calibration,
counterfactual
fairness
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6 Human Factor and Cognitive Assessment

As Al technology becomes an increasingly important part of our everyday working life, human work is
increasingly influenced by Al, and thus there is a growing need to effectively integrate, collaborate and
connect with it [76]. Al technologies refer to intelligent systems that perform human cognitive
functions such as learning, interaction, problem solving and decision making, and therefore can be used
with the same flexibility as human workers [77]. As technology advances, Al can be integrated directly
into team processes alongside other artificial and human agents or perform roles that assist humans in
the same way as team members. This interaction is defined as HAIT [78]. The different but
complementary capabilities of the human-Al team help to work together effectively to achieve complex
goals while ensuring people's well-being, motivation, and productivity. Other synergies that arise when
operators work together with Al contribute to strategic decision-making [79], the development of
individual competences and thus long-term employee motivation [80]. Employee acceptance and
positive attitudes towards working with Al increase when Al is considered as a team member. HAIT
therefore offers an opportunity to create attractive and sustainable workplaces by utilizing human
capabilities, providing learning and mutual support.

However, these benefits are not obvious when humans are in a team with Al systems. The National
Academies of Sciences, Engineering, and Medicine [81] identifies four conditions for humans and Al
teams to benefit from synergy.

(1) Humans must be able to understand and predict the behaviour of the intelligent agents
employed.

(2) People must be able to establish appropriate trustiness to properly use artificial intelligence
systems.

(3) People must be able to make accurate decisions when using the results of employed systems.

(4) People must be able to control and manage the system appropriately.

These conditions show that successful teamwork depends not only on technical aspects (e.g., design
of the Al system) but also on human aspects (e.g., mental workload and stress induced during the
interaction, trust in the system) that may induce poor interaction/teamwork (e.g., form of
collaboration).

With a particular regard to the human aspects involved in HAIT (i.e., human factors) to take into
account during the interaction with Al, neurophysiological measurement, based on the recording of
operators’ neurophysiological signals, (e.g., EEG, ECG, EDA), showed so far clear advantages with
respect to other methodologies, such as subjective or performance measures [82]. Firstly,
neurophysiological measures could be obtained continuously and online. Secondly, compared with
subjective and performance measures, the neurophysiological ones may be recorded continuously
without using overt responses (i.e., additional tasks) and may provide a direct measure of the mental
(covert) activities of the operator during the interaction with the Al. Also, neurophysiological measures
have higher resolution than subjective and performance measures [83]. Last, but not least, the big
advantage of this kind of measures lies in the possibility to provide information coming from the
operator (i.e., mental, and emotional states) directly in input to the Al, to make it more empathetic,
and so inducing an enhancement of the HAIT itself.
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Byrne and Parasuraman in [82] assessed that the advantage of applying neurophysiological measures
in triggering Al was very clear, but the “effective application of psychophysiology in the regulatory role
may require years of effort and considerable maturation in technology.” Today, 30 years later, this
"effective application" could become a reality thanks to advances in brain-computer interface (BCl)
research.

Briefly, a BCl is defined as “a system that measures Central Nervous System (CNS) activity and converts
it into artificial output that replaces, restores, enhances or improves natural CNS output and thereby
changes the ongoing interactions between the CNS and its external or internal environment” [84]. Such
definition summarizes the progresses of the scientific community in this field during the last decades,
since at the moment the possibility of using the BCl systems outside the laboratories [85], by
developing applications in everyday life is not just a theory but something very close to real
applications [86]. This technology has been defined passive Brain-Computer Interface (pBCl). In pBCl
technologies, the system recognizes the spontaneous brain activity of the user related to the
considered mental state (e.g., emotional state, workload, attention levels), and uses such information
to improve and modulate the interaction between the operator and the system (i.e., Al) itself. Thus, in
the context of Al, the pBCls perfectly match the needs of the system in terms of HAIT [87], [88].

To enhance the trustworthiness of the remote tower operators in the Al, and so to maximize the HAIT
effectiveness, the TRUSTY project will employ the pBCl concept. It is possible to derive real-time
information from the ongoing brain activity of the operator, by using signals coming from the body
(e.g., brain signals), while he/she is doing his/her operational activity (i.e. remote tower operations).
From such signals, it is possible to evaluate specific metrics (i.e., neurometrics) that correlate with a
variation of mental and emotional states of the user, such as workload, stress, vigilance, acceptance,
and this information can be used online, to modify the behaviour of the interface (and Al) that the
operator is interacting with. This system will be able to put the operator in the loop, so that the Al
model can adapt its behaviour, by considering the actual mental or emotional state of the user, with
an increased trustworthiness in the Al, resulting in a powered Human-Al-Teaming. For example, the
level of explainability of the XAl could be adapted to the actual state of the user (e.g., low workload
and stress, could correspond to a high level of explanation or vice versa). In addition, the Al itself can
use as input features the information coming in real time from the user states, together with all the
other parameters coming from the HMI (e.g., the traffic).

