
   

 

   

 

 

 

 

 

Abstract  

The study defines the possible definition, specifications for the taxiway and runway monitoring and decision 
support in RDTs application domain and consequently the functional requirements of the XAI, human-centred 
XAI, HMI and HAIT solutions in a customized way. Here, it identifies the transparency in AI based on a systematic 
literature review on AI explainability, HMI and GUI with human-centred XAI in the domain of RDTs, i.e., taxiway 
and runway monitoring. The task will also identify the SotA techniques and approach for interactive data 
visualisation, human-centric AI model development and hAIi interfaces, and HAIT in RDT domain. 
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1 Executive Summary 

The TRUSTY —Trustworthy Intelligent System for Remote Digital Tower project exemplifies this 
innovation, aiming to equip RDTs with AI to match the safety and efficiency of conventional ATC 
towers. By focusing on the trustworthiness of AI systems, the project seeks to ensure that these 
advanced towers can reliably monitor critical areas such as runways and taxiways. The project will 
integrate sophisticated visualization techniques into the operator interfaces, enhancing human-AI 
interaction.  

Remote digital towers (RDTs) are a ground-breaking development in ATM/ATC, employing advanced 
technology to enhance efficiency and safety by allowing ATCOs to operate remotely. RDTs use a 
network of high-resolution cameras and sensors around airports, offering improved safety, cost 
reduction, increased flexibility, and a comprehensive view of airport operations. RDTs improve safety 
by providing a 360-degree view of airports, reducing blind spots, and saving costs by eliminating the 
need for traditional towers, but they also provide detailed insights into aircraft movements and 
weather conditions, with advanced image processing and AI algorithms enhancing situational 
awareness and hazard detection.  

AI and related technologies in ATM/ATC, especially in RDT contexts, are revolutionizing the field by 

enhancing efficiency, reducing workload, and improving overall operational safety. These 

advancements are not only beneficial in current operations but also hold significant potential for the 

future training and development of ATCOs due to the human-AI integration. These different studies 

highlight the challenges and innovative solutions in RDTs, covering machine learning, augmented 

reality, and remote sensing. They mark a shift towards enhanced safety, improved real-time decision-

making, and understanding of digital and autonomous systems in high-stakes environments. 

In Operational Scenarios in Remote Digital Towers and the Role of XAI, presents a series of 
operational use-case scenarios within Remote Digital Towers (RDT) to understand better the needs of 
Air Traffic Control Officers (ATCOs) and Remote Tower Operators (RTOs). These scenarios are 
instrumental in showcasing the multifaceted applications and indispensable value of Explainable 
Artificial Intelligence (XAI) in Air Traffic Management (ATM) and Air Traffic Control (ATC) as part of the 
TRUSTY project. Through detailed narratives, the section illustrates how XAI can significantly enhance 
decision-making processes, crisis management, and operational resilience in various challenging 
situations. The operational scenarios discuss the use of XAI during specific ATC challenges which 
include crisis management, the impact of adverse conditions, and the integration of Unmanned Aerial 
Vehicles (UAVs). By providing ATCOs and RTOs with transparent, understandable, and actionable 
insights, XAI aims to introduce more resilience, efficiency, and willing collaboration between the end 
user and the AI. 

Trusted Intelligent System, provides an in-depth analysis of the integration and impact of AI in Air 
Traffic Management (ATM), focusing on robust and interpretable AI, Human-Centric XAI and Human 
Machine Teaming. 

The Robust and Interpretable AI section underscores the critical importance of developing AI systems 
that are both robust and interpretable, particularly within the context of the RDT. It highlights the 
necessity for AI to be trained on diverse data sets for enhanced reliability and to provide clear, 
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understandable explanations of its decisions recommendations, fostering trust in high-stakes fields 
such as healthcare, finance, transportation, and air traffic management. 

This section discusses the challenges and solutions for implementing Multimodal Machine Learning 
(MML) to integrate data from various sources for optimization of AI design, emphasizing the 
importance of ethical considerations. It also addresses the need for AI systems to be resilient against 
errors and adaptable to new data. 

Accountability, transparency, and fairness are identified as key pillars for ethical AI development, 
ensuring that AI decisions can be audited and are free from bias, thus encouraging user trust. The 
section proposes a Learning Assurance Process to validate AI tools, like conflict detection in air traffic 
control, ensuring they are safe and effective. 

Human-Centred Explainable AI introduces the pivotal role of human-centric XAI within the TRUSTY 
project, underlining the project's commitment to developing AI systems that are not only advanced 
but also transparent, understandable, and, most importantly, trustworthy. Human-centric XAI aims to 
bridge the gap between AI's complex mechanisms and the user's need for clear, actionable insights. 
TRUSTY aims to meet users' needs by providing explanations that enhance trust and improve decision-
making capabilities, whilst not increasing workload and cognitive demands. 

A critical focus of TRUSTY is the methodological exploration and evaluation of XAI techniques. This 
involves an innovative approach to assessing how users perceive AI explanations in terms of their 
usefulness, satisfaction, understandability, and the overall performance of the AI system. These 
human-centric evaluation methods are essential for ensuring that the AI explanations meet the 
intended objectives of enhancing user trust and acceptance and facilitating more effective interaction 
with AI systems. 

Moreover, the section acknowledges the inherent challenges in maintaining explainability within 
increasingly complex AI systems. The project will balance achieving high accuracy and maintaining the 
transparency necessary for user trust and understanding. This involves a strategic focus on specific 
methods that can effectively assess and improve the explainability of AI systems without 
compromising their performance. 

Human Machine Teaming delves into the dynamics of Human-AI Teaming (HAIT), defining it as the 
cooperative interaction between humans and AI to achieve shared goals. This collaboration brings 
significant benefits, including enhanced decision-making, improved problem-solving, and increased 
creativity across various domains such as the military, healthcare, and ATM. 

Despite the evident advantages, HAIT faces numerous challenges spanning design, interaction, social, 
behavioural, ethical, societal, integration, and coordination. These include uncertainties about AI 
capabilities, managing complex AI outputs, fostering trust and confidence, addressing human 
emotions, ensuring fairness, mitigating bias, preventing unintended consequences, and optimising 
teamwork and human-machine interaction. 

A focal point of this section is the exploration of state-of-the-art HAIT within RDT. It emphasises the 
importance of advanced systems equipped with fail-safe mechanisms, AI technologies, consideration 
of human factors, and the development of user-friendly interfaces. In RDTs, AI technologies such as 
speech recognition are highlighted as a potential way of enhancing air traffic controller capabilities. 
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Understanding cognitive demands and workload is deemed essential, alongside ensuring that 
interfaces are designed to maximise effectiveness and user experience. 

In summary, Chapter 4 highlights the integration of AI in RDT, focusing on developing robust, 
understandable, and ethically sound AI systems. This chapter underscores the necessity of balancing 
AI's technological advancements with user trust and ethical development for effective air traffic 
management in an AI-enhanced future. 

Human Factor and Cognitive Assessment, delves into the challenges of integrating AI into human 
teams, emphasising the importance of understanding human factors such as mental workload and 
stress. It introduces the use of neurophysiological measures, such as electroencephalograms (EEG) and 
electrocardiograms (ECG), as superior methods for gauging these factors compared to traditional 
subjective assessments or performance metrics. Specifically, Brain-Computer Interfaces (BCIs) are 
highlighted for their potential to significantly improve trust and effectiveness within HAIT by offering 
a direct channel for assessing and adapting to the operator's mental and emotional states, including 
workload, stress, and trust levels. 

A pivotal initiative discussed is the TRUSTY project, which employs passive BCIs to monitor and adapt 
AI behaviour in response to real-time assessments of an operator's mental and emotional states. This 
approach not only aims to enhance collaboration but also addresses the challenge of unconscious bias 
towards AI by utilising neurophysiological measures to provide deeper insights into human-AI 
interactions. The application of neuroesthetics in artistic domains further enriches our understanding 
of these interactions, offering valuable perspectives on bias and collaboration dynamics. 

In conclusion, underscores the critical role of neurophysiological measures in advancing HAIT. By 
leveraging these innovative techniques, we can improve the trust, efficiency, and overall effectiveness 
of human-AI collaborations, paving the way for a more integrated and harmonious future between 
humans and AI technologies. 
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2 Introduction 

Artificial Intelligence (AI) has become a transformative force across various sectors, including aviation, 
where it promises to redefine air traffic control (ATC) through remote digital towers (RDTs). The 
TRUSTY —Trustworthy Intelligent System for Remote Digital Tower project exemplifies this innovation, 
aiming to equip RDTs with AI to match the safety and efficiency of conventional ATC towers. By 
focusing on the trustworthiness of AI systems, the project seeks to ensure that these advanced towers 
can reliably monitor critical areas such as runways and taxiways. The project will integrate 
sophisticated visualization techniques into the operator interfaces, enhancing human-AI interaction. 
This initiative is grounded in the principles of trustworthy AI, which include robust and interpretable 
AI, multimodal machine learning, resilience, accountability, transparency, fairness, explainable AI, and 
effective human-machine collaboration. These principles are essential for building intelligent systems 
that earn the confidence of users and stakeholders, ensuring that AI decisions are not only accurate 
but also understandable and fair. The TRUSTY project stands at the forefront of this effort, setting a 
standard for deploying AI in high-stakes environments like ATC, where trust is crucial.  

In this report, we search into the definition, specification, and state-of-the-art (SoTA) of the TRUSTY-
Trustworthy Intelligent System for Remote Digital Tower (RDT). Hence, this report aims to provide a 
comprehensive overview of the current SoTA in AI systems, with a focus on their application to RDTs 
and the trustworthiness of AI. We will explore these systems' theoretical underpinnings, practical 
implementations, and future directions, ensuring that the RDT project not only meets but exceeds the 
expectations of trustworthiness in intelligent systems. 

The purpose of TRUSTY is to adjust the transparency level to improve the trustworthiness of AI-
powered decisions in RDTs. The advancement of intelligent systems has revolutionized numerous 
industries, and the aviation sector is no exception. Remote digital towers represent a significant 
technological leap, offering a fusion of advanced sensors, machine learning, and human expertise to 
manage air traffic with enhanced efficiency and safety. However, the deployment of such systems 
necessitates a rigorous framework of trustworthiness to ensure reliability, safety, and user acceptance.  

To achieve the project objectives, we need to study operational use case scenarios to enable a better 

understanding of user needs, i.e., Air Traffic Control Officers (ATCOs) and Remote Towers Operators 

(RTOs). In this way, some scenarios will be presented that explore the multifaceted applications of 

explainable AI (XAI) in ATC within the TRUSTY project.  

The first scenario presents Jean, an ATCO, using XAI at an RDT during a critical system failure, 

showcasing the system's utility in crisis management. The second scenario involves Marie at Muret-

Lherm Aerodrome, where XAI aids in directing air traffic under reduced visibility conditions. In the third 

scenario, Raphaël at London City Airport leverages XAI to overcome challenges posed by a power 

outage, demonstrating its role in enhancing operational resilience. The fourth scenario shifts focus to 

a regional ATC centre, illustrating the integration of XAI in managing UAVs and their interactions with 

commercial flight corridors, emphasizing the enhancement of human-machine collaboration. Finally, 

in the fifth catastrophic scenario at an RDT, Alex, aided by the advanced XAI system, adeptly manages 

a crisis involving dense weather conditions, UAV and crewed aircraft operations, system failure, and 

additional hazards such as a medical emergency and runway obstructions, employing transparent 
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insights from XAI for informed decision-making, ensuring safe operations, and enhancing crisis 

management through collaborative and adaptive approaches. 

These scenarios collectively illustrate the indispensable role of XAI in modern Air Traffic Management 

(ATM) and ATC, emphasizing its significance in crisis situations, adverse conditions, or UAV integration, 

thereby charting the future of civil aviation in an AI-driven era. 

The concept of a Trusted Intelligent System has many aspects, encompassing robust and interpretable 
AI, multimodal machine learning (ML), robust and resilient ML, accountability, auditability, 
transparency, fairness, Human-Centred XAI (HCXAI) and human-machine teaming. Each of these 
components plays a pivotal role in the development and operation of intelligent systems that can be 
trusted by users and stakeholders alike.  

Robust and interpretable AI is the cornerstone of trustworthy AI systems, ensuring that AI decisions 
are not solely reliable across a range of conditions but also comprehensible to human operators. Thus, 
the transparency of AI is particularly critical in the RDT design and implementation, where decisions 
must be made swiftly and with a clear understanding of the underlying rationale.  

Multimodal ML is an essential aspect of trustworthy AI systems, teaching computers to process and 
synthesize information from various inputs—visual, auditory, textual, etc. This capability is crucial for 
the RDT project, which relies on a multitude of sensors and data sources to provide a comprehensive 
view of the taxiway, runway, and airspace.   

The foundation of the RDT project consists of robust and resilient machine learning models that are 
carefully designed to withstand data anomalies and maintain optimal performance. Robustness is 
crucial, considering the high stakes involved and the profound consequences of any potential failure. 
Simultaneously, accountability and auditability are essential because they offer a structure for 
traceability and compliance with legal and ethical requirements, all of which are necessary to maintain 
public confidence and guarantee regulatory compliance. Furthermore, the principles of transparency 
and fairness are integral for RDT, as they are instrumental in eliminating biases and guaranteeing that 
AI systems operate with unequivocal clarity and impartiality, thereby ensuring equitable and unbiased 
decision-making that treats every aircraft and operator with the same level of objectivity.  

HCXAI prioritizes the delivery of explanations that are understandable and actionable, fostering trust 
and enabling effective human oversight of AI systems. The HCXAI is particularly relevant for the RDT 
project, where operators must fully grasp AI-generated advice to make informed decisions. 
Furthermore, human-machine teaming encapsulates the collaborative, constructive collaboration 
between human operators and AI systems, leveraging their combined strengths to optimize air traffic 
management in the RDT project.  
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3 Background and related work 

The field of ATM/ATC has significantly evolved to meet the increasing demand for air travel. Key to this 
evolution is the use of multi-agent coordination techniques in ATM, which decentralizes system 
responsibilities for improved air traffic flow management [1]. Optimization models and algorithms are 
developed to enhance the capacity and efficiency of systems, particularly in congested terminal areas 
[2]. The integration of automation, employing computers and flight management systems, aids human 
controllers in ATM [3]. Additionally, efficient conflict detection methods are vital for safety and 
flexibility amidst growing air traffic [4]. The field also investigates arrival flow aggregation effects and 
the role of complexity metrics in ATM performance, accounting for variables such as weather 
conditions to thoroughly understand air traffic productivity and efficiency [5], [6]. The evolution and 
implementation of RDTs in the aviation industry have been explored in the context of the Single 
European Sky initiative [7]. Feasibility studies and regulatory approvals have been conducted to test 
the concept of multiple remote towers and assess their potential benefits in improving air traffic 
management.  

Remote digital towers (RDTs) are a ground-breaking development in ATM/ATC, employing advanced 
technology to enhance efficiency and safety by allowing ATCOs to operate remotely. RDTs use a 
network of high-resolution cameras and sensors around airports, offering improved safety, cost 
reduction, increased flexibility, and a comprehensive view of airport operations. RDTs improve safety 
by providing a 360-degree view of airports, reducing blind spots, and saving costs by eliminating the 
need for traditional towers, but they also provide detailed insights into aircraft movements and 
weather conditions, with advanced image processing and AI algorithms enhancing situational 
awareness and hazard detection.  

The advancement in RDTs includes the concept of Remote Tower Operations (RTOs), with Multiple 
Remote Tower Operations (MRTOs) enabling a single ATCO to manage multiple airports 
simultaneously using innovative display systems and advanced pan-tilt-zoom (PTZ) cameras [8]. 
Immersive technologies such as Head Mounted Displays (HMDs) were previously integrated into 
ATM/ATC to enhance data management and analysis [9]. Innovations in interactive spatial sound and 
haptics improve ATCO perception and safety, particularly in poor visibility conditions [10]. The 
implementation of virtual views from the tower through multiple cameras increases the realism and 
detail of the airport environment for ATCOs [11]. The application of augmented vision in remote 
towers was explored by [12] emphasizing the need for high-resolution digital panoramas. The authors 
[13] studied the implementation of eye tracking in augmented reality for RDT while in [14] authors 
investigated the discriminability of flight manoeuvres in remote tower settings, indicating a potential 
increase in decision errors in RTOs compared to conventional out-of-windows view. Finally, the 
development of digital assistants like DiTA in multiple remote towers optimizes ATCOs' workload, 
enhancing operational efficiency and underscoring the need for trust in these systems [15]. 

In the field of ATC, particularly focusing on RDTs, AI systems have been instrumental in enhancing 
operational efficiency, safety, and situational awareness. Recent ATM research, especially in RDT, has 
shown significant progress in digital technologies and machine learning. The work by [16] highlighted 
machine learning's effectiveness in aircraft and drone detection and tracking, which is crucial for real-
time operations. The authors in [17] examined the impact of digital tower technologies on ATCOs' 
visual capabilities and their safety implications. One significant advancement is the development of an 
augmented reality system for remote tower operations that integrates visual spectrum (VS) and 
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infrared (IR) fusion along with optical tracking. This technology aims to improve efficiency and reduce 
workload, especially under restricted visibility conditions [18]. Another innovation is the Automated 
Speech-Based Service Requests (ABSR) system, which supports ATCOs by highlighting recognized 
callsigns, inputting commands, and feeding digital ATC systems. This system has been shown to reduce 
workload and improve usability compared to traditional methods without ABSR support [19]. Further 
research has explored the potential of using multimodal augmentations to increase performance in 
Single Remote Tower contexts. This includes improvements in controllers' situation awareness and 
performance under varying operational conditions [10].  

Safety performance is one of the important aspects of RDT scenarios. A field study conducted at a 
large-scale airport examined the safety performance of apron controllers based on digital tower 
technology [20]. The study addressed the effectiveness of RDTs in enhancing situation awareness and 
ensuring safe operations. The findings of this study can provide valuable insights into the safety 
considerations and performance of RDTs in real-world airport environments. Reliability analysis 
methods for RDT systems have also been investigated [21]. This research focuses on assessing the 
reliability of remote tower technology, particularly in small airports with low passenger and cargo 
throughput. Understanding the reliability of RDT systems is essential for ensuring their effectiveness 
and suitability for different operational environments. Designing remote and virtual ATC centres also 
involves unique challenges and requires a human systems integration approach. Effective human-
system integration requires a thorough understanding of the system in which we operate, and the 
potential human performance in that system. This involves considering the needs, capabilities and 
limitations of the controllers to ensure that the system is designed to enhance human performance 
and situational awareness, and to minimise cognitive workload [22]. To achieve this, the AI systems on 
which the ATCO will base its decisions must be transparent, understandable, reliable, and trustworthy.  

XAI is crucial for making complex AI systems transparent and understandable, fostering trust, 

acceptance and effective management in various sectors [23], [24]. XAI agent for human-agent 

interaction explores the role of emotions in cognitive AI agents [25] and emphasizes responsible AI 

with fairness and accountability [26]. From a historical perspective, XAI evolved from expert systems 

to advanced machine learning approaches aimed at developing human-understandable systems [27]. 

XAI applications, such as detecting depressive symptoms in mental health, show its expanding impact 

[28], supported by social science insights for effective human-like AI explanations [29], [30].  

XAI is becoming increasingly pivotal in the field of ATM/ATC and, consequently, in RDT. Particularly, 

the advancement of XAI in the field of ATM has been reported in a literature review article [31] within 

the framework of the project ARTIMATION3 supported by SESAR JU. Including ARTIMATION, there are 

some other research projects supported by SESAR JU, which are summerisd in Table with their timeline 

and prominent contributions. Apart from the research projects related to ATM/ATC, another notable 

advancement was the integration of AI to detect conflicts in air traffic by analysing aircraft surveillance 

data, thereby augmenting situational awareness for controllers [32]. Due to the critical safety 

requirements, the design of machine learning systems in ATMs must focus on transparency and user 

acceptance, underlining the necessity of an update to the regulatory framework for explainability [33]. 

XAI also plays a crucial role in enhancing the resilience of ATM operations against disruptions caused 

 

3 https://www.artimation.eu/ 
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by reliance on network infrastructures and remote sensors [34]. Furthermore, blockchain technology 

and self-learning networking architectures are being integrated with explainable AI to build trust with 

human stakeholders and optimize ATC [35]. The introduction of digital ATCOs, capable of 

autonomously performing time-consuming tasks, emphasizes the importance of a human-autonomy 

teaming interface, supported by explainable AI [36]. These advancements are crucial in making AI-

driven decision-making in ATM/ATC, and RDT more transparent, reliable, and acceptable to human 

operators. 

Table 1: Summary of the selected SESAR JU funded research porjects contributing to the developement of 
XAI in ATM/ATC. 