A further theme concerning the cognitive assessment of human-machine teaming, and particularly
HAIT, is the possibility to assess through neurophysiological measures the unconscious attitude toward
the employment of Al. In fact, despite the human-Al relationship and interaction is welcome in some
areas [89], recent evidence shows both explicit and implicit bias towards Al [90], [91], [92]. For
instance, art, one of the most evolved and complex amongst human activities - just as science is - and
difficult to be implemented by an artificial agent, represents a good model for studying Human-Al
interaction [93]. With respect to this, the first study investigating the negative bias toward Al use in
neuroesthetics showed that when human and Al products are compared, emotional arousal measured
through neurophysiological measures (i.e., electrodermal activity) increases and a negative bias
toward Al emerges in declarative ratings [94]. Such evidence suggests EDA increase as a
psychophysiological activation plausibly induced by the recruitment of implicit comparison
mechanisms, supporting the sensitivity of EDA in detecting unconscious reaction during ambiguous
choices and categorization [95]. Such autonomic signal-derived reactivity in response to items, possibly
objects of biased prejudice, has been also observed when comparing foreign and local products [96].
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In the just mentioned article, it is also suggested the sensitivity of EEG frontal alpha asymmetry index
and frontal theta index in detecting the attitude toward the adoption of familiar and unfamiliar
products, that can be obviously extended to the assessment of the propensity, that is HAIT, in human-
machine team actions.
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7 Conclusions

This report represents the delivery D 3.1- Report on Definition, Specification and SoTA in RDTs under
work package (WP) WP3. The object of this WP is to define the specifications regarding trustworthy
Al solutions in the operational activities in RDT, especially in runway and taxiway monitoring.

The report presents a general background of related work in the RDTs, defines some use-case
scenarios, and delves into the various aspects of trustworthy Al and machine learning. It also provides
an overview of human-machine teaming and the utilization of cognitive assessment to understand the
effects of HCAl in RDTs’ operations.

To exemplify, an Al system, like a Chatbot or a system that answers questions or makes
recommendations, can use Large Language Models (LLM) technology, using its own data to help with
a specific Remote Digital Tower task.

The Al system can provide the following capabilities:

(1) ChatBot: It can help in communication between controllers and pilots, making it more efficient
and accurate.

(2) Question Answering (QA): The Al system can answer questions from controllers or pilots
about weather, flight schedules, or other important information.

(3) Recommendation Systems: It can provide recommendations based on real-time data, helping
controllers make decisions about landing, take-off, and airport operations.

Even if LLM can present challenges, including ensuring that the Al system is reliable, secure from cyber
threats, and free from biases. It is believed that, overall, using LLM technology in an RDT can improve
aviation operations and safety.

The Trusty project will explore the challenges, considering the scenarios, based on RDTs operations,
defined in this report, and develop MML models incorporating explainability, fairness, auditability and
accountability of Al system. To make the Al system transparent, one important aspect the Trusty
project considers is human-machine teaming so that the Al system is trustworthy by design.
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List of acronyms

Table 4: List of acronyms.

Acronym Description

ATC Air Traffic Control

RDT Remote Digital Tower

ATCO Air Traffic Control Officer

RTO Remote Towers Operator

MML Multimodal Machine Learning

CNN Convolutional Neural Networks

HCAI Human-Centred Artificial Intelligence
HCXAI Human-Centred Explainable Artificial Intelligence
NLP Natural Language Processing

GAN Generative Adversarial Networks

RNN Recurrent Neural Networks

XAl Explainable Artificial Intelligence

LLM Large Language Model

HAIT Human-Al Teaming

TIS Trusted Intelligent System

UAVs Unmanned Aerial Vehicles

hAli Human Artificial Intelligence Interaction
MRTOs Multiple Remote Tower Operations
pBCI Brain-Computer Interface

EEG Electroencephalograms

ECG Electrocardiograms

SoTA State-of-the-art

ABSR Automated Speech-Based Service Requests
NN Neural Networks

RF Random Forest

SVM Support Vector Machine
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