Sl. Project Name Timeline Contribution 

1 AISA4 2020-06-01 - 
2022-11-30 

Strategy for providing the necessary information to a specific 
ATM operational environment (en-route ATC) in order to 
make them trust the automated system. 

2 MAHALO5 2020-06-01 - 
2022-11-30 

AI-based Conflict Detection & Resolution tool with different 
levels of conformance and transparency. 

3 TAPAS6  2020-06-01 - 
2022-11-30 

XAI methods for two operational cases: Conflict Detection & 
Resolution applied to ATC (tactical), and Air Traffic Flow 
Management (ATFM) (pre-tactical). 

4 ARTIMATION7  2021-01-01 - 
2022-12-31 

Tools for Conflict Detection & Resolution and Delay 
Prediction with explanation through visualisations. 

5 SAFEOPS8  2021-01-01 - 
2022-12-31 

A decision-support tool powered by AI  to help ATCOs make 
complex decisions in the context of go-arounds. 

 

In ATM/ATC, XAI represents a significant step forward in managing complex operations, aiding 
controllers with sophisticated pattern recognition, predictive analysis with data analytics and 
visualisation, and decision support. It enhances capabilities and provides deeper understanding of AI-
driven decisions, fostering trust and clarity among controllers. The integration of XAI into RDTs and 
ATC systems exemplifies a commitment to advancing aviation technology while ensuring transparency, 
understandability, and trustworthiness for human operators. 

In summary, AI and related technologies in ATM/ATC, especially in RDT contexts, are revolutionizing 

the field by enhancing efficiency, reducing workload, and improving overall operational safety. These 

advancements are not only beneficial in current operations but also hold significant potential for the 

 

4 https://aisa-project.eu/ 
5 http://mahaloproject.eu/ 
6 https://tapas-atm.eu/ 
7 https://www.artimation.eu/ 
8 https://safeops.eu/ 
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future training and development of ATCOs due to the human-AI integration. These different studies 

highlight the challenges and innovative solutions in RDTs, covering machine learning, augmented 

reality, and remote sensing. They mark a shift towards enhanced safety, improved real-time decision-

making, and understanding of digital and autonomous systems in high-stakes environments. 

The TRUSTY project, aligned with SESAR objectives, aims to integrate XAI into RDTs and ATM/ATC 
systems, marking a significant improvement in the enhancement of aviation safety and operational 
efficiency. XAI's incorporation into RDTs offers an intuitive, transparent decision-making approach, 
enhancing controllers' monitoring and management capabilities with precision and insight through 
high-resolution cameras and advanced sensors. 
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4 Operational scenarios in Remote Digital Tower 

The landscape of ATM has undergone a profound transformation with the advent of RDT technology. 
As a nexus of advanced sensors, high-resolution cameras, and artificial intelligence systems, RDTs 
promise unparalleled opportunities for enhancing safety, flexibility, and operational efficiency in 
aviation. The integration of XAI systems with RDTs stands as a beacon of innovation, promising to 
revolutionize the way air traffic is managed. TRUSTY project, aligned with the objectives of SESAR, 
focuses on developing operational use case scenarios that illustrate the transformative potential of 
XAI in enhancing safety and efficiency in civil aviation operations. The incorporation of XAI-based 
systems into this framework marks a significant leap forward. XAI's capabilities in pattern recognition, 
predictive analysis, data analytics and decision-making support offer unprecedented opportunities to 
augment human expertise. This synergy between human intelligence and machine learning fosters a 
collaborative environment where safety and operational efficiency are significantly enhanced. 

Through meticulously crafted scenarios, this project aims to demonstrate how XAI can assist air traffic 
controllers in identifying potential safety hazards, optimizing traffic flow, and making real-time, data-
driven decisions. The following section will detail operational scenarios which demonstrate the role of 
XAI in augmenting human expertise within RDTs, offering a glimpse into a future where technology 
and human skill work in tandem to revolutionize ATC. The scenarios will explore various aspects of civil 
aviation operations, from routine ATM to handling complex, unforeseen situations. 

4.1 Scenario 1: XAI-Driven Crisis Management in RDTs9 

Part 1: Introduction to the Scenario with XAI Integration 

Jean, an experienced air traffic controller, is currently overseeing operations from a Remote Digital 
Tower (RDT), now enhanced with XAI technology. In this airfield management scenario, Jean 
encounters an increase in aircraft flow, elevating the workload significantly. This surge presents Jean 
with unprecedented constraints, such as managing simultaneous take-offs and landings on runways. 
As the traffic volume intensifies and the queue of aircraft awaiting clearance grows, the role of the XAI 
system becomes indispensable. Distinct from traditional AI, the XAI system aids Jean by not only 
presenting data in an interactive and relevant way but also providing transparent explanations for its 
recommendations. For instance, it outlines why one aircraft is prioritized over another for landing 
based on factors like fuel levels, weather conditions, and emergency statuses, offering Jean a 
comprehensive understanding of the decision-making process behind the traffic management. Amidst 
the escalating complexity of managing the increased air traffic, a critical emergency unfolds: one of 
the aircraft in the congested airspace urgently declares a medical emergency. The pilot reports a 
passenger experiencing severe chest pain, suspected to be a heart attack, necessitating an immediate 
and prioritized landing. This adds a layer of urgency to Jean's responsibilities, compelling a swift 
adaptation of the current traffic management strategies to accommodate this unforeseen priority. The 
situation demands not only an expedited landing clearance but also coordination with ground medical 

 

9 Advanced Regional ATC Center, 2025. 
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services to ensure that medical personnel are ready at the runway as soon as the aircraft touches 
down, highlighting the critical nature of quick, informed decision-making in air traffic control. 

Part 2: XAI in Advanced Crisis Response 

As the situation escalates, the XAI system shifts into an advanced crisis management mode, a capability 
that sets it apart from traditional ATC towers. It begins an in-depth analysis of the airspace, assessing 
critical factors such as the exact locations and speeds of aircraft, potential collision courses, and 
relevant emergency procedures. This process is markedly different from the operations in a standard 
control tower, where controllers rely heavily on visual observations and less sophisticated data analysis 
AI-based tools. In contrast to the often manual and visually dependent decision-making in 
conventional towers, the XAI provides Jean with a logically structured action plan. This includes 
innovative communication techniques and rerouting options, all explained in a manner that is 
straightforward for Jean to understand and implement. The key difference here is the level of detail 
and rationale provided by the XAI system. This transparency allows Jean to quickly comprehend the 
reasoning behind each action proposed by the AI, establishing a trust in the technology that is not 
typically possible with the opaquer processes of a standard control tower. Jean's decisions are thus 
informed by a rich, real-time data analysis, enhancing his ability to manage the emergency efficiently 
and effectively, a stark contrast to the limitations faced by controllers in conventional air traffic control 
environments. 

Part 3: Navigating the Crisis with XAI's Support 

As Jean addresses the critical airspace situation, the XAI system continuously refines its 
recommendations based on real-time data and sequencing procedures of flights. Jean uses these 
insights, along with radar data and airport surveillance systems, to make informed decisions. The 
system’s explainability ensures that Jean fully grasps the logic behind directing aircraft using visual 
signals and emergency codes. Jean's adept handling of the crisis, supported by the system’s 
transparent and actionable insights, results in the safe management of all flights, including the 
emergency landing. The incident underscores the indispensable role of explainable AI in modern ATC, 
especially in high-pressure situations. 

This scenario illustrates the crucial role of XAI in ATC, particularly in managing crisis situations at RDTs. 
The ability of XAI to provide clear, logical explanations for its recommendations is vital, offering ATCOs 
like Jean an enhanced level of understanding and trust in AI’s capabilities. 

4.2 Scenario 2: XAI-Enabled Decision-Making Enhancement10 

Part 1: Introduction to Advanced Operations with XAI 

Marie, an experienced ATCO, starts her shift at Muret-Lherm Aerodrome, which is now enhanced with 
TRUSTY RDT technology and integrated with XAI. Dense fog challenges the day, but initially, the RDT's 
advanced systems provide clear imagery despite the poor visibility. As fog causes condensation on 
camera lenses, impairing visibility, the XAI system becomes essential. Unlike traditional AI, XAI provides 

 

10 Muret-Lherm Aerodrome with TRUSTY RDT Technology, France. 2025 
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Marie not only with data but also with clear explanations for the aids to decision-making process, 
crucial in managing air traffic under reduced visibility. 

Part 2: XAI in Navigating Reduced Visibility 

The XAI system analyses the impaired visibility situation, considering radar data, historical weather 
patterns and ground operations resolution strategy. It provides Marie with understandable, data-
driven instructions and alternative navigational methods, explaining each recommendation's logic and 
rationale. This transparency in AI’s decision-support processes enables Marie to make informed 
decisions based on a deeper understanding of the AI's suggestions, crucial for managing the 
simultaneous arrival of multiple commercial flights and several private planes in emergency. 

Part 3: Strategic Implementation of XAI Recommendations 

As all aircrafts approach simultaneously, the XAI system continues to offer real-time, logical guidance 
based on conflict resolution strategy procedures. Marie uses this information, along with pilot reports 
and radar data, to make precise decisions. XAI's ability to explain its reasoning aids her in 
understanding the optimal landing paths, factoring in wind direction, visibility, and runway availability. 
With the XAI system's assistance, Marie successfully manages the challenging situation, highlighting 
the essential role of explainable AI in modern ATC, especially in adverse weather conditions and 
visibility-impaired scenarios. 

This scenario showcases the critical role of XAI in ATC, particularly under adverse weather conditions. 
XAI's ability to provide clear, logical explanations for its recommendations is vital, offering ATCOs like 
Marie an enhanced level of understanding and trust in AI’s capabilities.  

4.3 Scenario 3: XAI-Enhanced Resilience in Aerodrome Operations11 

Part 1: Introduction to Advanced Operations with XAI 

Raphaël, a skilled ATCO at London City Airport, starts his shift in a control tower enhanced with TRUSTY 
RDT technology, now integrated with explainable AI systems. This integration is designed to optimize 
routine ATM and provide robust responses to unforeseen challenges. A sudden power outage disrupts 
the control room, leading to a loss of visual monitoring capabilities. Despite the redundancy systems 
naturally present in the tower, the electrical incident affected multiple centres suspiciously, leaving 
only some functional services like XAI-based system but cutting off video camera transmissions from 
all the runways. 

Part 2: Managing the Crisis with XAI-Driven Decision-Making Under Pressure 

As Raphaël manages the escalating crisis at London City Airport, a new urgent scenario unfolds. Three 
aircraft signal their immediate needs: two are civil transport airplanes requiring landing permissions, 
and one faces a critical fuel shortage, demanding priority landing. This scenario pushes the boundaries 
of Raphaël's skills and the TRUSTY RDT system, enhanced with XAI technology, to their limits. The XAI 
system, recognizing the critical nature of the situation, initiates a prioritization protocol. It delivers a 

 

11 London City Airport with TRUSTY RDT Technology, England. 2025. 
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swift evaluation of each aircraft's condition, including fuel levels and the time window before reaching 
a critical state, utilizing data such as the flight plans provided by airlines and coordination with airport 
transportation services rather than relying solely on RDT-specific technologies like camera feeds. This 
approach allows the XAI to propose an optimal landing order that ensures safety for all involved. It 
clearly explains why the aircraft with the fuel emergency must land first, detailing the strategic landing 
sequence for the remaining flights. 

In the event of a power failure, the XAI system immediately engages backup protocols, tapping into 
alternative energy sources to maintain critical operations. Even as the usual visual monitoring tools 
become unavailable, the AI leverages a comprehensive database of flight paths and air traffic control 
communications to maintain a detailed awareness of the airspace. This information, along with the 
XAI's ongoing analysis, is relayed to Raphaël through external devices, ensuring he has access to crucial 
data about aircraft positions and movements without needing direct visual confirmation from 
cameras. This feature of the XAI system, providing data analytics and visualizations, underscores its 
utility in scenarios where traditional visual aids might be compromised. The system's ability to explain 
its recommendations, grounding them in robust data analysis, is vital. This transparency and reliance 
on a broad dataset, including flight plans and air traffic communications, empower Raphaël to trust 
and follow the AI's guidance, ensuring decisions are informed, precise, and tailored to the unique 
challenges of managing air traffic under adverse conditions. 

Part 3: Human-AI Synergy in Crisis Management 

Raphaël, with the aid of the XAI's insights, coordinates a response. He directs the fuel emergency flight 
to land immediately, using a runway that the XAI system identifies as most suitable based on current 
conditions. Simultaneously, he instructs the civil transport airplanes to enter a holding pattern, 
explaining the situation and the estimated wait time, as calculated by the XAI system. As Raphaël 
tackles the challenge of managing air traffic under constrained conditions, the XAI system continuously 
updates its analysis and recommendations. This adaptive approach allows him to make strategic 
decisions regarding incoming flights and ground movements, ensuring safe and efficient traffic 
management. Thanks to the combined efforts of Raphaël and the XAI system, all three aircrafts land 
safely. The fuel emergency flight touches down without incident, and the civil transport airplanes 
follow in a well-coordinated manner.  

This demonstration of human-AI synergy showcases the ability of XAI systems to enhance human 
decision-making under extreme stress. The situation underscores the importance of XAI in fostering 
effective human-machine collaboration. Raphaël's ability to comprehend the AI's logic and reasoning 
enhances his decision-making capabilities, ensuring a high level of operational safety during the crisis. 
In the debrief, the effectiveness of the XAI system in providing actionable, understandable, and logical 
guidance under high-pressure conditions is highly commended. Raphaël's ability to seamlessly 
integrate AI insights into his decision-making process is recognized as a key human factor in the 
successful management of the situation. 

In this scenario, the integration of XAI algorithms into the TRUSTY RDT system exemplifies the future 
of ATM. XAI's capacity to provide transparent and understandable decision-making processes is vital, 
especially in complex or crisis situations, ensuring that ATC remains efficient, safe, and adaptable to 
rapidly evolving challenges. 



D3.1:REPORT ON DEFINITION, SPECIFICATIONS AND SOTA OF ARTIFICIAL 
INTELLIGENCE IN REMOTE DIGITAL TOWERS 
Edition 00.02.00 

  

 
 

Page | 19 
© –2023– SESAR 3 JU 

  
 

4.4 Scenario 4: XAI-Enhanced UAV Integration in Air Traffic Control12 

Part 1: Enhanced Recognition of Complex Situations with XAI and Emergence of Data Mismatch 
Challenge 

At the advanced regional ATC centre, the integration of XAI within the RDT systems marks the start of 
a routine yet technologically advanced day. The XAI system, with its capability to provide clear, 
understandable insights into AI decision-making processes, becomes crucial in managing a mix of 
flights, but also Unmanned Aerial Vehicles (UAVs). When a group of UAVs dangerously enters a 
commercial flight corridor, the XAI system not only identifies this deviation but also provides the 
rationale behind flagging these UAVs as potential risks, along with suggested actions. 

The event takes an unexpected turn when the XAI system's data on the UAVs’ positions conflicts with 
that shown by the surveillance cameras. This discrepancy presents a critical challenge, as relying on 
inaccurate data could lead to unsafe decisions. The XAI system, recognizing this anomaly, initiates a 
deeper analysis. It starts by cross-referencing the UAVs' past flight data with similar historical patterns 
and related atmospheric phenomena, aiming to reconcile the data mismatch. 

Part 2: XAI-Driven Resolution, Strategic Implementation and Continuous Evolution 

Through its comprehensive analysis, the XAI system identifies the root cause of the discrepancy. High 

precision cameras, despite their advanced capabilities, can sometimes face challenges in accurately 

recognizing UAVs. UAVs are generally small and can operate at significant altitudes or distances from 

the camera. Due to their size and the distance, even high precision cameras may struggle to capture 

enough detail to accurately recognize them, especially if the UAVs are beyond the effective range of 

the camera's resolution and zoom capabilities. Another point is if the UAVs have coloration or patterns 

that blend with the background (like the sky, trees, or urban landscapes), it can be difficult for cameras 

to distinguish them from their surroundings. Low contrast between the UAV and its environment can 

significantly reduce the camera's ability to detect and recognize them. Additionally, UAVs can move at 

high speeds and change directions quickly. This rapid movement can cause motion blur in the camera's 

imagery, making it difficult to maintain a lock on the UAV or to process its image accurately, especially 

if the camera's frame rate isn't high enough to capture such quick movements clearly. Finally, some 

UAVs are equipped with technologies designed to evade detection, such as anti-surveillance materials 

that absorb or deflect radar and certain light frequencies, or electronic countermeasures that can 

interfere with camera sensors. These technologies can make it challenging for even high precision 

cameras to detect and recognize the UAVs.  

Unfortunately, these different elements played into the situation, making the data transmitted by the 

video systems unreliable. Consequently, the XAI-system launched a deeper analysis, crossing all the 

video data available before the event as well as the meteorological data based on machine learning 

algorithms with explanation of the decision processes. With this newfound understanding, the XAI 

system recalibrates the UAVs' data, aligning it with the visual feed. The system then updates its 

 

12 Berlevag Aerodrome with TRUSTY RDT Technology, Norway. 2026 
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recommendations for rerouting commercial flights, providing the ATCO with a reliable and accurate 

understanding of the situation. 

Part 3: Post-Incident Review and Future Implications 

Equipped with accurate, XAI-verified information, the ATCO effectively manages the airspace, safely 
rerouting commercial flights and communicating with UAV operators to rectify their course. This 
incident not only demonstrates the critical role of XAI in complex decision-making but also highlights 
its importance in continuously evolving and refining ATM protocols and AI algorithms. 

Post-incident, the ATCO reviews the performance of the XAI system, appreciating its ability to analyse 
and resolve unexpected challenges dynamically. This scenario underscores the indispensable role of 
XAI in future ATM, particularly in scenarios involving UAVs in the frame of visual recognition in RDTs. 
The continuous development of XAI technology is essential to ensure that ATC remains safe, efficient, 
and transparent in an increasingly complex airspace use. 

This scenario emphasizes the importance of XAI in not only handling routine operations but also in 

resolving unexpected and complex issues that arise in modern ATM, particularly with the integration 

of UAVs. The ability of XAI to perform deep, contextual analyses and provide comprehensible, 

actionable insights is pivotal in maintaining safety and efficiency in the face of technological 

advancements. 

4.5 Scenario 5: Crisis Management in a Remote Digital Tower with UAVs, 
Weather, and System Failure 

Part 1: Adverse Weather Operations and Initial Challenges 

During a challenging weather day, with a dense fog enveloping the area, both scheduled UAV flights 
and crewed aircraft operations persist. The severe conditions drastically reduce visibility, posing 
significant difficulties for Alex, ATCO responsible for monitoring these flights in the aerodrome. The 
digital tower's cameras, designed to provide clear images of the airspace, struggle under these 
conditions, leading to a notable degradation of the approaching landings. 

Part 2: Transparent Explanation in Specific Case of System Failure and Escalating Crises 

As the weather continues to worsen, a critical crisis emerges within the remote digital tower system. 
A key component malfunctions, leading to significant disruptions in both communication and data 
processing. Amidst this chaos, Alex, who oversees the operation and safety of the airspace, is alerted 
to the system failure. Further complicating matters, several cameras crucial for detecting UAVs 
become non-operational, creating a substantial surveillance gap. 

In this escalating situation, two critical and urgent events unfold. First, an aircraft reports a medical 
emergency, necessitating an immediate and unplanned landing. This development adds a layer of 
complexity and urgency to the already challenging scenario, as Alex must coordinate a safe landing 
path in conditions of reduced visibility and hampered communication. 

Simultaneously, a new hazard emerges on the airfield. One of the working cameras detected that a 
heavy piece of metal, likely dislodged by strong winds, lands on one of the runways. This presents a 
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highly dangerous situation, especially since the malfunctioning cameras impair Alex's ability to detect 
and assess this new hazard effectively. The presence of this metal on the runway, coupled with the 
reduced surveillance capabilities, heightens the risk of a serious incident, particularly with the insights 
into how these adverse conditions impact decision-making processes. 

These concurrent crises put the digital tower system and Alex to the test. During this critical time, 
TRUSTY, the advanced XAI system, proves invaluable. It not only informs Alex about the system failure 
and its implications but also offers essential insights and clear explanations for managing these 
simultaneous emergencies. This support is crucial for Alex to navigate the compounded challenges of 
adverse weather, technical failures, and unforeseen dangers, ensuring the highest level of safety and 
efficiency in air operations. 

Part 3: Crisis Management and Post-Crisis Analysis 

Faced with communication challenges due to the system failure, Alex struggles to coordinate with both 
crewed aircraft and UAV operators. In response, TRUSTY suggests alternative communication methods 
and assists in rerouting aircraft to ensure safety. Alex then initiates emergency protocols, focusing on 
radio communications and implementing contingency plans for rerouting aircraft. TRUSTY supports 
these efforts by providing real-time suggestions. Additionally, Alex makes human-in-the-loop 
adaptations to the flight plans, adjusting altitudes and rerouting, with TRUSTY's assistance, to maintain 
safe separation between the aircraft. 

Throughout the crisis, Alex collaborates with neighbouring ATC sectors and UAV operators, sharing 
information and managing the airspace collectively. TRUSTY plays a pivotal role in facilitating this 
exchange of data and insights. It continuously assesses the impact of fog on surveillance, suggesting 
reliance on secondary systems and additional sensor inputs. After the crisis subsides, Alex and TRUSTY 
conduct a thorough analysis of the emergency response. They review the decisions made, identify 
areas for improvement in handling adverse weather conditions, and implement lessons learned to 
enhance future responses. 

Despite the catastrophic scenario involving dense fog and a system failure, Alex, with the assistance of 
TRUSTY, successfully manages the crisis. The transparent insights from XAI empower the controller to 
make informed decisions, ensuring the safe operation of both crewed and uncrewed aircraft in 
challenging conditions. The collaborative crisis management approach enhances communication and 
coordination, contributing to a resilient and adaptive remote digital tower environment. 

4.6 Use-Case conclusions     

In conclusion, the TRUSTY project exemplifies the revolutionary role of XAI in enhancing ATC, achieved 
through a series of carefully designed scenarios. These scenarios, pivotal to TRUSTY, demonstrate how 
XAI and digital assistants can substantially improve ATMs by helping controllers' pinpoint safety 
hazards, streamlining traffic flow, and enabling real-time, informed decision-making. Spanning a wide 
array of civil aviation operations, from everyday management to handling intricate, unexpected 
situations, they underscore the adaptability of XAI.  

A key focus is on bolstering situational awareness, especially in monitoring runways and taxiways, and 
on the pivotal role of XAI in diminishing the cognitive workload of air traffic controllers. This reduction 
in workload not only boosts efficiency but also curtails fatigue, enhancing overall operational safety. A 
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central aspect of TRUSTY's methodology is its fluid integration of XAI's digital prowess with the dynamic 
nuances of ATM, ensuring that human controllers remain integral to decision processes.  

This approach accentuates TRUSTY's dedication to marrying technological advances with human-
focused considerations. It marks a notable advancement in ATM evolution, aiming to heighten the 
safety of group aviation operations. The project endeavours to employ more explainable AI systems, 
fostering a nuanced collaboration between humans and machines. This fine-grained synergy is 
intended to make complex AI decisions more transparent and understandable to human operators, 
thereby enhancing trust and effectiveness in high-stakes aviation environments. This integration of XAI 
is not only crucial for current operations but will also be a cornerstone in the future of civil aviation, 
ensuring safety, efficiency, and adaptability in increasingly complex airspace environments. 
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5 Trusted Intelligent System (TIS) 

5.1 Robust and Interpretable AI  

Robust and interpretable AI refers to artificial intelligence systems that are designed to be both reliable 
and understandable. These systems are trained on diverse datasets and are tested to ensure their 
performance in various scenarios, making them more robust compared to traditional AI models. 
Additionally, these AI systems provide clear explanations for their decisions and allow users to 
understand the reason behind the outcomes, which is very important in high-stakes applications like 
healthcare, finance, and transportation. Interpretable AI can help build trust between humans and 
machines, enabling more effective collaboration in decision-making.  

5.1.1.1 Multimodal Machine Learning 

In the academic landscape, Baltrušaitis et al. [37] dive into the topic of Multimodal Machine Learning 
(MML), which is a branch of Artificial Intelligence. This field is concerned with teaching computers to 
grasp and connect the information they receive from various senses like seeing, hearing, sensing and 
text. It's a crucial part of helping computers make sense of the world around us.  

On the other side, Parcalabescu et al. in [38] offer a fresh perspective on multimodality in the context 
of MML. They argue that how we understand multimodality should depend on the specific problem 
that a computer is trying to solve. Different tasks require different types of information, and the best 
way to understand this information is in the context of the task at hand. Therefore, their new definition 
of multimodality is centred around the information that is most relevant for a particular computer 
task. 

Together, these two papers analysed the broad field of MML. Baltrušaitis et al. [37] introduce the field, 
while Parcalabescu et al. [38] offers a new way to think about it, emphasizing the importance of 
tailoring the understanding of multimodality to the task at hand.  

5.1.1.2 Challenge 

In the realm of academic research,  the study of Liang et al. [39] focuses on the fascinating challenges 
posed by multimodal machine learning. This branch of machine learning deals with data coming from 
different sources like images and text, and it brings about unique and tricky issues for the machine 
learning community. These challenges are because the data sources are quite different, and there are 
often connections between them. To tackle these challenges, the paper introduces a system of six 
main technical problems: representation, alignment, reasoning, generation, transference, and 
quantification. These challenges cover both the historical aspects of the field and more recent trends. 
They involve things like figuring out how to model and learn from this diverse data, understanding the 
different aspects of this diversity, and dealing with the learning and optimization issues that arise when 
the data is so varied.  
 

A different study [37], explores more practical considerations for the application of MML. This study 
looks at what can be done with MML, like recognising speech, describing events, answering questions 
about images, and finding media in large collections. However, the study highlights the technical 
hurdles to overcome. These challenges are about how to represent and translate the different types 
of data, align them properly, merge them together, and learn from them, especially when one type of 
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data doesn't have much information. These challenges are especially important when one of the data 
sources doesn't have much useful information, like not enough labelled data to learn from.  
 

Together, these two papers shed light on the complexities of MML, showing the academic and practical 
sides of the field. Liang et al. [39] identify the theoretical challenges, while Baltrušaitis et al. [37] 
illustrate the real-world applications and the hurdles that must be overcome.  

5.1.1.3 Suggestions regarding MML  

In [39], the authors introduce a new way of looking at the challenges of multimodal learning, which 
involves understanding and connecting data from different sources like images and text. They say that 
these challenges are not studied enough in traditional single-source machine learning and need more 
attention to advance this field. They also suggest that this new system of challenges will help organize 
future research and identify the problems that still need solving in MML. Moreover, they call for future 
research to develop solid theories and practical methods to define and measure the differences and 
relationships between different data types in multimodal datasets.  
 

The authors of the paper [38] also emphasize the need for better ways to combine different types of 
data in machine learning. They point out that the current methods are often random and lack a solid 
foundation. They propose that more research should be directed toward creating well-thought-out 
methods for combining data types. Additionally, they highlight the importance of ethical 
considerations in developing multimodal machine learning systems, suggesting that it should be done 
in a way that aligns with ethical standards in human society.  
 

The paper [39] takes a high level view of the field of MML advancement. They highlight key questions 
that need addressing in the long term, such as finding better ways to represent and connect data from 
different sources, transferring knowledge between them, and understanding the complexities of 
different data types. These questions provide a roadmap for future research in the field of multimodal 
machine learning.  

5.1.1.4 MML in the context of RDTs 

The remote digital tower requires planning tools that support the controller with tasks such as 
sequencing flight movements, rearranging them according to situational demand, and organising 
remote controller positions, etc. Machine learning models developed to support these tasks can use 
data coming from different modalities, such as video streaming of visual surveillance, radar signals, 
communication through text messages, weather reports, and tabular data from air traffic management 
systems. In MML, these different modalities can be fused and encompassed to provide holistic 
decisions that can reduce uncertainty and false alarms and improve the trustworthiness of AI systems. 
Figure 1 illustrates the schematic of MML in the context of RTDs. 
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Figure 1: MML in the context of RTDs. 

5.1.2 Robust and resilient ML 

A good capability of a machine learning model is known as robustness and resilience, where the ML 
model can resist error, outliers, and data distortion. It also involves the capacity to detect potential 
issues, make necessary adjustments, and continue functioning effectively when encountering unseen 
or unexpected noisy data. In crucial application areas like healthcare, banking, and transportation 
systems, such as ATMs, this robust and resilient ML model plays a vital role in making judgments and 
predictions. The diagram presented in Figure 2 illustrates the comprehensive process through which 
machine learning models demonstrate robustness and resilience. 
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Figure 2: Workflow robust and resilient ML model. 

Numerous methods can enhance the robustness of deep neural networks when applied to image 
classification tasks. In our context, these tasks are essential for detecting objects in remote digital 
tower systems on runways and taxiways. Some of these techniques include data augmentation, 
increasing the amount of labelled data, and employing various network architectures such as AlexNet, 
SqueezeNet, VGG-19, DenseNet-121, and ResNet-50. However, it is important to note that while these 
techniques have the potential to improve the robustness of image classification, their effectiveness 
may vary across different cases [40]. 

5.1.3 Accountability & Auditability 

Accountability and auditability (Figure 3) are increasingly important considerations in the development 
and deployment of artificial intelligence (AI) systems. Ensuring accountability in AI systems means that 
there is a clear understanding of who is responsible for the actions taken by the system and that there 
are mechanisms in place to monitor and enforce compliance with ethical and legal standards. 
Auditability, on the other hand, refers to the ability to assess and verify the performance and behaviour 
of an AI system, including its decision-making processes and outputs. 

 

Figure 3: A high-level view of the Accountability and Auditability of ML. 
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5.1.4 Transparency and Fairness 

Transparency and fairness in AI are the core principles and practices that guarantee AI systems operate 
with clarity, accountability, and impartiality. This encompasses using diverse and representative 
training data, employing transparent and explainable algorithms, and ensuring a fair and unbiased 
decision-making process. Transparency fosters user trust by allowing them to understand the system's 
decisions, while fairness ensures the system doesn't discriminate based on personal attributes. These 
principles are essential for building dependable AI systems applicable across various domains like 
healthcare, finance, criminal justice, and education.  

5.1.4.1 Challenges in fairness research 

The paper [41] identifies four key challenges in ML model fairness research:  

(1) Balancing the trade-off between fairness and model performance, where if we don't consider 
the social and cultural factors when using machine learning, we might end up with models that 
are unfair, unethical, and even illegal. The machine learning community has come up with 
different ways to make models fairer, but it's a bit tricky because making a model fair can 
sometimes make it less good at its job. Sometimes, though, making a model less accurate on 
purpose is a way to fix unfairness.  

(2) (Dis)agreement and Incompatibility of “Fairness”, there's a debate in the literature about 
whether it's more important to be fair to individuals or groups when using machine learning 
models. Fairness metrics usually focus on one or the other but not both. Some methods that 
aim to make things fair for groups can make things worse for individuals within those groups. 
Also, the way fairness is defined mathematically doesn't always match how society, 
economics, or the law see it. This makes improving fairness in machine learning challenging. 
To address these issues, the community needs to find ways to combine different fairness 
measures and categorize their differences, trade-offs, and preferences, which is a tough task.  

(3) Tensions with Context and Policy, the current research on fairness in machine learning often 
tries to make things fair without really understanding the root causes of unfairness. This 
approach doesn't consider the social and cultural factors that can lead to bias. Instead of just 
trying to reduce unfairness, we need to pay more attention to the real-life context in which 
these decisions are made. Also, the data used to train machine learning models often reflects 
past biases and may not accurately represent the real world. Researchers should work closely 
with industry partners to study these models in real-world situations and involve policymakers 
more in discussions about fairness and standards. This is a challenging problem, but it's crucial 
to make progress in the field of fairness in machine learning.  

(4) Democratisation of ML vs the Fairness Skills Gap, now a days machine learning is more 
accessible with many tools and cloud-based solutions. This democratization of machine 
learning can lead to both positive and unintended, socially insensitive uses. However, the 
challenge is that addressing bias and fairness in machine learning requires expertise, and 
there's a gap in tools and resources for those without extensive technical knowledge. To keep 
up with the growing use of machine learning, there's a need for open-source tools, improved 
educational resources, and comprehensive frameworks to address fairness and bias issues, 
especially in situations where one model depends on another. 

The transparency and fairness of AI-based systems are being ensured through the learning assurance 
process. This process involves technical development to cover the specific learning processes of AI 
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systems. The learning assurance process should provide relevant and understandable information on 
how the AI application arrives at its results/decisions and perform a safety risk analysis and mitigation 
process to avoid being considered a black box [42].  

Authors of [42] focus on AI systems' learning process in ATC. They tested a conflict detection tool that 

uses machine learning to predict aircraft separation violations. The tool uses two methods: estimating 

minimum distance and identifying potential conflicts. They used extreme gradient boosting for both 

methods and then validated the learning process using the EASA's W-shaped methodology. The goal 

was to understand the tool's performance and avoid the "black-box" effect. The research found that 

prediction accuracy decreased as aircraft got closer and that the EASA's methodology needed more 

time-dependent analysis. AI systems that rely on prediction time or accuracy need more analysis as 

these factors change over time. Further study is required to find the relationship between the number 

of samples and metric deterioration. Lastly, more regulation and certification for AI systems in aviation 

are needed, and new guidelines for data analysis are necessary to ensure valid performance.  

5.1.4.2 A Case Study of Chatbot in Aviation education and research  

Recently, [43] presented a case study investigating the impact of ChatGPT (a Chatbot developed by 
OpenAI) on aviation education and research based on surveys of graduate students of Beihang 
University, the leading aviation university of China. The survey results reveal that students find it 
helpful for saving time and efficiency. The major findings of the case study were that students found 
positive experiences with ChatGPT as they felt they had more access to knowledge and an effective 
learning environment. Most of the students cross-validate the results with other sources, but 
interestingly, the female students tend to be even more diligent and critical in this verification process.  

The three main tasks that students take help from ChatGPT are programming, state-of-the-art 
identification, and terminology explanation. Using ChatGPT in aviation faces significant challenges in 
handling confidential information, conducting innovative research, and processing large volumes of 
text. Along with those, here are a few important ones: 

(1) Reliability and Over-Reliance: Using AI like ChatGPT can be risky because it might provide 
wrong or misleading information. This is a big problem in aviation, where safety is crucial. 
Students might not question the AI's answers even when they're incorrect. 

(2) Training and Maintenance: ChatGPT needs constant updates to work well. It takes a lot of 
time and effort to keep it up to date, which makes it impractical for cutting-edge research. 

(3) Ethical and Bias Concerns: These systems can learn biases from training data. This could lead 
to unfair or unethical outcomes. Also, they are vulnerable to cybersecurity threats, and if not 
adequately protected, they could be hacked, causing problems in aviation. 
 

In short, using ChatGPT in aviation has many challenges that need careful consideration and 
management by all involved parties. 

The students are against completely getting rid of this technology in university education. They think 
it would be tough to ban it only in some places, like certain countries. They believe that students would 
try to find ways to still use it because they see it as very useful for their learning. However, there are 
also challenges and limitations that need to be addressed for a successful and safe application of 
chatbots in the aviation domain. The paper also suggests future research directions in this area, 
specially making the chatbot more trustworthy.  
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5.2 Human-Centred XAI 

HCXAI prioritises meeting the needs of users who rely on explanations. To achieve this, XAI 
explanations should possess key attributes [44]:  

(1) They must be understandable, catering to both experts and non-experts in AI. XAI aims to 
enhance transparency, necessitating explanations with accessible, commonly used 
terminology that is interpretable and intuitive. 

(2) Actionable explanations empower users to make informed decisions when interacting with AI 
systems. These explanations should enable users to comprehend, trust, and effectively 
manage the AI system while generating high-quality, interpretable rationales for AI decisions. 

(3) Trustworthiness is paramount, demanding accuracy and reliability in explanations. Grounding 
explanations in real-world examples and ensuring transparency in decision-making are 
essential to foster confidence among users. Given the inherent opacity of AI models, XAI seeks 
to alleviate trust challenges by providing explanations that bolster stakeholders' confidence in 
the utilisation of AI models. 

5.2.1 Approaches of Human-Centred XAI 

HCXAI involves different approaches that focus on explaining AI system outputs in a way that is 
understandable and meaningful to humans [45]. 

One approach to HCXAI is termed as Reflective HCXAI, which takes a socio-technically informed 
perspective on XAI. It critically reflects on the dominant assumptions and practices of the field and 
considers the values of diverse stakeholders, especially marginalised groups. Reflective HCXAI aims to 
propose alternative technologies that are sensitive to socio-organizational contexts and address the 
limitations of current AI systems [46]. 

The Human-Centred Artificial Intelligence (HCAI) framework is another approach to Human-Centred 
XAI. It emphasizes designing AI systems that offer high levels of human control and high levels of 
computer automation to increase human performance. The framework helps to understand when full 
human control or full computer control is necessary and how to avoid the dangers of excessive control. 
The methods of HCAI aim to produce designs that are reliable, safe, and trustworthy [47]. 

5.2.2 Human-centred evaluation methods 

Several literature reviews explored the state of XAI research, highlighting the necessity and challenge 
of understanding user needs and conducting human-centred evaluations of explainable models [1], 
[48]. 

For example, in this study [48], the review discusses the emergence of various terminologies and 
categorizations for explainable AI (XAI) evaluation methods due to their multidisciplinary nature. It 
identifies four key categories for HCXAI evaluation: Trust, Explanation Usefulness and Satisfaction, 
Understandability, and Performance. The study findings suggest that user trust in a model is influenced 
by both actual and perceived accuracy, emphasise the importance of understandable explanations, 
highlight a preference for human-generated explanations, and note that an optimal level of 
transparency is necessary to balance the cost and benefit of explanations.  
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In another related work by [1], they used similar categories for human-based XAI evaluations (i.e., 
trust, understanding, usability, and human-AI collaboration performance). The review identified the 
proliferation of XAI research but emphasized the need for more transparent and comparable human-
based evaluations across different application domains. It also underscores the importance of 
incorporating insights from cognitive and social sciences in XAI research to enhance human-centred 
approaches and proposes practical guidelines for future studies in this field. 

5.2.3 Challenges and Advancements in Human-Centred XAI 

One of the main challenges in HCXAI is to evaluate the effectiveness of XAI techniques, which are 
becoming increasingly complex. The authors in [49], propose to address this challenge by focusing on 
the explainability of simple mathematical models and assessing how people perceive the 
comprehensibility of different model representations. This approach allows diverse stakeholders to 
judge the intelligibility of fundamental concepts that more complex AI explanations are built from. 

5.2.4 Human-Centred XAI for Remote Digital Towers (RDT) 

The related fields, such as smart cities and industrial asset management, can provide valuable insights 
and guidelines for the development of XAI in remote digital towers.  

Explainable AI for smart cities is a relevant area of research that can provide insights into the 
development of HCXAI in digital remote towers. The lessons learned from state-of-the-art research in 
XAI for smart cities can inform the implementation of XAI-driven systems and architectures in the 
context of digital remote towers. This includes addressing technical challenges, ensuring transparency 
and accountability, and leveraging XAI techniques to improve decision-making processes [50]. 

Furthermore, the application of XAI in the prognostic and health management (PHM) of industrial 
assets can provide valuable insights for human-centred XAI in digital remote towers. The balance 
between accuracy and explainability is a key consideration in PHM, and similar trade-offs may need to 
be made in the context of digital remote towers. The involvement of human operators, explanation 
assessment, and uncertainty quantification are important factors to consider in developing XAI 
solutions for PHM, and these insights can be applied to the development of HCXAI in digital remote 
towers [51]. 

In conclusion, considering the needs and experiences of human operators, prioritizing privacy and 
trustworthiness, and leveraging explainability techniques, human-centred XAI can enhance the 
effectiveness and usability of AI systems in digital remote towers. 

5.2.5 The Challenges and Opportunities of AI and XAI for ATM 

The use of AI in ATM has seen a surge in interest and funding, particularly in the 2010s, driven by the 
availability of massive volumes of data and the efficiency of computer graphics card processors in 
accelerating learning algorithms. A recent survey by [31] provides a comprehensive overview of the 
current state of the art in AI and XAI for ATM. The authors identify several key trends in AI research 
and development in ATM, including the use of machine learning and deep learning such as Neural 
Networks (NN), Random Forest (RF), Support Vector Machine (SVM), and others to develop more 
accurate and efficient algorithms for ATC tasks, as well as the development of XAI methods to make AI 
systems more transparent and understandable to end users. 
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The authors also discuss the challenges that need to be addressed before AI can be widely adopted 
and developing XAI methods that are effective and efficient in the ATM context.  

One of the key challenges is the need for XAI systems to understand the end-user and adapt to their 
requirements. This involves the ability to interact with the user and provide information that is not 
only about the internal state of the AI but also caters to the user's needs. Additionally, the format of 
explanations, such as numeric, rules, textual, and visual explanations, needs to be carefully considered 
to make the explanation more understandable and user-friendly, which is crucial for effective XAI in 
ATM. 

Furthermore, the interchangeability of terms such as interpretability, transparency, and explainability 
in the literature poses a hindrance to developing a solid understanding of explainability in AI, which is 
essential for effective XAI methods in the ATM context. Additionally, the lack of a general guide 
presenting how to resolve problems in the ATM domain using AI and XAI is a significant limitation that 
hinders the development of effective and efficient XAI methods in ATM. 

Finally, it is important to gain the trust of end users in AI systems. End users need to be confident that 
AI systems are safe and reliable before they are willing to use them. It is important to develop methods 
to explain AI systems to end users in a way that builds trust, maintains situational awareness but which 
doesn’t compromise workload. 

5.3 Human Machine Teaming 

Human-AI Collaboration/Teaming can be defined as the cooperative and coordinated interaction 
between humans and artificial intelligence systems to achieve a shared goal or task. It involves the 
integration of human and AI capabilities, where humans and AI systems work together as 
interdependent teammates to leverage their respective strengths and expertise [52]. This 
collaboration can take various forms, such as humans delegating tasks to AI systems, AI systems 
providing recommendations or assistance to humans, or humans and AI systems jointly making 
decisions [53]. 

The goal of human-AI collaboration is to enhance decision-making, problem-solving, and creative 
processes by combining the strengths of humans and AI systems. It aims at leveraging the 
computational power, data processing capabilities, and pattern recognition abilities of AI systems, 
along with the human abilities of critical thinking, creativity, and contextual understanding [54]. 
Human-AI teaming is being explored in various applications across diverse domains: In military 
operations, AI is integrated into autonomous systems for target recognition, navigation, and 
situational awareness, while humans provide strategic guidance and ethical oversight [55], [56]. 
Moreover, in healthcare, AI assists in medical diagnosis, treatment planning, and patient monitoring, 
while humans provide expertise and empathy [57], [58]. Additionally, in Air Traffic Management (ATM) 
[59], [60], where AI has the potential to enhance operational efficiency, careful consideration of factors 
such as team composition, communication, trust, and the impact of AI on human design teams is 
essential to ensuring effective human-AI collaboration in ATM. In general, Human-AI teaming is 
particularly valuable in complex and data-intensive domains, where AI systems can analyse large 
amounts of data and provide insights, while humans can provide domain expertise, interpret the 
results, and make informed decisions [53]. 

5.3.1 Challenges in Human Machine Teaming 
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While human-AI teaming holds immense promise, it also presents several challenges, as summarised 
in Table 2. These challenges include:  

Table 2: Challenges of Human-AI Collaboration. 

Challenges Category Description Source 

Design and 
Interaction  

Technical Designing effective and user-friendly human-AI 
interactions is difficult due to the uncertainty 
surrounding AI's capabilities and the complexity of AI 
outputs. 

[61]  

Social and 
Behavioural  

Social Social and behavioural factors, such as trust and 
confidence in AI systems, can influence the adoption 
of human-AI collaboration. 

[57], 
[62] 

Trust and 
Confidence  

Technical Establishing trust and confidence in AI systems is 
crucial for effective human-AI collaboration. 

[52], 
[63] 

Ethical and 
Societal  

Ethical Human-AI collaboration raises ethical and societal 
concerns, such as bias and discrimination. 

[64], 
[65]  

Integration and 
Coordination  

Technical Integrating and coordinating human and AI capabilities 
can be challenging due to the need to optimise AI for 
teamwork and manage human-machine interfaces. 

[66], 
[67]  

 

Design and Interaction Challenges: The first set of challenges is associated with the design and 
interaction of human-AI systems. Yang et al., in [61] highlight the difficulties in designing valuable 
human-AI interactions. They propose two main sources of challenge: uncertainty surrounding AI's 
capabilities and AI's output complexity. AI capabilities can be difficult to predict, and AI systems can 
produce a wide range of outputs, from simple to adaptive and complex. These challenges can make it 
difficult for designers to create human-AI interactions that are both effective and user-friendly. While 
in another study, [68] emphasises the challenges in designing creative AI partners (i.e., co-creative 
systems for producing creative artefacts, ideas and performances) for Human-AI interaction. These 
challenges stem from the complexity of human-AI interaction and the need to establish effective 
communication and collaboration between humans and machines [69]. 

Social and Behavioural Challenges: Secondly, there are challenges related to the social and 
behavioural aspects of human-AI collaboration. [57] explores the challenges in healthcare, where 
social and behavioural factors influence the adoption of human-AI collaboration. Similarly, in [62] the 
authors highlight the challenges in conducting empathic conversations due to the struggle of AI 
systems to understand complex human emotions. 

Trust and Confidence Challenges: Thirdly, the work in [52] highlight the importance of trust in human-
AI collaboration. They suggest that perceived rapport, perceived enjoyment, peer influence, facilitating 
conditions, and self-efficacy positively affect trust in AI teammates. This study provides insights into 
the factors that influence trust in human-AI collaboration and can be useful for designing effective 
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human-AI collaborative systems. A study by [63] discusses the impact of AI advice on human 
confidence in decision-making. Their findings indicate that the influence of AI advice on human 
confidence is contingent upon the accuracy of the AI advice. Accurate AI advice supports human 
confidence in decision-making, while inaccurate AI advice decreases it. The study also revealed that 
perceived AI advice quality mediates the impact of AI advice on human confidence. These challenges 
arise from the need to establish trust and confidence in the capabilities and reliability of AI systems. 

Ethical and Societal Challenges: The fourth set of challenges are related to the ethical and societal 
implications of human-AI collaboration. [64] identifies ethical issues in AI partners in human-AI co-
creation, while [65] scrutinize the performance and bias in human-AI teamwork in hiring.  

Integration and Coordination Challenges: Lastly, there are challenges related to the integration and 
coordination of human and AI capabilities. The researchers in [66] investigate the optimisation of AI 
for teamwork, while [67] discusses the collaboration between humans and machines in diverse 
contexts. 

5.3.2 Human AI-Teaming in RDTs 

The state-of-the-art human-AI teaming for RDTs involves several key aspects: the integration of 
advanced automated systems, fail-safe mechanisms, AI technologies, human factors considerations, 
and the careful design and evaluation of controller-friendly assistance systems. 

Firstly, using advanced automated systems requires human operators to efficiently monitor multiple 
displays with distributed attention and intervene when necessary [70]. This interaction, between 
operators and machines can be revealed through the path of visual attention, which reflects the 
cognitive process of human-computer interaction [71]. Additionally, the implementation of fail-safe 
systems and error control strategies is crucial to reduce the frequency of errors, especially in situations 
with serious consequences [72]. 

Furthermore, integrating AI technologies, such as speech recognition support, can significantly 
enhance the capabilities of air traffic controllers in multiple remote tower environments [19]. For 
instance, the use of assistant-based speech recognition support (ABSR) can provide real-time 
assistance to controllers by highlighting recognized callsigns, thereby improving operational efficiency. 
Moreover, the results of human-in-the-loop experiments have demonstrated that remote tower 
operations can lead to improvements in communications and departure rates without increasing 
perceived workload, effort, safety, and situation awareness [8]. 

In terms of human factors, it is essential to consider the cognitive processing and workload of air traffic 
controllers in next-generation ATC tower team operations [73]. The SHELL model, can be used to 
provide a framework for understanding the human factors interfaces in remote tower operations [73]. 
Additionally, the use of eye movement analysis, including saccades and fixations, can offer insights into 
the cognitive processes and selective attention of air traffic controllers [74]. 

Moreover, the design and evaluation of a controller-friendly assistance system, along with the careful 
selection of test participants, are critical for obtaining relevant and objective results in developing 
remote tower solutions [72]. Furthermore, considering user training and habituation to virtual 
environments can help reduce cybersickness and improve user experience [75]. 
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5.4 Summary of TIS 

For the TRUSTY project, this SotA report integrates insights from our previous ARTIMATION project 
and the evolving landscape of Robust and interpretable AI, HCXAI and Human-AI Teaming (HAIT), 
specifically in the context of Taxiway and Runway monitoring tasks within RDT. Table 2 shows a 
common list of categories and methods concerning trustworthy AI. 

The TRUSTY project can greatly benefit from using robust and interpretable AI, especially for tasks that 
require reliability and increased insight into AI decision-making rationale. MML will be important for 
making this rationale clear and fair. [37] pointed out that MML can be used for multimedia event 
detection, which includes video summarization, action classification and multimedia content analysis. 
[39] introduced a variety of advanced tools like Multimodal Knowledge Graphs and Generative 
Adversarial Networks (GANs) that can help with visual answering questions, filling in knowledge gaps, 
and describing videos and images, which are useful for the project's goals.  

Drawing from the principles of HCXAI, TRUSTY prioritises creating AI explanations that are 
understandable, actionable, and trustworthy. It emphasises the need for AI systems to meet the needs 
of both AI experts and non-experts, offering transparent and intuitive explanations that enhance user 
trust and decision-making. Moreover, the project will explore the HCXAI approaches. TRUSTY 
recognises the complexity of evaluating XAI techniques and will focus on specific methods to assess 
user perceptions of AI explainability. Human-centric evaluation methods will centre around trust, 
explanation of usefulness and satisfaction, understandability, and human performance. The project 
will also address the challenges of ensuring explainability in increasingly complex AI systems, focusing 
on the balance between accuracy and transparency. 

The project will explore the cooperative interaction between humans and AI in achieving shared goals. 
It will explore the RDT domain, emphasizing the integration of human critical thinking and the 
computational power of AI. Challenges in design, interaction, social and behavioural aspects, trust, 
ethics, and integration will be explored. The project aims to enhance decision-making and problem-
solving by leveraging the strengths of both humans and AI. 

In the context of RDT, TRUSTY will apply HCXAI to improve operational efficiency and decision-making. 
It will draw insights from related fields like smart cities and industrial asset management, focusing on 
transparency, accountability, and effective use of XAI techniques.  

Building on the findings of the ARTIMATION project's findings in the field of AI and XAI for Air Traffic 
Management (ATM), TRUSTY will incorporate lessons learned in developing transparent and 
understandable AI systems. 

In conclusion, the TRUSTY project aims to advance robust and interpretable AI, HCXAI and HAIT by 
integrating key learnings from the ARTIMATION project and recent developments in the field. It seeks 
to foster trust, understanding, and effective collaboration between humans and AI systems, focusing 
on remote digital towers in the context of ATMs. This SotA report lays the foundation for the technical 
roadmap and future directions of the TRUSTY project. 

Table 3: List of categories and methods. 

Category Method Application Paper 
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Image and 
vision 

Convolutional 
Neural Networks 
(CNNs) 

Image captioning, visual question-answering, and 
multimedia event detection. 

[37] 
 

 Visual Question Answering (VQA), Visual 
Commonsense Reasoning, Visual Dialogue, Phrase 
Grounding 

[38] 

 Convolutional 
Neural Networks 
(CNNs), 
Generative 
Adversarial 
Networks (GANs) 

Image classification, object detection, image 
captioning, and visual question answering 

[39] 

Text Recurrent Neural 
Networks (RNNs) 
for NLP 

Attention mechanisms in generating image captions, 
deep learning for learning image-text embeddings. 

[37] 
 

 NLP Visual Question Answering (VQA), Visual 
Commonsense Reasoning, Visual Dialogue, Phrase 
Grounding 

[38] 

 

 Recurrent Neural 
Networks (RNNs) 
and Transformer 
models, Word 
embeddings 
(e.g., Word2Vec, 
GloVe) 

Sentiment analysis, machine translation, text 
summarization, and document classification 

[39] 

 

MML Multimodal 
Knowledge 
Graphs, 
Multimodal 
Commonsense 
Reasoning, 
Attention 
Mechanisms, 
Graph-based 
Methods, 
generative 
adversarial 
networks (GANs), 
variational 
autoencoders 

Event detection [37] 
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(VAEs), Matrix 
Factorization 

  Visual question answering, knowledge base 
completion, and image captioning, recommendation 
systems and data clustering 

[39] 

Fairness Fairness 
measuring 
methods: 
statistical parity, 
disparate impact, 
equalized odds, 
calibration, 
counterfactual 
fairness 

Recidivism Prediction, Credit Scoring, Employment and 
Hiring and many others 

[41] 
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6 Human Factor and Cognitive Assessment 

As AI technology becomes an increasingly important part of our everyday working life, human work is 
increasingly influenced by AI, and thus there is a growing need to effectively integrate, collaborate and 
connect with it [76]. AI technologies refer to intelligent systems that perform human cognitive 
functions such as learning, interaction, problem solving and decision making, and therefore can be used 
with the same flexibility as human workers [77]. As technology advances, AI can be integrated directly 
into team processes alongside other artificial and human agents or perform roles that assist humans in 
the same way as team members. This interaction is defined as HAIT [78]. The different but 
complementary capabilities of the human-AI team help to work together effectively to achieve complex 
goals while ensuring people's well-being, motivation, and productivity. Other synergies that arise when 
operators work together with AI contribute to strategic decision-making [79], the development of 
individual competences and thus long-term employee motivation [80]. Employee acceptance and 
positive attitudes towards working with AI increase when AI is considered as a team member. HAIT 
therefore offers an opportunity to create attractive and sustainable workplaces by utilizing human 
capabilities, providing learning and mutual support. 

However, these benefits are not obvious when humans are in a team with AI systems. The National 
Academies of Sciences, Engineering, and Medicine [81] identifies four conditions for humans and AI 
teams to benefit from synergy. 

(1) Humans must be able to understand and predict the behaviour of the intelligent agents 
employed. 

(2) People must be able to establish appropriate trustiness to properly use artificial intelligence 
systems. 

(3) People must be able to make accurate decisions when using the results of employed systems. 
(4) People must be able to control and manage the system appropriately. 

 
These conditions show that successful teamwork depends not only on technical aspects (e.g., design 
of the AI system) but also on human aspects (e.g., mental workload and stress induced during the 
interaction, trust in the system) that may induce poor interaction/teamwork (e.g., form of 
collaboration). 
 
With a particular regard to the human aspects involved in HAIT (i.e., human factors) to take into 
account during the interaction with AI, neurophysiological measurement, based on the recording of 
operators’ neurophysiological signals, (e.g., EEG, ECG, EDA), showed so far clear advantages with 
respect to other methodologies, such as subjective or performance measures [82]. Firstly, 
neurophysiological measures could be obtained continuously and online. Secondly, compared with 
subjective and performance measures, the neurophysiological ones may be recorded continuously 
without using overt responses (i.e., additional tasks) and may provide a direct measure of the mental 
(covert) activities of the operator during the interaction with the AI. Also, neurophysiological measures 
have higher resolution than subjective and performance measures [83]. Last, but not least, the big 
advantage of this kind of measures lies in the possibility to provide information coming from the 
operator (i.e., mental, and emotional states) directly in input to the AI, to make it more empathetic, 
and so inducing an enhancement of the HAIT itself.  
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Byrne and Parasuraman in [82] assessed that the advantage of applying neurophysiological measures 
in triggering AI was very clear, but the “effective application of psychophysiology in the regulatory role 
may require years of effort and considerable maturation in technology.” Today, 30 years later, this 
"effective application" could become a reality thanks to advances in brain-computer interface (BCI) 
research.  
 
Briefly, a BCI is defined as “a system that measures Central Nervous System (CNS) activity and converts 
it into artificial output that replaces, restores, enhances or improves natural CNS output and thereby 
changes the ongoing interactions between the CNS and its external or internal environment” [84]. Such 
definition summarizes the progresses of the scientific community in this field during the last decades, 
since at the moment the possibility of using the BCI systems outside the laboratories [85], by 
developing applications in everyday life is not just a theory but something very close to real 
applications [86]. This technology has been defined passive Brain-Computer Interface (pBCI). In pBCI 
technologies, the system recognizes the spontaneous brain activity of the user related to the 
considered mental state (e.g., emotional state, workload, attention levels), and uses such information 
to improve and modulate the interaction between the operator and the system (i.e., AI) itself. Thus, in 
the context of AI, the pBCIs perfectly match the needs of the system in terms of HAIT [87], [88]. 
 
To enhance the trustworthiness of the remote tower operators in the AI, and so to maximize the HAIT 
effectiveness, the TRUSTY project will employ the pBCI concept. It is possible to derive real-time 
information from the ongoing brain activity of the operator, by using signals coming from the body 
(e.g., brain signals), while he/she is doing his/her operational activity (i.e. remote tower operations). 
From such signals, it is possible to evaluate specific metrics (i.e., neurometrics) that correlate with a 
variation of mental and emotional states of the user, such as workload, stress, vigilance, acceptance, 
and this information can be used online, to modify the behaviour of the interface (and AI) that the 
operator is interacting with. This system will be able to put the operator in the loop, so that the AI 
model can adapt its behaviour, by considering the actual mental or emotional state of the user, with 
an increased trustworthiness in the AI, resulting in a powered Human-AI-Teaming. For example, the 
level of explainability of the XAI could be adapted to the actual state of the user (e.g., low workload 
and stress, could correspond to a high level of explanation or vice versa). In addition, the AI itself can 
use as input features the information coming in real time from the user states, together with all the 
other parameters coming from the HMI (e.g., the traffic).  

A further theme concerning the cognitive assessment of human-machine teaming, and particularly 
HAIT, is the possibility to assess through neurophysiological measures the unconscious attitude toward 
the employment of AI. In fact, despite the human-AI relationship and interaction is welcome in some 
areas [89], recent evidence shows both explicit and implicit bias towards AI [90], [91], [92]. For 
instance, art, one of the most evolved and complex amongst human activities - just as science is - and 
difficult to be implemented by an artificial agent, represents a good model for studying Human-AI 
interaction [93]. With respect to this, the first study investigating the negative bias toward AI use in 
neuroesthetics showed that when human and AI products are compared, emotional arousal measured 
through neurophysiological measures (i.e., electrodermal activity) increases and a negative bias 
toward AI emerges in declarative ratings [94]. Such evidence suggests EDA increase as a 
psychophysiological activation plausibly induced by the recruitment of implicit comparison 
mechanisms, supporting the sensitivity of EDA in detecting unconscious reaction during ambiguous 
choices and categorization [95]. Such autonomic signal-derived reactivity in response to items, possibly 
objects of biased prejudice, has been also observed when comparing foreign and local products [96]. 
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In the just mentioned article, it is also suggested the sensitivity of EEG frontal alpha asymmetry index 
and frontal theta index in detecting the attitude toward the adoption of familiar and unfamiliar 
products, that can be obviously extended to the assessment of the propensity, that is HAIT, in human-
machine team actions. 
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7 Conclusions 

This report represents the delivery D 3.1- Report on Definition, Specification and SoTA in RDTs under 
work package (WP) WP3.  The object of this WP is to define the specifications regarding trustworthy 
AI solutions in the operational activities in RDT, especially in runway and taxiway monitoring. 

The report presents a general background of related work in the RDTs, defines some use-case 
scenarios, and delves into the various aspects of trustworthy AI and machine learning. It also provides 
an overview of human-machine teaming and the utilization of cognitive assessment to understand the 
effects of HCAI in RDTs’ operations. 

To exemplify, an AI system, like a Chatbot or a system that answers questions or makes 
recommendations, can use Large Language Models (LLM) technology, using its own data to help with 
a specific Remote Digital Tower task.  

The AI system can provide the following capabilities: 

(1) ChatBot: It can help in communication between controllers and pilots, making it more efficient 
and accurate. 

(2) Question Answering (QA): The AI system can answer questions from controllers or pilots 
about weather, flight schedules, or other important information. 

(3) Recommendation Systems: It can provide recommendations based on real-time data, helping 
controllers make decisions about landing, take-off, and airport operations. 
 

Even if LLM can present challenges, including ensuring that the AI system is reliable, secure from cyber 
threats, and free from biases. It is believed that, overall, using LLM technology in an RDT can improve 
aviation operations and safety. 

The Trusty project will explore the challenges, considering the scenarios, based on RDTs operations, 
defined in this report, and develop MML models incorporating explainability, fairness, auditability and 
accountability of AI system. To make the AI system transparent, one important aspect the Trusty 
project considers is human-machine teaming so that the AI system is trustworthy by design. 
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List of acronyms  

Table 4: List of acronyms. 

Acronym Description 

ATC Air Traffic Control 

RDT Remote Digital Tower 

ATCO Air Traffic Control Officer 

RTO Remote Towers Operator 

MML Multimodal Machine Learning 

CNN Convolutional Neural Networks 

HCAI Human-Centred Artificial Intelligence 

HCXAI Human-Centred Explainable Artificial Intelligence 

NLP Natural Language Processing 

GAN Generative Adversarial Networks 

RNN Recurrent Neural Networks 

XAI Explainable Artificial Intelligence 

LLM Large Language Model 

HAIT Human-AI Teaming 

TIS Trusted Intelligent System 

UAVs Unmanned Aerial Vehicles  

hAIi Human Artificial Intelligence Interaction 

MRTOs Multiple Remote Tower Operations 

 pBCI Brain-Computer Interface 

EEG  Electroencephalograms  

ECG Electrocardiograms 

SoTA State-of-the-art  

ABSR Automated Speech-Based Service Requests  

NN Neural Networks  

RF Random Forest  

SVM Support Vector Machine  

 


